Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
REVIEW

A recent survey of naturally occurring organohalogen compounds

Gordon W. Gribble
+ Author Affiliations
- Author Affiliations

Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA. Email: ggribble@dartmouth.edu




Gordon W. Gribble is a native of San Francisco, California, and completed his undergraduate education at the University of California at Berkeley in 1963. He earned a Ph.D. in organic chemistry at the University of Oregon in 1967. After a National Cancer Institute Postdoctoral Fellowship at the University of California, Los Angeles, he joined the faculty of Dartmouth College in 1968 where has been Full Professor of Chemistry since 1980. He served as Department Chair during 1988–1991. In 2005, he was named to the inaugural endowed Chair as ‘The Dartmouth Professor of Chemistry’. Dr Gribble has published 360 papers in natural product synthesis, synthetic methodology, heterocyclic chemistry, natural organohalogen compounds and synthetic triterpenoids.

Environmental Chemistry 12(4) 396-405 https://doi.org/10.1071/EN15002
Submitted: 6 January 2015  Accepted: 17 February 2015   Published: 29 May 2015

Environmental context. The general perception that nature does not produce compounds containing halogens – chlorine, bromine, iodine and fluorine – is now known to be erroneous. Modern isolation and identification techniques have led to the discovery of more than 5000 halogen-containing compounds from myriad marine and terrestrial plant and animal sources. Many of these compounds possess extraordinary biological activity, including anticancer, antiviral and antibacterial activity of potential human benefit.

Abstract. This short review presents the naturally occurring organohalogen compounds discovered and characterised in 2014. They include compounds from both marine and terrestrial organisms, such as algae, sponges, corals, tunicates, bryozoans, fungi, bacteria, cyanobacteria and plants. Several novel structural types have been characterised. From only ~24 in 1968, naturally occurring organohalogens currently number more than 5000, and they continue to be discovered in all regions of the world. This review presents the 114 discovered organohalogens from natural sources in the year 2014.


References

[1]  (a) G. W. Gribble, Naturally occurring organohalogen compounds – a comprehensive survey. Prog. Chem. Org. Nat. Prod. 2010, 68, 1.
      (b) G. W. Gribble, Naturally occurring organohalogen compounds – a comprehensive update. Prog. Chem. Org. Nat. Prod. 1996, 91, 1.

[2]  X.-Q. Yu, W.-F. He, D.-Q. Liu, M.-T. Feng, Y. Fang, B. Wang, L.-H. Feng, Y.-W. Guo, S.-C. Mao, A seco-laurane sesquiterpene and related laurane derivatives from the red alga Laurencia okamurai Yamada. Phytochemistry 2014, 103, 162.
A seco-laurane sesquiterpene and related laurane derivatives from the red alga Laurencia okamurai Yamada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtFamt7c%3D&md5=fb888afd939c29fcd35d7f0d86c71505CAS | 24731260PubMed |

[3]  M. Kladi, D. Ntountaniotis, M. Zervou, C. Vagias, E. Ioannou, V. Roussis, Glandulaurencianols A–C, brominated diterpenes from the red alga, Laurencia glandulifera and the sea hare, Aplysia punctata. Tetrahedron Lett. 2014, 55, 2835.
Glandulaurencianols A–C, brominated diterpenes from the red alga, Laurencia glandulifera and the sea hare, Aplysia punctata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvVSnsbc%3D&md5=86e044847de98a221d81e42671db0fb3CAS |

[4]  S. Greff, M. Zubia, G. Genta-Jouve, L. Massi, T. Perez, O. P. Thomas, Mahorones, highly brominated cyclopentenones from the red alga Asparagopsis taxiformis. J. Nat. Prod. 2014, 77, 1150.
Mahorones, highly brominated cyclopentenones from the red alga Asparagopsis taxiformis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVGlsrc%3D&md5=f20c296b8195de297ccb91ccd7e6119eCAS | 24746270PubMed |

