Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Dimethylsulfide model calibration in the Barents Sea using a genetic algorithm and neural network

Bo Qu A C , Albert J. Gabric B , Meifang Zeng A and Zhifeng Lu A
+ Author Affiliations
- Author Affiliations

A Science Department, Nantong University, Block 16, 9 Seyuan Road, Nantong, Jiangsu Province, 226019, P. R. China.

B School of Environment, Griffith University, Nathan, Qld 4111, Australia.

C Corresponding author. Email: qubo62@gmail.com

Environmental Chemistry 13(2) 413-424 https://doi.org/10.1071/EN14264
Submitted: 11 December 2014  Accepted: 8 March 2015   Published: 18 August 2015

Environmental context. Future changes in marine biogenic aerosol emissions in Arctic seas are likely to affect the radiative budget of the region. Here we employ a calibrated biogeochemical model to simulate change in sulfate aerosol emissions in the Barents Sea, and find strong increases occur by the late 21st century. If replicated across the Arctic Ocean, such increases in sulfate aerosol loading to the Arctic atmosphere may decrease the rate of warming at polar latitudes.

Abstract. Global warming of climate is connected to ecosystem change, especially in the polar oceans. Biogenic emissions of dimethylsulfide (DMS) are the main biogenic source of sulfate aerosols to the marine atmosphere and may change in the Arctic, where warming is currently very rapid. Here, we simulate DMS distribution and sea-to-air flux in the Barents Sea (30–40°E and 70–80°N) for the period 2003–05. A genetic algorithm is used to calibrate the key parameters in the DMS model. We use MODIS satellite chlorophyll-a data and regional DMS field data to calibrate the model. Owing to limited DMS observations in the Arctic Ocean, multiple data sources were used and compared. A back-propagation neural network is used for predicting regional DMS based on previous history time series. Parameter sensitivity analysis is done based on DMS flux output. Global climate model forcings for 1 × CO2 to 3 × CO2 conditions are used to force the biogeochemical model under future climate warming (c. 2080). The simulation results show that under tripled CO2, DMS flux would increase 168 to 279 % from autumn through winter and would increase 112 % during ice melting season. DMS flux would increase much more in ice-melt-affected water. The increased DMS flux under 3 × CO2 indicates that regional warming could slow owing to the emission of DMS in the Arctic, if the increase in emissions of anthropogenic greenhouse gases is controlled.

Additional keywords: aerosols, Arctic, climate change, DMS sea air flux, mixed layer depth, phytoplankton, sea ice concentration, sea surface temperature.


References

[1]  R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987, 326, 655.
Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVWgsb8%3D&md5=24299dba1956a59c2726d9e91321070cCAS |

[2]  A. J. Gabric, B. Qu, P. A. Matrai, A. C. Hirst, The simulated response of dimethylsulfide production in the Arctic Ocean to global warming. Tellus B 2005, 57, 391.
The simulated response of dimethylsulfide production in the Arctic Ocean to global warming.Crossref | GoogleScholarGoogle Scholar |

[3]  G. P. Ayers, J. M. Cainey, The CLAW hypothesis: a review of the major developments. Environ. Chem. 2007, 4, 366.
The CLAW hypothesis: a review of the major developments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVanurjK&md5=8fb7abf2c11e149dcea853d13983ff07CAS |

[4]  P. K. Quinn, T. S. Bates, The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 2011, 480, 51.
The case against climate regulation via oceanic phytoplankton sulphur emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGku73O&md5=c9a82baa2292d53380b59fe3e33c367cCAS | 22129724PubMed |

[5]  P. S. Liss, C. A. Marandino, E. E. Dahl, D. Helmig, E. J. Hintsa, C. Hughes, M. T. Johnson, R. M. Moore, J. M. C. Plane, B. Quack, H. B. Singh, J. Stefels, R. von Glasow, J. Williams, Short-lived trace gases in the surface ocean and the atmosphere, in Ocean–Atmosphere Interactions of Gases and Particles (Eds P. S. Liss, M. T. Johnson) 2014, pp. 1–54 (Springer: Heidelberg). https://doi.org/10.1007/978-3-642- 25643–1_1.

