Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactions

Alison L. Webb A F , Gill Malin A , Frances E. Hopkins B , Kai Lam Ho A , Ulf Riebesell C , Kai G. Schulz C E , Aud Larsen D and Peter S. Liss A
+ Author Affiliations
- Author Affiliations

A Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.

B Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon PL1 3DH, UK.

C GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, D-24148 Kiel, Germany.

D Uni Research Environment, Thormøhlensgate 49 B, N-5006 Bergen, Norway.

E Present address: Centre for Coastal Biogeochemistry, School of Environmental Science and Management, Southern Cross University, Lismore, NSW 2480, Australia.

F Corresponding author. Present address: Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 1110, NL-9700 CC Groningen, Netherlands. Email: a.l.webb@rug.nl

Environmental Chemistry 13(2) 314-329 https://doi.org/10.1071/EN14268
Submitted: 16 December 2014  Accepted: 13 July 2015   Published: 26 October 2015

Environmental context. Approximately 25 % of CO2 released to the atmosphere by human activities has been absorbed by the oceans, resulting in ocean acidification. We investigate the acidification effects on marine phytoplankton and subsequent production of the trace gas dimethylsulfide, a major route for sulfur transfer from the oceans to the atmosphere. Increasing surface water CO2 partial pressure (pCO2) affects the growth of phytoplankton groups to different degrees, resulting in varying responses in community production of dimethylsulfide.

Abstract. The human-induced rise in atmospheric carbon dioxide since the industrial revolution has led to increasing oceanic carbon uptake and changes in seawater carbonate chemistry, resulting in lowering of surface water pH. In this study we investigated the effect of increasing CO2 partial pressure (pCO2) on concentrations of volatile biogenic dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP), through monoculture studies and community pCO2 perturbation. DMS is a climatically important gas produced by many marine algae: it transfers sulfur into the atmosphere and is a major influence on biogeochemical climate regulation through breakdown to sulfate and formation of subsequent cloud condensation nuclei (CCN). Overall, production of DMS and DMSP by the coccolithophore Emiliania huxleyi strain RCC1229 was unaffected by growth at 900 μatm pCO2, but DMSP production normalised to cell volume was 12 % lower at the higher pCO2 treatment. These cultures were compared with community DMS and DMSP production during an elevated pCO2 mesocosm experiment with the aim of studying E. huxleyi in the natural environment. Results contrasted with the culture experiments and showed reductions in community DMS and DMSP concentrations of up to 60 and 32 % respectively at pCO2 up to 3000 μatm, with changes attributed to poorer growth of DMSP-producing nanophytoplankton species, including E. huxleyi, and potentially increased microbial consumption of DMS and dissolved DMSP at higher pCO2. DMS and DMSP production differences between culture and community likely arise from pH affecting the inter-species responses between microbial producers and consumers.


References

[1]  D. L. Hartmann, A. M. G. Klein Tank, M. Rusticucci, L. V. Alexander, S. Bronnimann, Y. Charabi, Observations: atmosphere and surface, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Eds T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley) 2013 pp. 159–254 (Cambridge University Press: Cambridge, UK).

[2]  U. Cubasch, D. Wuebbles, D. Chen, M. C. Facchini, D. Frame, N. Mahowald, J.-Winther, G. Introduction, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Eds T. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley) 2013, pp. 119–158 (Cambridge University Press: Cambridge, UK).

[3]  C. Le Quéré, G. P. Peters, R. J. Andres, R. M. Andrew, T. A. Boden, P. Ciais, P. Friedlingstein, R. A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D. C. E. Bakker, L. Bopp, J. G. Canadell, L. P. Chini, S. C. Doney, A. Harper, I. Harris, J. I. House, A. K. Jain, S. D. Jones, E. Kato, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G.-H. Park, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B. D. Stocker, T. Takahashi, B. Tilbrook, S. van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, S. Zaehle, Global carbon budget 2013. Earth Syst. Sci. Data 2014, 6, 235.
Global carbon budget 2013.Crossref | GoogleScholarGoogle Scholar |

[4]  R. A. Feely, S. C. Doney, S. R. Cooley, Ocean acidification: present conditions and future changes in a high CO2 world. Oceanography 2009, 22, 36.
Ocean acidification: present conditions and future changes in a high CO2 world.Crossref | GoogleScholarGoogle Scholar |

[5]  J. C. Orr, V. J. Fabry, O. Aumont, L. Bopp, S. C. Doney, R. A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R. M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R. G. Najjar, G.-K. Plattner, K. B. Rodgers, C. L. Sabine, J. L. Sarmiento, R. Schlitzer, R. D. Slater, I. J. Totterdell, M.-F. Weirig, Y. Yamanaka, A. Yool, Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 2005, 437, 681.
Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsL%2FE&md5=0361a6b02dc80f80706e13f460588d12CAS | 16193043PubMed |

[6]  P. M. Holligan, M. Viollier, D. S. Harbour, P. Camus, M. Champagne-Phillipe, Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature 1983, 304, 339.
Satellite and ship studies of coccolithophore production along a continental shelf edge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkvFegs70%3D&md5=affc116968e042e613880ccd6e7ba6ddCAS |