[5]  C. A. Motti, P. Thomas-Hall, K. A. Hagiwara, C. J. Simmons, R. Willis, A. D. Wright, Accelerated identification of halogenated monoterpenes from Australian specimens of the red algae Plocamium hamatum and Plocamium costatum. J. Nat. Prod. 2014, 77, 1193.
Accelerated identification of halogenated monoterpenes from Australian specimens of the red algae Plocamium hamatum and Plocamium costatum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntlKms74%3D&md5=162f7260f392025454336d4c9eeb057dCAS | 24797660PubMed |

[6]  X. Xu, L. Yin, J. Gao, L. Gao, F. Song, Antifungal bromophenols from marine red alga Symphyocladia latiuscula. Chem. Biodivers. 2014, 11, 807.
Antifungal bromophenols from marine red alga Symphyocladia latiuscula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotVKmsLk%3D&md5=4ae97970521044dcb35326ea2333d6adCAS | 24827691PubMed |

[7]  L.-W. Tian, Y. Feng, Y. Shimizu, T. A. Pfeifer, C. Wellington, J. N. A. Hooper, R. J. Quinn, ApoE secretion modulating bromotyrosine derivative from the Australian marine sponge Callyspongia sp. Bioorg. Med. Chem. Lett. 2014, 24, 3537.
ApoE secretion modulating bromotyrosine derivative from the Australian marine sponge Callyspongia sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVWgs7%2FM&md5=d079c75e8637c7d7aa66cf4769cccd19CAS | 24948562PubMed |

[8]  T. Kusama, N. Tanaka, K. Sakai, T. Gonoi, J. Fromont, Y. Kashiwada, J. Kobayashi, Agelamadins A and B, dimeric bromopyrrole alkaloids from a marine sponge Agelas sp. Org. Lett. 2014, 16, 3916.
Agelamadins A and B, dimeric bromopyrrole alkaloids from a marine sponge Agelas sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFCrtb7F&md5=09ecb3a400e1da9e7693f199ea5b8804CAS | 25020256PubMed |

[9]  T. Kusama, N. Tanaka, K. Sakai, T. Gonoi, J. Fromont, Y. Kashiwada, J. Kobayashi, Agelamadins C–E, bromopyrrole alkaloids comprising oroidin and 3-hydroxykynurenine from a marine sponge Agelas sp. Org. Lett. 2014, 16, 5176.
Agelamadins C–E, bromopyrrole alkaloids comprising oroidin and 3-hydroxykynurenine from a marine sponge Agelas sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyrsLzI&md5=6af1efd25a9ff5a07cf67e539bd59c1dCAS | 25247626PubMed |

[10]  L.-W. Tian, Y. Feng, Y. Shimizu, T. Pfeifer, C. Wellington, J. N. A. Hooper, R. J. Quinn, Aplysinellamides A–C, bromotyrosine-derived metabolites from an Australian Aplysinella sp. marine sponge. J. Nat. Prod. 2014, 77, 1210.
Aplysinellamides A–C, bromotyrosine-derived metabolites from an Australian Aplysinella sp. marine sponge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslSqsro%3D&md5=5f96937defab6e0763aa3316adca59c0CAS | 24758268PubMed |

[11]  Y. Lee, W. Wang, H. Kim, A. G. Giri, D. H. Won, D. Hahn, K. R. Baek, J. Lee, I. Yang, H. Choi, S.-J. Nam, H. Kang, Phorbaketals L–N, cytotoxic sesterterpenoids isolated from the marine sponge of the genus Phorbas. Bioorg. Med. Chem. Lett. 2014, 24, 4095.
Phorbaketals L–N, cytotoxic sesterterpenoids isolated from the marine sponge of the genus Phorbas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1GqsrfK&md5=edd085326aa0176e8aa696db9616bb6cCAS | 25124114PubMed |