[6]  A. J. Gabric, N. Murray, L. Stone, M. Kohl, Modelling the production of dimethylsulfide during a phytoplankton bloom. J. Geophys. Res. 1993, 98, 22805.
Modelling the production of dimethylsulfide during a phytoplankton bloom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXit1Gqt7c%3D&md5=11150bf04f53ed7b4094bff677ce8ccfCAS |

[7]  A. J. Gabric, P. A. Matrai, Modelling the production and cycling of dimethylsulphide during the vernal bloom in the Barents Sea. Tellus B 1999, 51, 919.
Modelling the production and cycling of dimethylsulphide during the vernal bloom in the Barents Sea.Crossref | GoogleScholarGoogle Scholar |

[8]  A. J. Gabric, R. Cropp, T. Hirst, H. Marchant, The sensitivity of dimethyl sulfide production to simulated climate change in the eastern Antarctic Southern Ocean. Tellus B 2003, 55, 966.
The sensitivity of dimethyl sulfide production to simulated climate change in the eastern Antarctic Southern Ocean.Crossref | GoogleScholarGoogle Scholar |

[9]  S. Chu, S. Elliott, M. Maltrud, Global eddy-permitting simulations of surface ocean nitrogen, iron, sulfur cycling. Chemosphere 2003, 50, 223.
Global eddy-permitting simulations of surface ocean nitrogen, iron, sulfur cycling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslCiu7k%3D&md5=c9e17478a9d31e59e0c2fef687d1527eCAS | 12653294PubMed |

[10]  T. R. Anderson, S. A. Spall, A. Yool, P. Cipollini, P. G. Challenor, M. J. R. Fasham, Global fields of sea-surface dimethylsulfide predicted from chlorophyll, nutrients and light. J. Mar. Syst. 2001, 30, 1.
Global fields of sea-surface dimethylsulfide predicted from chlorophyll, nutrients and light.Crossref | GoogleScholarGoogle Scholar |

[11]  A. J. Kettle, M. O. Andreae, A global database of sea-surface dimethysulfide (DMS) measurements and a procedure to predict sea-surface DMS as a function of latitude, longitude, and month. Global Biogeochem. Cycles 1999, 13, 399.
A global database of sea-surface dimethysulfide (DMS) measurements and a procedure to predict sea-surface DMS as a function of latitude, longitude, and month.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslOrurw%3D&md5=3e01efeae39142a226504b21f3453f02CAS |

[12]  R. Simó, J. Dachs, Global ocean emission of dimethylsulfide predicted from biogeophysical data. Global Biogeochem. Cycles 2002, 16, 1078.
Global ocean emission of dimethylsulfide predicted from biogeophysical data.Crossref | GoogleScholarGoogle Scholar |

[13]  S. Belviso, L. Bopp, C. Moulin, J. C. Orr, T. R. Anderson, O. Aumont, S. Chu, S. Elliott, M. E. Maltrud, R. Simó, Comparison of global climatological maps of sea surface dimethylsulfide. Global Biogeochem. Cycles 2004, 18, GB3013.
Comparison of global climatological maps of sea surface dimethylsulfide.Crossref | GoogleScholarGoogle Scholar |

[14]  A. Lana, T. G. Bell, R. Simó, S. M. Vallina, J. Ballabrera-Poy, A. J. Kettle, J. Dachs, L. Bopp, E. S. Saltzman, J. Stefels, J. E. Johnson, P. S. Liss, An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochem. Cycles 2011, 25, GB1004.
An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean.Crossref | GoogleScholarGoogle Scholar |

[15]  M. Levasseur, Impact of Arctic meltdown on the microbial cycling of sulphur. Nat. Geosci. 2013, 6, 691.
Impact of Arctic meltdown on the microbial cycling of sulphur.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlCgtr%2FP&md5=f774ba71d31973f83a936d61da50e689CAS |

[16]  A. J. Gabric, B. Qu, L. D. Rotstayn, J. M. Shephard, Global simulations of the impact on contemporary climate of a perturbation to the sea-to-air flux of dimethylsulfide. Aust. Meteorol. Oceanogr. J. 2013, 63, 365.