[7]  P. M. Holligan, E. Fernandez, J. Aiken, W. M. Balch, P. Boyd, P. H. Burkill, M. Finch, S. B. Groom, G. Malin, K. Muller, D. A. Purdie, C. C. Trees, C. Robinson, S. M. Turner, P. van der Wal, A biogeochemical study of the coccolithophore Emiliania huxleyi in the North Atlantic. Global Biogeochem. Cycles 1993, 7, 879.
A biogeochemical study of the coccolithophore Emiliania huxleyi in the North Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvF2ls7s%3D&md5=49b4df56c1987a0058d2bdf6c3fdb1e3CAS |

[8]  U. Riebesell, I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe, F. M. M. Morel, Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 2000, 407, 364.
Reduced calcification of marine plankton in response to increased atmospheric CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFyrs7o%3D&md5=cf68e523f8e7e5f0b603f75839381437CAS | 11014189PubMed |

[9]  A. Sciandra, J. Harlay, D. Lefèvre, R. Lemée, P. Rimmelin, M. Denis, J.-P. Gattuso, Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation. Mar. Ecol. Prog. Ser. 2003, 261, 111.
Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation.Crossref | GoogleScholarGoogle Scholar |

[10]  I. Zondervan, R. E. Zeebe, B. Rost, U. Riebesell, Decreasing marine biogenic calcification: a negative feedback on rising pCO2. Global Biogeochem. Cycles 2001, 15, 507.
Decreasing marine biogenic calcification: a negative feedback on rising pCO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlWhtrw%3D&md5=e7a4eaaf14feb64e066b8285880194a9CAS |

[11]  H. Elderfield, Carbonate mysteries. Science 2002, 296, 1618.
Carbonate mysteries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlChsbw%3D&md5=f0f28db8c1747e63e8c23b65dcd7b40dCAS | 12040166PubMed |

[12]  A. Vairavamurthy, M. O. Andreae, R. L. Iverson, Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnol. Oceanogr. 1985, 30, 59.
Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht1ymtb4%3D&md5=7e07a599297641f3ec8a703fda2cc972CAS |

[13]  M. Levasseur, Impact of Arctic meltdown on microbial cycling of sulphur. Nat. Geosci. 2013, 6, 691.
Impact of Arctic meltdown on microbial cycling of sulphur.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlCgtr%2FP&md5=f774ba71d31973f83a936d61da50e689CAS |

[14]  W. Sunda, D. J. Kieber, R. P. Kiene, S. Huntsman, An antioxidant function for DMSP and DMS in marine algae. Nature 2002, 418, 317.
An antioxidant function for DMSP and DMS in marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlGms7k%3D&md5=1bcaa8d9ca44d13d4f343901c31cbed2CAS | 12124622PubMed |

[15]  S. Strom, G. Wolfe, J. Holmes, H. Stecher, C. Shimeneck, S. Lambert, E. Moreno, Chemical defense in the microplankton I: Feeding and growth rates of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyi. Limnol. Oceanogr. 2003, 48, 217.
Chemical defense in the microplankton I: Feeding and growth rates of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVGrurg%3D&md5=46e072d93386b36ae6c428b5061ae5f8CAS |

[16]  J. R. Seymour, R. Simó, T. Ahmed, R. Stocker, Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 2010, 329, 342.
Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosl2iu70%3D&md5=9160e8f0cec3e1f870bdb4bc1f5ff2baCAS | 20647471PubMed |

[17]  M. Garren, K. Son, J.-B. Raina, R. Rusconi, F. Menolascina, O. H. Shapiro, J. Tout, D. G. Bourne, J. R. Seymour, R. Stocker, A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 2014, 8, 999.
A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvV2htbg%3D&md5=5b7327783a485908fcfa92b4b150727fCAS | 24335830PubMed |

[18]  R. Simó, M. Vila-Costa, L. Alonso-Sáez, C. Cardelús, Ó. Guadayol, E. Vázquez-Dominguez, J. M. Gasol, Annual DMSP contribution to S and C fluxes through phytoplankton and bacterioplankton in a NW Mediterranean coastal site. Aquat. Microb. Ecol. 2009, 57, 43.
Annual DMSP contribution to S and C fluxes through phytoplankton and bacterioplankton in a NW Mediterranean coastal site.Crossref | GoogleScholarGoogle Scholar |

[19]  M. Vila-Costa, R. Simó, H. Harada, J. M. Gasol, D. Slezak, R. P. Kiene, Dimethylsulfoniopropionate uptake by marine phytoplankton. Science 2006, 314, 652.
Dimethylsulfoniopropionate uptake by marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 17068265PubMed |

[20]  R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 1987, 326, 655.
Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVWgsb8%3D&md5=24299dba1956a59c2726d9e91321070cCAS |

[21]  P. K. Quinn, T. S. Bates, The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 2011, 480, 51.
The case against climate regulation via oceanic phytoplankton sulphur emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGku73O&md5=c9a82baa2292d53380b59fe3e33c367cCAS | 22129724PubMed |

[22]  A. Lana, T. G. Bell, R. Simó, S. M. Vallina, J. Ballabrera-Poy, A. J. Kettle, J. Dachs, L. Bopp, E. S. Saltzman, J. Stefels, J. E. Johnson, P. S. Liss, An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean. Global Biogeochem. Cycles 2011, 25, GB1004.
An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean.Crossref | GoogleScholarGoogle Scholar |

[23]  S. D. Archer, S. A. Kimmance, J. A. Stephens, F. E. Hopkins, R. G. J. Bellerby, K. G. Schulz, J. Piontek, A. Engel, Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters. Biogeosciences 2013, 10, 1893.
Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltlCmtb4%3D&md5=5fb42e54ed4a844e08cfef86023a8e11CAS |