[12]  Y.-D. Su, C.-H. Cheng, W.-F. Chen, Y.-C. Chang, Y.-H. Chen, T.-L. Hwang, Z.-H. Wen, W.-H. Wang, L.-S. Fang, J.-J. Chen, Y.-C. Wu, J.-H. Sheu, P.-J. Sung, Briarenolide J, the first 12-chlorobriarane diterpenoid from an octocoral Briareum sp. (Briareidae). Tetrahedron Lett. 2014, 55, 6065.
Briarenolide J, the first 12-chlorobriarane diterpenoid from an octocoral Briareum sp. (Briareidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFOltLnO&md5=ed26a1c9525448d0b1cb5133193a0e4eCAS |

[13]  H. Lei, J.-F. Sun, Z. Han, X.-F. Zhou, B. Yang, Y. Liu, Fragilisinins A–L, new briarane-type diterpenoids from gorgonian Junceella fragilis. RSC Advances 2014, 4, 5261.
Fragilisinins A–L, new briarane-type diterpenoids from gorgonian Junceella fragilis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFyquw%3D%3D&md5=a13afd940006cdce52d2a866f7b9c39aCAS |

[14]  D. Smitha, M. M. K. Kumar, H. Ramana, D. V. Rao, Rubrolide R: A aew furanone metabolite from the ascidian Synoicum of the Indian Ocean. Nat. Prod. Res. 2014, 28, 12.
Rubrolide R: A aew furanone metabolite from the ascidian Synoicum of the Indian Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht12gtrvL&md5=1e8809abf18cfa0b7e1006a5f05229a1CAS | 23962161PubMed |

[15]  M. Tadesse, J. Svenson, K. Sepčić, L. Trembleau, M. Engqvist, J. H. Andersen, M. Jaspars, K. Stensvåg, T. Haug, Isolation and synthesis of pulmonarins A and B, acetylcholinesterase inhibitors from the colonial ascidian Synoicum pulmonaria. J. Nat. Prod. 2014, 77, 364.
Isolation and synthesis of pulmonarins A and B, acetylcholinesterase inhibitors from the colonial ascidian Synoicum pulmonaria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXislent70%3D&md5=741e29dac24c1e5ecdf04cc363c8aaebCAS | 24547899PubMed |

[16]  C. L. P. Patiño, C. Muniain, M. E. Knott, L. Puricelli, J. A. Palermo, Bromopyrrole alkaloids isolated from the patagonian bryozoan Aspidostoma giganteum. J. Nat. Prod. 2014, 77, 1170.
Bromopyrrole alkaloids isolated from the patagonian bryozoan Aspidostoma giganteum.Crossref | GoogleScholarGoogle Scholar | 24824796PubMed |

[17]  W. Zhang, C.-L. Shao, M. Chen, Q.-A. Liu, C.-Y. Wang, Brominated resorcylic acid lactones from the marine-derived fungus Cochliobolus lunatus induced by histone deacetylase inhibitors. Tetrahedron Lett. 2014, 55, 4888.
Brominated resorcylic acid lactones from the marine-derived fungus Cochliobolus lunatus induced by histone deacetylase inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1GkurvO&md5=57086cbe76ba349d6524602f1efd7369CAS |

[18]  T. El-Elimat, H. A. Raja, C. S. Day, W.-L. Chen, S. M. Swanson, N. H. Oberlies, Greensporones: Resorcylic acid lactones from an aquatic Halenospora sp. J. Nat. Prod. 2014, 77, 2088.
Greensporones: Resorcylic acid lactones from an aquatic Halenospora sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Kmtr7N&md5=1be753851a568aac89ad97c17411757bCAS | 25093280PubMed |

[19]  S. Niu, D. Liu, X. Hu, P. Proksch, Z. Shao, W. Lin, Spiromastixones A–O, antibacterial chlorodepsidones from a deep-sea-derived Spiromastix sp. fungus. J. Nat. Prod. 2014, 77, 1021.
Spiromastixones A–O, antibacterial chlorodepsidones from a deep-sea-derived Spiromastix sp. fungus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt1yms7o%3D&md5=9a859d3fbebe8523184429dd45458dc4CAS | 24571273PubMed |