[17]  G. R. W. Humphries, C. J. Deal, S. Elliott, F. Huettmann, Spatial predictions of sea-surface dimethylsulfide concentrations in the High Arctic. Biogeochemistry 2012, 110, 287.
Spatial predictions of sea-surface dimethylsulfide concentrations in the High Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjt7jK&md5=3fcd93f5dd8d8c7cecc860302d6de327CAS |

[18]  A. J. Kettle, M. O. Andreae, Flux of dimethylsulfide from the ocean: a comparison of updated data sets and flux models. J. Geophys. Res. 2000, 105, 26793.
Flux of dimethylsulfide from the ocean: a comparison of updated data sets and flux models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFGit7c%3D&md5=f9eb766ebcf418a31aafcb35e629ea5cCAS |

[19]  A. J. Gabric, W. G. Ray Najjar, D. Erickson, P. Matrai, Modeling the biogeochemical cycle of dimethylsulfide in the upper ocean: a review. Chemosphere 2001, 3, 377.
| 1:CAS:528:DC%2BD3MXotF2htL8%3D&md5=3ee1e165cb14a511d1fcc7970be2a5bfCAS |

[20]  T. Platt, K. L. Denman, A. D. Jascy, Modeling the productivity of phytoplankton. In The Sea, Volume 6: Marine Modeling (Eds. E. D. Goldberg, I. N. McCave, J. J. O’Brien, J. H. Steele) 1977, Vol. 6, pp. 807–856 (Interscience: New York).

[21]  M. D. Keller, W. K. Bellows, R. L. Guillard, Dimethyl sulfide production in marine phytoplankton, in Biogenic Sulfur in the Environment (Eds E. S. Saltzman and W. J. Cooper) 1989, pp. 183–200 (American Chemical Society: Washington, DC).

[22]  E. L. Smith, Photosynthesis in relation to light and carbon dioxide. Proc. Natl. Acad. Sci. USA 1936, 22, 504.
Photosynthesis in relation to light and carbon dioxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA28XlslCrtA%3D%3D&md5=0170496395ec29f893b87b859296e614CAS | 16577734PubMed |

[23]  J. F. Talling, Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytol. 1957, 56, 29.
Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation.Crossref | GoogleScholarGoogle Scholar |

[24]  (a) R. W. Eppley, Temperature and phytoplankton growth in the sea. Fish Bull. 1972, 70, 1063.
      (b) G. E. Fogg, Picoplankton. Proc. R. Soc. Lond. B Biol. Sci. 1986, 228, 1.
Picoplankton.Crossref | GoogleScholarGoogle Scholar |

[25]  P. S. Liss, L. Merlivat, Air–sea gas exchange rate: introduction and synthesis, in The Role of Air–Sea Exchange in Geochemical Cycling (Ed. P. Buat-Menard) 1986, pp. 113–127 (Reidel: Hingham, MA, USA).

[26]  B. Qu, A. J. Gabric, Using genetic algorithms to calibrate a dimethylsulfide production model in the Arctic Ocean. Chin. J. Oceanology Limnol. 2010, 28, 573.
Using genetic algorithms to calibrate a dimethylsulfide production model in the Arctic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlansbc%3D&md5=d98ab189f22eaa81a0f8a31a741df515CAS |

[27]  R. Simó, C. Pedrós-Alió, Role of vertical mixing in controlling the oceanic production of dimethylsulphide. Nature 1999, 402, 396.
Role of vertical mixing in controlling the oceanic production of dimethylsulphide.Crossref | GoogleScholarGoogle Scholar |

[28]  B. Qu, A. J. Gabric, P. A. Matrai, The satellite-derived distribution of chlorophyll-a and its relation to ice cover, radiation and sea-surface temperature in the Barents Sea. Polar Biol. 2006, 29, 196.
The satellite-derived distribution of chlorophyll-a and its relation to ice cover, radiation and sea-surface temperature in the Barents Sea.Crossref | GoogleScholarGoogle Scholar |

[29]  E. J. Hannan M. Deistler Statistical theory of linear systems 1988 (Wiley: New York).

[30]  L. Wang, Y. Zeng, T. Chen, Back-propagation neural network with adaptive differential evolution algorithm for time-series forecasting. Expert Syst. Appl. 2015, 42, 855.
Back-propagation neural network with adaptive differential evolution algorithm for time-series forecasting.Crossref | GoogleScholarGoogle Scholar |

[31]  J. H. Holland, Adaptation in Natural and Artificial Systems 1975 (University of Michigan Press: Ann Arbor, MI, USA).