[24]  F. E. Hopkins, S. M. Turner, P. D. Nightingale, M. Steinke, D. Bakker, P. S. Liss, Ocean acidification and marine trace gas emissions. Proc. Natl. Acad. Sci. USA 2010, 107, 760.
Ocean acidification and marine trace gas emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFCms7g%3D&md5=e3080866fbf9a2a6010c52df109396d7CAS | 20080748PubMed |

[25]  V. Avgoustidi, P. D. Nightingale, I. Joint, M. Steinke, S. M. Turner, F. E. Hopkins, Decreased marine dimethyl sulfide production under elevated CO2 levels in mesocosm and in vitro studies. Environ. Chem. 2012, 9, 399.
Decreased marine dimethyl sulfide production under elevated CO2 levels in mesocosm and in vitro studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ajsbzM&md5=03de5aeac6c27dcc36edcf386c14e6abCAS |

[26]  J.-M. Kim, K. Lee, E. J. Yang, K. Shin, J. H. Noh, K.-T. Park, B. Hyun, H.-J. Jeong, J.-H. Kim, K. Y. Kim, M. Kim, H.-C. Kim, P.-G. Jang, M.-C. Jang, Enhanced production of oceanic dimethylsulfide resulting from CO2-induced grazing activity in a high CO2 world. Environ. Sci. Technol. 2010, 44, 8140.
Enhanced production of oceanic dimethylsulfide resulting from CO2-induced grazing activity in a high CO2 world.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1akt7rI&md5=4b7311ea709515825e822cca99ef6780CAS | 20883015PubMed |

[27]  K.-T. Park, K. Lee, K. Shin, E. J. Yang, B. Hyun, J.-M. Kim, J. H. Noh, M. Kim, B. Kong, D. H. Choi, S.-J. Choi, P.-G. Jang, H. J. Jeong, Direct linkage between dimethyl sulfide production and microzooplankton grazing, resulting from prey composition change under high partial pressure of carbon dioxide conditions. Environ. Sci. Technol. 2014, 48, 4750.
Direct linkage between dimethyl sulfide production and microzooplankton grazing, resulting from prey composition change under high partial pressure of carbon dioxide conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltlalt7w%3D&md5=4fcbd9af00fe5cadc03d238fbb135d5cCAS | 24724561PubMed |

[28]  M. Vogt, M. Steinke, S. M. Turner, A. Paulino, M. Meyerhöfer, U. Riebesell, C. LeQuéré, P. S. Liss, Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO2 concentrations during a mesocosm experiment. Biogeosciences 2008, 5, 407.
Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO2 concentrations during a mesocosm experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2iurvF&md5=fd6149c9ee35e4d5122509eb5cc160aeCAS |

[29]  F. E. Hopkins, S. D. Archer, Consistent increase in dimethyl sulphide (DMS) in response to high CO2 in five shipboard bioassays from contrasting NW European waters. Biogeosciences 2014, 11, 4925.
Consistent increase in dimethyl sulphide (DMS) in response to high CO2 in five shipboard bioassays from contrasting NW European waters.Crossref | GoogleScholarGoogle Scholar |

[30]  J. Piontek, C. Borchard, M. Sperling, K. G. Schulz, U. Riebesell, A. Engel, Response of bacterioplankton activity in an Arctic fjord system to elevated pCO2: results from a mesocosm perturbation study. Biogeosciences 2013, 10, 297.
Response of bacterioplankton activity in an Arctic fjord system to elevated pCO2: results from a mesocosm perturbation study.Crossref | GoogleScholarGoogle Scholar |

[31]  S. Endres, L. Galgani, U. Riebesell, K.-G. Schulz, A. Engel, Stimulated bacterial growth under elevated pCO2: results from an off-shore mesocosm study. PLoS One 2014, 9, e99228.
Stimulated bacterial growth under elevated pCO2: results from an off-shore mesocosm study.Crossref | GoogleScholarGoogle Scholar | 24941307PubMed |

[32]  R. A. Andersen, J. A. Berges, P. J. Harrison, M. M. Watanabe, Algal Culturing Techniques. 2005 (Imprint Academic Press: London).

[33]  N. Jaeckisch, I. Yang, S. Wohlrab, G. Glöckner, J. Kroymann, H. Vogel, A. Cembella, U. John, Comparative genomic and transcriptomic characterization of the toxigenic marine dinoflagellate Alexandrium ostenfeldii. PLoS One 2011, 6, e28012.
Comparative genomic and transcriptomic characterization of the toxigenic marine dinoflagellate Alexandrium ostenfeldii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GnsrvN&md5=8333baa3c1cacc06026a18cd4e19e9ddCAS | 22164224PubMed |

[34]  A. G. Dickson, The measurement of sea water pH. Mar. Chem. 1993, 44, 131.
The measurement of sea water pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhslaltr4%3D&md5=532585a46bb7061ae38ac452aa470accCAS |

[35]  A. G. Dickson, The carbon dioxide system in seawater: equilibrium chemistry and measurements, in Guide to Best Practices for Ocean Acidification Research and Data Reporting (Eds U. Riebesell, V. J. Fabry, L. Hannson, J.-P. Gatuso) 2010, pp. 17–40 (Publications Office of the European Union: Luxembourg).

[36]  Proficiency Study 12–23: DMS in Seawater 2013 (National Measurement Institute of Australia).