[20]  L. Farnaes, N. G. Coufal, C. A. Kauffman, A. L. Rheingold, A. G. DiPasquale, P. R. Jensen, W. Fenical, Napyradiomycin derivatives, produced by a marine-derived actinomycete, illustrate cytotoxicity by induction of apoptosis. J. Nat. Prod. 2014, 77, 15.
Napyradiomycin derivatives, produced by a marine-derived actinomycete, illustrate cytotoxicity by induction of apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFegsLrL&md5=a11888ad0f6585e7f3210c3270a62f41CAS | 24328269PubMed |

[21]  W. Zhang, L. Ma, S. Li, Z. Liu, Y. Chen, H. Zhang, G. Zhang, Q. Zhang, X. Tian, C. Yuan, S. Zhang, W. Zhang, C. Zhang, Indimicins A–E, bisindole alkaloids from the deep-sea-derived Streptomyces sp. SCSIO 03032. J. Nat. Prod. 2014, 77, 1887.
Indimicins A–E, bisindole alkaloids from the deep-sea-derived Streptomyces sp. SCSIO 03032.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ansrvN&md5=220147fdf5c4177cf6aca9acdc5ee471CAS |

[22]  M. Vegman, S. Carmeli, Three aeruginosins and a microviridin from a bloom assembly of Microcystis spp. collected from a fishpond near Kibbutz Lehavot HaBashan, Israel. Tetrahedron 2014, 70, 6817.
Three aeruginosins and a microviridin from a bloom assembly of Microcystis spp. collected from a fishpond near Kibbutz Lehavot HaBashan, Israel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Gku7%2FK&md5=fd13d9a8b614be368841acb204a2e254CAS |

[23]  S. Luo, H.-S. Kang, A. Krunic, G. E. Chlipala, G. Cai, W.-L. Chen, S. G. Franzblau, S. M. Swanson, J. Orjala, Carbamidocyclophanes F and G with anti-Mycobacterium tuberculosis activity from the cultured freshwater cyanobacterium Nostoc sp. Tetrahedron Lett. 2014, 55, 686.
Carbamidocyclophanes F and G with anti-Mycobacterium tuberculosis activity from the cultured freshwater cyanobacterium Nostoc sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOmur3N&md5=eee559c51224bed41321f02cbabd531fCAS | 25225453PubMed |

[24]  M.-E. F. Hegazy, A. Y. Moustfa, A. E.-H. H. Mohamed, M. A. Alhammady, S. E. I. Elbehairi, S. Ohta, P. W. Paré, New cytotoxic halogenated sesquiterpenes from the Egyptian sea hare, Aplysia oculifera. Tetrahedron Lett. 2014, 55, 1711.
New cytotoxic halogenated sesquiterpenes from the Egyptian sea hare, Aplysia oculifera.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFOksL4%3D&md5=0fec87d709a1c0a31ab662b6e7aec2bcCAS |

[25]  J. Wang, N. Han, Y. Wang, Y. Wang, Z. Liu, Y. Wang, J. Yin, Three alkaloids from Reineckia carnea herba and their antitussive and expectorant activities. Nat. Prod. Res. 2014, 28, 1306.
Three alkaloids from Reineckia carnea herba and their antitussive and expectorant activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlt1Sqs7s%3D&md5=245c6b7bf692b98270069b2c38c765c5CAS | 24678740PubMed |

[26]  W.-C. Lai, Y.-C. Wu, B. Dankó, Y.-B. Cheng, T.-J. Hsieh, C.-T. Hsieh, Y.-C. Tsai, M. El-Shazly, A. Martins, J. Hohmann, A. Hunyadi, F.-R. Chang, Bioactive constituents of Cirsium japonicum var. australe. J. Nat. Prod. 2014, 77, 1624.
Bioactive constituents of Cirsium japonicum var. australe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFCrtbzK&md5=4249fa4f332305dae319c5f8adafcd9fCAS | 25025240PubMed |