[32]  M. Mitchell, An Introduction to Genetic Algorithms 1996 (MIT Press: Cambridge).

[33]  P. T. Wassmann, N. Ratkova, I. Andreassen, M. Vernet, G. Pedersen, F. Rey, Spring bloom development in the marginal ice zone and the central Barents Sea. Mar. Ecol. 1999, 20, 321.
Spring bloom development in the marginal ice zone and the central Barents Sea.Crossref | GoogleScholarGoogle Scholar |

[34]  A. J. Gabric, P. H. Whetton, R. Boers, G. P. Ayers, The impact of simulated climate change on the air–sea flux of dimethyl sulphide in the subantarctic Southern Ocean. Tellus B 1998, 50, 388.
The impact of simulated climate change on the air–sea flux of dimethyl sulphide in the subantarctic Southern Ocean.Crossref | GoogleScholarGoogle Scholar |

[35]  C. L. Moloney, M. O. Bergh, J. G. Field, R. C. Newell, The effect of sedimentation and microbial nitrogen regeneration in a plankton community: a simulation investigation. J. Plankton Res. 1986, 8, 427.
The effect of sedimentation and microbial nitrogen regeneration in a plankton community: a simulation investigation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXks1Cgtrs%3D&md5=7155d379a667f9796314981283fe5190CAS |

[36]  H. Kim, S. Yoo, I. S. Oh, Relationship between phytoplankton bloom and wind stress in the subpolar frontal area of the Japan/East Sea. J. Mar. Syst. 2007, 67, 205.
Relationship between phytoplankton bloom and wind stress in the subpolar frontal area of the Japan/East Sea.Crossref | GoogleScholarGoogle Scholar |

[37]  B. Qu, A. J. Gabric, H. Lu, D. Lin, Spike in phytoplankton biomass in Greenland Sea during 2009 and the correlations among chlorophyll-a, aerosol optical depth and ice concentration. Chin. J. Oceanology Limnol. 2014, 32, 241.
Spike in phytoplankton biomass in Greenland Sea during 2009 and the correlations among chlorophyll-a, aerosol optical depth and ice concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt12nsbc%3D&md5=11969b7ef571715c28096242a46ee640CAS |

[38]  A. J. Gabric, B. Qu, P. A. Matrai, C. Murphy, H. Lu, D. Lin, F. Qian, M. Zhao, Investigating the coupling between phytoplankton biomass, aerosol optical depth and sea-ice concentration in the Greenland Sea. Dyn. Atmos. Oceans 2014, 66, 94.
Investigating the coupling between phytoplankton biomass, aerosol optical depth and sea-ice concentration in the Greenland Sea.Crossref | GoogleScholarGoogle Scholar |

[39]  S. N. Madsen, T. G. Nielsen, B. W. Hansen, Annual population development and production by Calanus finmarchicus, C. glacialis and C. hyperboreus in Disko Bay, western Greenland. Mar. Biol. 2001, 139, 75.
Annual population development and production by Calanus finmarchicus, C. glacialis and C. hyperboreus in Disko Bay, western Greenland.Crossref | GoogleScholarGoogle Scholar |

[40]  P. A. Matrai, M. Vernet, Dynamics of the vernal bloom in the marginal ice zone of the Barents Sea: dimethylsulfide and dimethylsulfoniopropionate budgets. J. Geophys. Res. 1997, 102, 22965.
Dynamics of the vernal bloom in the marginal ice zone of the Barents Sea: dimethylsulfide and dimethylsulfoniopropionate budgets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntlGjsrg%3D&md5=7ac833739c3ffd2d227e47f8622e13e1CAS |

[41]  B. Niehoff, S. D. Madsen, B. W. Hansen, T. G. Nielsen, Reproductive cycles of three dominant Calanus species in Disko Bay, west Greenland. Mar. Biol. 2002, 140, 567.
Reproductive cycles of three dominant Calanus species in Disko Bay, west Greenland.Crossref | GoogleScholarGoogle Scholar |

[42]  H. G. Gordon, S. P. O’Farrell, Transient climate change in the CSIRO coupled model with dynamic sea ice. Mon. Weather Rev. 1997, 125, 875.
Transient climate change in the CSIRO coupled model with dynamic sea ice.Crossref | GoogleScholarGoogle Scholar |