[37]  U. Riebesell, J. Czerny, K. von Bröckel, T. Boxhammer, J. Büdenbender, M. Deckelnick, M. Fischer, D. Hoffmann, S. A. Krug, U. Lentz, A. Ludwig, R. Muche, K. G. Schulz, Technical Note: a mobile sea-going mesocosm system – new opportunities for ocean change research. Biogeosciences 2013, 10, 1835.
Technical Note: a mobile sea-going mesocosm system – new opportunities for ocean change research.Crossref | GoogleScholarGoogle Scholar |

[38]  K. G. Schulz, J. Barcelos e Ramos, R. E. Zeebe, U. Riebesell, CO2 perturbation experiments: similarities and differences between dissolved inorganic carbon and total alkalinity manipulations. Biogeosciences 2009, 6, 2145.
CO2 perturbation experiments: similarities and differences between dissolved inorganic carbon and total alkalinity manipulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVCrsA%3D%3D&md5=55ded07af40bebd8d08d1b3f58cf3a96CAS |

[39]  K. Johnson, J. M. Sieburth, P. J. le B. Williams, L. Brändström, Coulometric total carbon dioxide analysis for marine studies: automation and calibration. Mar. Chem. 1987, 21, 117.
Coulometric total carbon dioxide analysis for marine studies: automation and calibration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltVagsLg%3D&md5=1abaa43fd5d045296255ee4d71c3f2a2CAS |

[40]  A. G. Dickson, C. L. Sabine, J. R. Christian, (Eds) Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication 3 2007 (Carbon Dioxide Information Analysis Center: Oak Ridge, TN, USA). Available at http://cdiac.ornl.gov/oceans/Handbook_2007.html [Verified 29 August 2015].

[41]  C. Mehrbach, C. H. Culberson, J. E. Hawley, R. M. Pytkowicz, Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 1973, 18, 897.
Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXhtFansLk%3D&md5=dd0eb498ae31a2dcaaec940e2da5c5e9CAS |

[42]  T. J. Lueker, A. G. Dickson, C. D. Keeling, Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 2000, 70, 105.
Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1Wjsbo%3D&md5=b007f59b5c275ad2bd17b6520b07bbaeCAS |

[43]  A. L. Chuck, S. M. Turner, P. S. Liss, Oceanic distributions and air-sea fluxes of biogenic halocarbons in the open ocean. J. Geophys. Res. 2005, 110, C10022.
Oceanic distributions and air-sea fluxes of biogenic halocarbons in the open ocean.Crossref | GoogleScholarGoogle Scholar |

[44]  C. Hughes, G. Malin, P. D. Nightingale, P. S. Liss, The effect of light stress on the release of volatile iodocarbons by three species of marine microalgae. Limnol. Oceanogr. 2006, 51, 2849.
The effect of light stress on the release of volatile iodocarbons by three species of marine microalgae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWltbvO&md5=79b4e951853d9ea49bd49040ed38ca3cCAS |

[45]  M. Martino, P. S. Liss, J. M. C. Plane, The photolysis of dihalomethanes in surface seawater. Environ. Sci. Technol. 2005, 39, 7097.
The photolysis of dihalomethanes in surface seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFynu7s%3D&md5=55a95a1a4d27db47ecd1ea294fea7227CAS | 16201634PubMed |

[46]  M. A. J. Curran, G. B. Jones, H. Burton, Spatial distribution of dimethylsulfide and dimethylsulfoniopropionate in the Australasian sector of the Southern Ocean. J. Geophys. Res. 1998, 103, 16 677.
Spatial distribution of dimethylsulfide and dimethylsulfoniopropionate in the Australasian sector of the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFGlu7c%3D&md5=829145acdba91ad259d1b2af1eb9379eCAS |

[47]  R. P. Kiene, D. Slezak, Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling. Limnol. Oceanogr. Methods 2006, 4, 80.
Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlWnt70%3D&md5=d76bee9995b6021df822bbc9b36611e1CAS |

[48]  A. Larsen, T. Castberg, R. A. Sandaa, C. P. D. Brussaard, J. Egge, M. Heldal, A. Paulino, R. Thyrhaug, E. J. van Hannen, G. Bratbak, Population dynamics and diversity of phytoplankton, bacteria and viruses in a seawater enclosure. Mar. Ecol. Prog. Ser. 2001, 221, 47.
Population dynamics and diversity of phytoplankton, bacteria and viruses in a seawater enclosure.Crossref | GoogleScholarGoogle Scholar |

[49]  N. A. Welschmeyer, Fluorometric analysis of chlorophyll-a in the presence of chlorophyll-b and pheopigments. Limnol. Oceanogr. 1994, 39, 1985.
Fluorometric analysis of chlorophyll-a in the presence of chlorophyll-b and pheopigments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXks1Sru70%3D&md5=64375a1b027ff8b9a929173706603dedCAS |

[50]  R. G. Barlow, D. G. Cummings, S. W. Gibb, Improved resolution of mono- and divinyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts using reverse phase C-8 HPLC. Mar. Ecol. Prog. Ser. 1997, 161, 303.
Improved resolution of mono- and divinyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts using reverse phase C-8 HPLC.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXovFKksg%3D%3D&md5=83f0351a3fc85bd87f888a87ba3fadd8CAS |

[51]  M. D. Mackey, D. J. Mackey, H. W. Higgins, S. W. Wright, CHEMTAX a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 1996, 144, 265.
CHEMTAX a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVeksbo%3D&md5=98d4c7e4740094253d498df6f35d5600CAS |