[27]  Y.-C. Chang, C.-K. Lu, Y.-R. Chiang, G.-J. Wang, Y.-M. Ju, Y.-H. Kuo, T.-H. Lee, Diterpene glycosides and polyketides from Xylotumulus gibbisporus. J. Nat. Prod. 2014, 77, 751.
Diterpene glycosides and polyketides from Xylotumulus gibbisporus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjs1Gqtro%3D&md5=3b0e86b99b800a9a05b770b73bb0765aCAS | 24597849PubMed |

[28]  W. Ai, X. Wei, X. Lin, L. Sheng, Z. Wang, Z. Tu, X. Yang, X. Zhou, J. Li, Y. Liu, Guignardins A–F, spirodioxynaphthalenes from the endophytic fungus Guignardia sp. KcF8 as a new class of PTP1B and SIRT1 inhibitors. Tetrahedron 2014, 70, 5806.
Guignardins A–F, spirodioxynaphthalenes from the endophytic fungus Guignardia sp. KcF8 as a new class of PTP1B and SIRT1 inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtV2jtrbF&md5=82aa8e6918bbb557ec0af897040cc699CAS |

[29]  C.-H. Lu, S.-S. Liu, J.-Y. Wang, M.-Z. Wang, Y.-M. Shen, Characterization of eight new secondary metabolites from the mutant strain G-444 of Tubercularia sp. TF 5. Helv. Chim. Acta 2014, 97, 334.
Characterization of eight new secondary metabolites from the mutant strain G-444 of Tubercularia sp. TF 5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlChtb4%3D&md5=6da399bf867a4372b400a55a3dd6469aCAS |

[30]  L. Hammerschmidt, A. Debbab, T. D. Ngoc, V. Wray, C. P. Hemphil, W. H. Lin, H. Broetz-Oesterhelt, M. U. Kassack, P. Proksch, A. H. Aly, Polyketides from the mangrove-derived endophytic fungus Acremonium strictum. Tetrahedron Lett. 2014, 55, 3463.
Polyketides from the mangrove-derived endophytic fungus Acremonium strictum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosV2jt74%3D&md5=7c78285b71b8c2f7de623d51a583eaf5CAS |

[31]  Y. Fu, P. Wu, J. Xue, X. Wei, Cytotoxic and antibacterial quinone sesquiterpenes from a Myrothecium fungus. J. Nat. Prod. 2014, 77, 1791.
Cytotoxic and antibacterial quinone sesquiterpenes from a Myrothecium fungus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1KmsbrE&md5=001d8dab7b02692def521c3ea1100c94CAS |

[32]  W.-H. Yuan, Z.-W. Wei, P. Dai, H. Wu, Y.-X. Zhao, M.-M. Zhang, N. Jiang, W.-F. Zheng, Halogenated metabolites isolated from Penicillium citreonigrum. Chem. Biodivers. 2014, 11, 1078.
Halogenated metabolites isolated from Penicillium citreonigrum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFGmtrzO&md5=08e0e3bbcf49a0fd242368619a34789fCAS | 25044593PubMed |

[33]  V. Rukachaisirikul, S. Satpradit, S. Klaiklay, S. Phongpaichit, K. Borwornwiriyapan, J. Sakayaroj, Polyketide anthraquinone, diphenyl ether, and xanthone derivatives from the soil fungus Penicillium sp. PSU-RSPG99. Tetrahedron 2014, 70, 5148.
Polyketide anthraquinone, diphenyl ether, and xanthone derivatives from the soil fungus Penicillium sp. PSU-RSPG99.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVWhurbM&md5=6c4d48a69590799870cc1ace8a3fa0dcCAS |

[34]  R. Jansen, S. Sood, V. Huch, B. Kunze, M. Stadler, R. Müller, Pyrronazols, metabolites from the myxobacteria Nannocystis pusilla and N. exedens, are unusual chlorinated pyrone-oxazole-pyrroles. J. Nat. Prod. 2014, 77, 320.
Pyrronazols, metabolites from the myxobacteria Nannocystis pusilla and N. exedens, are unusual chlorinated pyrone-oxazole-pyrroles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Ohtr0%3D&md5=f669c6896e9f98ba4e233ec3ee36222bCAS | 24460410PubMed |