[52]  K. G. Schulz, R. G. J. Bellerby, C. P. D. Brussaard, J. Büdenbender, J. Czerny, A. Engel, M. Fischer, S. Koch-Klavsen, S. A. Krug, S. Lischka, A. Ludwig, M. Meyerhöfer, G. Nondal, A. Silyakova, A. Stuhr, U. Riebesell, Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide. Biogeosciences 2013, 10, 161.
Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide.Crossref | GoogleScholarGoogle Scholar |

[53]  M. Steinke, C. Evans, G. A. Lee, G. Malin, Substrate kinetics of DMSP-lyases in axenic cultures and mesocosm populations of Emiliania huxleyi. Aquat. Sci. 2007, 69, 352.
Substrate kinetics of DMSP-lyases in axenic cultures and mesocosm populations of Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ajtrjI&md5=b7feebfd67c90f353c2cb44f0363da14CAS |

[54]  M. Levasseur, S. Michaud, J. Egge, G. Cantin, J. C. Nejstgaard, R. Sanders, E. Fernandez, P. T. Solberg, B. Heimdal, M. Gosselin, Production of DMSP and DMS during a mesocosm study of an Emiliania huxleyi bloom: influence of bacteria and Calanus finmarchicus grazing. Mar. Biol. 1996, 126, 609.
Production of DMSP and DMS during a mesocosm study of an Emiliania huxleyi bloom: influence of bacteria and Calanus finmarchicus grazing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntFOrur0%3D&md5=5764166b060ccc18b450cd9b6ba45ef8CAS |

[55]  M. Hein, K. Sand-Jensen, CO2 increases oceanic primary production. Nature 1997, 388, 526.
CO2 increases oceanic primary production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1arsbk%3D&md5=8d0e5dc141e231718cd1d65824b2d526CAS |

[56]  B. Rost, U. Riebesell, S. Burkhardt, D. Sultemeyer, Carbon acquisition of bloom-forming marine phytoplankton. Limnol. Oceanogr. 2003, 48, 55.
Carbon acquisition of bloom-forming marine phytoplankton.Crossref | GoogleScholarGoogle Scholar |

[57]  B. Rost, I. Zondervan, D. Wolf-Gladrow, Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions. Mar. Ecol. Prog. Ser. 2008, 373, 227.
Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVCrs7s%3D&md5=04b36014bbdd87acfc6670644d668668CAS |

[58]  C. P. D. Brussaard, A. A. M. Noordeloos, H. Witte, M. C. J. Collenteur, K. Schulz, A. Ludwig, U. Riebesell, Arctic microbial community dynamics influenced by elevated CO2 levels. Biogeosciences 2013, 10, 719.
Arctic microbial community dynamics influenced by elevated CO2 levels.Crossref | GoogleScholarGoogle Scholar |

[59]  Y. Wu, D. A. Campbell, A. J. Irwin, D. J. Suggett, Z. V. Finkel, Ocean acidification enhances the growth rate of larger diatoms. Limnol. Oceanogr. 2014, 59, 1027.
Ocean acidification enhances the growth rate of larger diatoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKjt7vP&md5=be02665f4bc35a35d634f3a76beb9dc0CAS |

[60]  B. Delille, J. Harlay, I. Zondervan, S. Jacquet, L. Chou, R. Wollast, R. G. J. Bellerby, M. Frankignoulle, A. V. Borges, U. Riebesell, J.-P. Gattuso, Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi. Global Biogeochem. Cycles 2005, 19, GB2023.
Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar |

[61]  B. S. C. Leadbeater, Identification, by means of electron microscopy, of flagellate nanoplankton from the coast of Norway. Sarsia 1972, 49, 107.

[62]  S. Jacquet, M. Heldal, M. D. Iglesias-Rodriguez, A. Larsen, W. Wilson, G. Bratbak, Flow cytometric analysis of an Emiliania huxleyi bloom terminated by viral infection. Aquat. Microb. Ecol. 2002, 27, 111.
Flow cytometric analysis of an Emiliania huxleyi bloom terminated by viral infection.Crossref | GoogleScholarGoogle Scholar |

[63]  M. J. Frada, K. D. Bidle, I. Probert, C. de Vargas, In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta). Environ. Microbiol. 2012, 14, 1558.
In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOhsbfP&md5=a0ce32c8dc77df9a093152a283ef5619CAS | 22507290PubMed |

[64]  Y. Feng, C. E. Hare, K. Leblanc, J. M. Rose, Y. Zhang, G. R. DiTullio, P. A. Lee, S. W. Wilhelm, J. M. Rowe, J. Sun, N. Nemcek, C. Gueguen, U. Passow, I. Benner, C. Brown, D. A. Hutchins, Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response. Mar. Ecol. Prog. Ser. 2009, 388, 13.
Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SrtrjO&md5=d5ad3aec6f7b35dcecca5e008ac8b4feCAS |

[65]  A. Spielmeyer, G. Pohnert, Influence of temperature and elevated carbon dioxide on the production of dimethylsulfoniopropionate and glycine betaine by marine phytoplankton. Mar. Environ. Res. 2012, 73, 62.
| 1:CAS:528:DC%2BC3MXhs1Oqs7nF&md5=6d2ca94e0b58023bfdbb998222eb6236CAS | 22130520PubMed |

[66]  G. Langer, G. Nehrke, I. Probert, J. Ly, P. Ziveri, Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 2009, 6, 2637.
Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslOls7w%3D&md5=9e43725ff371583d1b6331a79dfa7969CAS |

[67]  N. A. Nimer, M. J. Merrett, Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and availability of inorganic carbon. New Phytol. 1993, 123, 673.
Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and availability of inorganic carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1Oktrs%3D&md5=4cd0b56f87522015661137af6050f238CAS |

[68]  K. T. Lohbeck, U. Riebesell, S. Collins, T. B. H. Reusch, Functional genetic divergence in high CO2 adapted Emiliania huxleyi populations. Evolution 2013, 67, 1892.
Functional genetic divergence in high CO2 adapted Emiliania huxleyi populations.Crossref | GoogleScholarGoogle Scholar | 23815647PubMed |

[69]  H. E. Arnold, P. Kerrison, M. Steinke, Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi. Glob. Change Biol. 2013, 19, 1007.
Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3sjntlOrsg%3D%3D&md5=bb6c136545989141a7178a65d701c300CAS |

[70]  D. Shi, Y. Xu, F. M. M. Morel, Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth. Biogeosciences 2009, 6, 1199.
Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OhtLvN&md5=abab06fc7a0f54ba7eb0800d3a9f066cCAS |

[71]  N. A. Nimer, M. J. Merrett, Calcification and utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi Lohmann. New Phytol. 1992, 121, 173.
Calcification and utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi Lohmann.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsVKrurk%3D&md5=aa1894a8a197a50a82ad9751841be295CAS |

[72]  A. Engel, I. Zondervan, K. Aerts, L. Beaufort, A. Benthien, L. Chou, B. Delille, J.-P. Gattuso, J. Harlay, C. Heemann, L. Hoffmann, S. Jacquet, J. C. Nejstgaard, M.-D. Pizay, E. Rochelle-Newall, U. Schneider, A. Terbrueggen, U. Riebesell, Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnol. Oceanogr. 2005, 50, 493.
Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFahs7k%3D&md5=a51d5665f90797984e790ae772fb09b6CAS |

[73]  L. F. Dong, N. A. Nimer, E. Okus, M. J. Merrett, Dissolved inorganic carbon utilization in relation to calcite production in Emiliania huxleyi (Lohmann) Kamptner. New Phytol. 1993, 123, 679.
Dissolved inorganic carbon utilization in relation to calcite production in Emiliania huxleyi (Lohmann) Kamptner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1Oktrg%3D&md5=b378765a640bbf8d6324f1d7b931e4f3CAS |

[74]  D. M. Kottmeier, S. D. Rokitta, P. D. Tortell, B. Rost, Strong shift from HCO3– to CO2 uptake in Emiliania huxleyi with acidification: new approach unravels acclimation versus short-term pH effects. Photosynth. Res. 2014, 121, 265.
Strong shift from HCO3 to CO2 uptake in Emiliania huxleyi with acidification: new approach unravels acclimation versus short-term pH effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivFCgtbg%3D&md5=8fbfd9a3d183ac9fa2d483d99683a01cCAS | 24563097PubMed |

[75]  M. D. Iglesias-Rodriguez, P. R. Halloran, R. E. M. Rickaby, I. R. Hall, E. Colmenero-Hidalgo, J. R. Gittins, D. R. H. Green, T. Tyrrell, S. J. Gibbs, P. von Dassow, E. Rehm, E. V. Armbrust, K. P. Boessenkool, Phytoplankton calcification in a high-CO2 world. Science 2008, 320, 336.
Phytoplankton calcification in a high-CO2 world.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks1Ghsb4%3D&md5=25423076ecf513b9d6309c0a5a86f839CAS | 18420926PubMed |

[76]  J. Barcelos e Ramos, M. N. Müller, U. Riebesell, Short-term response of the coccolithophore Emiliania huxleyi to an abrupt change in seawater carbon dioxide concentrations. Biogeosciences 2010, 7, 177.
Short-term response of the coccolithophore Emiliania huxleyi to an abrupt change in seawater carbon dioxide concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVOitb0%3D&md5=fa0d49c359b305cf115ebc366b727c0aCAS |

[77]  M. Heinle, The effects of light, temperature and nutrients on coccolithophores and implications for biogeochemical models 2013, Ph.D. thesis, University of East Anglia, Norwich, UK.

[78]  P. W. Boyd, T. A. Rynearson, E. A. Armstrong, F. Fu, K. Hayashi, Z. Hu, D. A. Hutchins, R. M. Kudela, E. Litchman, M. R. Mulholland, U. Passow, R. F. Strzepek, K. A. Whittaker, E. Yu, M. K. Thomas, Marine phytoplankton temperature versus growth responses from polar to tropical waters – outcome of a scientific community-wide study. PLoS One 2013, 8, e63091.
Marine phytoplankton temperature versus growth responses from polar to tropical waters – outcome of a scientific community-wide study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovVKgtr0%3D&md5=8baddf3c2ad90395369afce583a062cbCAS | 23704890PubMed |

[79]  M. N. Müller, K. G. Schulz, U. Riebesell, Effects of long-term high CO2 exposure on two species of coccolithophores. Biogeosciences 2010, 7, 1109.
Effects of long-term high CO2 exposure on two species of coccolithophores.Crossref | GoogleScholarGoogle Scholar |

[80]  K. T. Lohbeck, U. Riebesell, T. B. H. Reusch, Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 2012, 5, 346.
Adaptive evolution of a key phytoplankton species to ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltFOgsbg%3D&md5=89f8b2082cec8d06dd418a903b1e130cCAS |

[81]  D. J. Franklin, M. Steinke, J. Young, I. Probert, G. Malin, Dimethylsulphoniopropionate (DMSP), DMSP-lyase activity (DLA) and dimethylsulfide (DMS) in 10 species of coccolithophore. Mar. Ecol. Prog. Ser. 2010, 410, 13.
Dimethylsulphoniopropionate (DMSP), DMSP-lyase activity (DLA) and dimethylsulfide (DMS) in 10 species of coccolithophore.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKjsbrK&md5=5cc6bb75d61befd6b29076e644953e55CAS |

[82]  J. C. Cubillos, S. W. Wright, G. Nash, M. F. de Salas, B. Griffiths, B. Tilbrook, A. Poisson, G. M. Hallegraeff, Calcification morphotypes of the coccolithophorid Emiliania huxleyi in the Southern Ocean: changes in 2001 to 2006 compared to historical data. Mar. Ecol. Prog. Ser. 2007, 348, 47.
Calcification morphotypes of the coccolithophorid Emiliania huxleyi in the Southern Ocean: changes in 2001 to 2006 compared to historical data.Crossref | GoogleScholarGoogle Scholar |

[83]  A. Winter, J. Henderiks, L. Beaufort, R. E. M. Rickaby, C. W. Brown, Poleward expansion of the coccolithophore Emiliania huxleyi. J. Plankton Res. 2014, 36, 316.
Poleward expansion of the coccolithophore Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar |

[84]  T. Wuori, The effects of elevated pCO2 in the physiology of Emiliania huxleyi 2012, M.Sc. Thesis, Western Washington University, Bellingham, WA, USA.

[85]  M. G. Scarratt, M. Levasseur, S. Michaud, S. Roy, DMSP and DMS in the Northwest Atlantic: late-summer distributions, production rates and sea-air fluxes. Aquat. Sci. 2007, 69, 292.
DMSP and DMS in the Northwest Atlantic: late-summer distributions, production rates and sea-air fluxes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ajtrvI&md5=c4db89e90b9d6f0d81fd6d47fec78838CAS |

[86]  C. Leck, U. Larsson, L. E. Bågander, S. Johansson, S. Hajdu, Dimethyl sulfide in the Baltic Sea: annual variability in relation to biological activity. J. Geophys. Res. 1990, 95, 3353.
Dimethyl sulfide in the Baltic Sea: annual variability in relation to biological activity.Crossref | GoogleScholarGoogle Scholar |

[87]  S. M. Turner, G. Malin, P. S. Liss, D. S. Harbour, P. M. Holligan, The seasonal variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnol. Oceanogr. 1988, 33, 364.
The seasonal variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in nearshore waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvFygt7s%3D&md5=deae18f647e05dba7cb4a990e561c36dCAS |

[88]  A. Lana, R. Simó, S. M. Vallina, J. Dachs, Re-examination of global emerging patterns of ocean DMS concentration. Biogeochemistry 2012, 110, 173.
Re-examination of global emerging patterns of ocean DMS concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjt7bO&md5=a5d392deacb7e7da955d807e806d558fCAS |

[89]  P. S. Liss, A. D. Hatton, G. Malin, P. D. Nightingale, S. M. Turner, Marine sulphur emissions. Philos. Trans. R. Soc. B Biol. Sci. 1997, 352, 159.
Marine sulphur emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis12hsLk%3D&md5=5a3e54cffc058066e1c13d5e90290717CAS |

[90]  M. Galí, R. Simó, A meta-analysis of oceanic DMS and DMSP cycling processes: disentangling the summer paradox. Global Biogeochem. Cycles 2015, 29, 496.
A meta-analysis of oceanic DMS and DMSP cycling processes: disentangling the summer paradox.Crossref | GoogleScholarGoogle Scholar |

[91]  R. Simó, C. Pedrós-Alió, Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature 1999, 402, 396.
Role of vertical mixing in controlling the oceanic production of dimethyl sulphide.Crossref | GoogleScholarGoogle Scholar |

[92]  A. R. J. Curson, J. D. Todd, M. J. Sullivan, A. W. B. Johnston, Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat. Rev. Microbiol. 2011, 9, 849.
Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12iurbE&md5=93732fa0bab3056569bbfa8e8bbadc36CAS |

[93]  E. C. Howard, J. R. Henriksen, A. Buchan, C. R. Reisch, H. Bürgmann, R. Welsh, W. Ye, J. M. González, K. Mace, S. B. Joye, R. P. Kiene, W. B. Whitman, M. A. Moran, Bacterial taxa that limit sulphur flux from the ocean. Science 2006, 314, 649.
Bacterial taxa that limit sulphur flux from the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeitr7M&md5=d02b3f54b8d92d215347f6b84a76dc59CAS | 17068264PubMed |

[94]  J. D. Todd, R. Rogers, Y. G. Li, M. Wexler, P. L. Bond, L. Sun, A. R. J. Curson, G. Malin, M. Steinke, A. W. B. Johnston, Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 2007, 315, 666.
Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyisLg%3D&md5=7c9d1515fe458aabc26bff4d3b1e473eCAS | 17272727PubMed |

[95]  E. C. Howard, S. Sun, C. R. Reisch, D. A. del Valle, H. Bürgmann, R. P. Kiene, M. A. Moran, Changes in dimethylsulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom. Appl. Environ. Microbiol. 2011, 77, 524.
Changes in dimethylsulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVOqsb0%3D&md5=25f4455694980de315d2dc8f65dab6c8CAS | 21097583PubMed |

[96]  M. Zubkov, L. J. Linn, R. Amann, R. P. Kiene, Temporal patterns of biological dimethylsulfide (DMS) consumption during laboratory-induced phytoplankton bloom cycles. Mar. Ecol. Prog. Ser. 2004, 271, 77.
Temporal patterns of biological dimethylsulfide (DMS) consumption during laboratory-induced phytoplankton bloom cycles.Crossref | GoogleScholarGoogle Scholar |

[97]  B. R. Mohapatra, A. N. Rellinger, D. J. Kieber, R. P. Kiene, Kinetics of DMSP lyases in whole cell extracts of four Phaeocystis species: response to temperature and DMSP analogs. J. Sea Res. 2014, 86, 110.
Kinetics of DMSP lyases in whole cell extracts of four Phaeocystis species: response to temperature and DMSP analogs.Crossref | GoogleScholarGoogle Scholar |

[98]  C.-Y. Li, T.-D. Wei, S.-H. Zhang, X.-L. Chen, X. Gao, P. Wang, B.-B. Xie, H.-N. Su, Q.-L. Qin, X.-Y. Zhang, J. Yu, H.-H. Zhang, B.-C. Zhou, G.-P. Yang, Y.-Z.-Zhang, Molecular insight into bacterial cleavage of oceanic dimethylsulfoniopropionate into dimethyl sulfide. Proc. Natl. Acad. Sci. USA 2014, 111, 1026.
Y.-Z.-Zhang, Molecular insight into bacterial cleavage of oceanic dimethylsulfoniopropionate into dimethyl sulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtleksr8%3D&md5=c7bef7bf4b966fb908e5815766b96603CAS | 24395783PubMed |

[99]  M. De Souza, D. Yoch, Comparative physiology of dimethyl sulfide production by dimethylsulfoniopropionate lyase in Pseudomonas doudoroffii and Alcaligenes sp. strain M3A. Appl. Environ. Microbiol. 1995, 61, 3986.
| 1:CAS:528:DyaK2MXptFGgtLo%3D&md5=a31d3e8989b3766111b9e611c4795c76CAS | 16535162PubMed |

[100]  J. Stefels, L. Dijkhuizen, Characteristics of DMSP-lyase in Phaeocystis sp. (Prymnesiophyceae). Mar. Ecol. Prog. Ser. 1996, 131, 307.
Characteristics of DMSP-lyase in Phaeocystis sp. (Prymnesiophyceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XislGksrg%3D&md5=93855c69f1750d5e0f87b746cb73d430CAS |

[101]  R. P. Kiene, L. J. Linn, J. A. Bruton, New and important roles for DMSP in marine microbial communities. J. Sea Res. 2000, 43, 209.
New and important roles for DMSP in marine microbial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Wrtbw%3D&md5=789cb96d8406d5bbead908e442a540f1CAS |

[102]  M. Vila-Costa, D. A. del Valle, J. M. González, D. Slezak, R. P. Kiene, O. Sánchez, R. Simó, Phylogenetic identification and metabolism of marine dimethylsulfide-consuming bacteria. Environ. Microbiol. 2006, 8, 2189.
Phylogenetic identification and metabolism of marine dimethylsulfide-consuming bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisl2gtQ%3D%3D&md5=04367748b7ccc098fc08215b57135567CAS | 17107560PubMed |

[103]  H. Schäfer, Isolation of Methylophaga spp. from marine dimethylsulfide-degrading enrichment cultures and identification of polypeptides induced during growth on dimethylsulfide. Appl. Environ. Microbiol. 2007, 73, 2580.
Isolation of Methylophaga spp. from marine dimethylsulfide-degrading enrichment cultures and identification of polypeptides induced during growth on dimethylsulfide.Crossref | GoogleScholarGoogle Scholar | 17322322PubMed |

[104]  A. D. Hatton, D. M. Shenoy, M. C. Hart, A. Mogg, D. H. Green, Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community associated with the DMSP-producing dinoflagellate Scrippsiella trochoidea. Biogeochemistry 2012, 110, 131.
Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community associated with the DMSP-producing dinoflagellate Scrippsiella trochoidea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjt7vF&md5=4a73c53e65859cb7a3c09a9c0efa7170CAS |

[105]  J. Pinhassi, R. Simó, J. M. González, M. Vila, L. Alonso-Saez, R. P. Kiene, M. A. Moran, C. Pedros-Alio, Dimethylsulfoniopropionate turnover is linked to the composition and dynamics of the bacterioplankton assemblage during a microcosm phytoplankton bloom. Appl. Environ. Microbiol. 2005, 71, 7650.
Dimethylsulfoniopropionate turnover is linked to the composition and dynamics of the bacterioplankton assemblage during a microcosm phytoplankton bloom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlehtL3I&md5=2e3b362564c875206655496feed9db66CAS | 16332737PubMed |

[106]  M. G. Scarratt, M. Levasseur, S. Schultes, S. Michaud, G. Cantin, A. Vezina, M. Gosselin, S. J. De Mora, Production and consumption of dimethylsulfide (DMS) in North Atlantic waters. Mar. Ecol. Prog. Ser. 2000, 204, 13.
Production and consumption of dimethylsulfide (DMS) in North Atlantic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFWrsLY%3D&md5=e7aa04a74c42a345df5b2b5717017e1cCAS |