Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Arsinothricin, a novel organoarsenic species produced by a rice rhizosphere bacterium

Masato Kuramata A , Futa Sakakibara B D , Ryota Kataoka B E , Kenichi Yamazaki B , Koji Baba B , Masumi Ishizaka B , Syuntaro Hiradate C , Tsunashi Kamo C and Satoru Ishikawa A F
+ Author Affiliations
- Author Affiliations

A Soil Environment Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan.

B Organochemical Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan.

C Biodiversity Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan.

D Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.

E Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Koufu, Yamanashi 400-8510, Japan.

F Corresponding author. Email: isatoru@affrc.go.jp

Environmental Chemistry 13(4) 723-731 https://doi.org/10.1071/EN14247
Submitted: 20 November 2014  Accepted: 17 December 2015   Published: 29 February 2016

Environmental context. Rice is a major human dietary source of arsenic. We identified a novel organoarsenic species, arsinothricin, produced by a bacterium in the rice rhizosphere. This result suggests diverse biochemical dynamics and microbial biodiversity of arsenic metabolism in the rice rhizosphere.

Abstract. Methylated arsenic compounds in rice grains originate from the action of soil bacteria in the rice rhizosphere. Here, we investigated the chemical structures of arsenic compounds produced by a bacterium, Burkholderia gladioli strain GSRB05, in the rice rhizosphere. When cultured in liquid R2A medium containing arsenite (AsIII), strain GSRB05 produced two unknown novel arsenic compounds that were later identified as arsinothricin (AST, 2-amino-4-(hydroxymethylarsinoyl)butanoic acid), an arsenic mimetic of the herbicide phosphinothricin, and a probable hydroxyl precursor of AST, termed AST-OH (2-amino-4-(dihydroxyarsonoyl)butanoic acid). The chemical structure of AST was determined by means of liquid chromatography–high-resolution tandem mass spectrometry and NMR analyses, whereas that of AST-OH was estimated by means of ultra-high-performance liquid chromatography–tandem mass spectrometry. Time-dependent AsIII transformation by strain GSRB05 showed that AST was produced after AST-OH. Compared with AsIII, AST showed higher absorption by, and was more toxic to, Escherichia coli DH5α cells in M9 minimal medium, which lacks amino acids. These findings have implications for the environmental transfer of arsenic, and human health consequences in terms of our dietary burden of arsenic.


References

[1]  K. A. Francesconi, D. Kuehnelt, Determination of arsenic species: a critical review of methods and applications, 2000–2003. Analyst 2004, 129, 373.
Determination of arsenic species: a critical review of methods and applications, 2000–2003.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVOkt7o%3D&md5=63d9593b1fdd4c9e2da46a497fc3c6fbCAS | 15116227PubMed |

[2]  A. Rumpler, J. S. Edmonds, M. Katsu, K. B. Jensen, W. Goessler, G. Raber, H. Gunnlaugsdottir, K. A. Francesconi, Arsenic-containing long-chain fatty acids in cod-liver oil: a result of biosynthetic infidelity? Angew. Chem. Int. Ed. 2008, 47, 2665.
Arsenic-containing long-chain fatty acids in cod-liver oil: a result of biosynthetic infidelity?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFejsL4%3D&md5=226ad4d6d11d2c19a6fa98adfec4a3a7CAS |

[3]  L. Benramdane, F. Bressolle, J. J. Vallon, Arsenic speciation in human and food products: a review. J. Chrom. Sci. 1999, 37, 330.
Arsenic speciation in human and food products: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtFCnsrs%3D&md5=cb26acd971ddb09e7cb534edfbaa63c5CAS |

[4]  J. S. Edmonds, K. A. Francesconi, Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem. Nature 1981, 289, 602.
Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktVegt70%3D&md5=8230996fc0f709b7b1c057aec9655dbeCAS |

[5]  A. Geiszinger, W. Goessler, S. N. Pedersen, K. A. Francesconi, Arsenic biotransformation by the brown macroalga Fucus serratus. Environ. Toxicol. Chem. 2001, 20, 2255.
Arsenic biotransformation by the brown macroalga Fucus serratus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlWitQ%3D%3D&md5=11ab0a36055b493d99ef33189f6188e8CAS | 11596758PubMed |

[6]  V. Nischwitz, S. A. Pergantis, Mapping of arsenic species and identification of a novel arsenosugar in giant clams Tridacna maxima and Tridacna derasa using advanced mass spectrometric techniques. Environ. Chem. 2007, 4, 187.
Mapping of arsenic species and identification of a novel arsenosugar in giant clams Tridacna maxima and Tridacna derasa using advanced mass spectrometric techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFaltrY%3D&md5=77252c3dc8d8083dc29d5509c4422d0cCAS |

[7]  S. García-Salgado, G. Raber, R. Raml, C. Magnes, K. A. Francesconi, Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae. Environ. Chem. 2012, 9, 63.
Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae.Crossref | GoogleScholarGoogle Scholar |

[8]  P. N. Williams, A. H. Price, A. Raab, S. A. Hossain, J. Feldmann, A. A. Meharg, Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ. Sci. Technol. 2005, 39, 5531.
Variation in arsenic speciation and concentration in paddy rice related to dietary exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslaltL0%3D&md5=efb38690fcb8ad3d97a1e35264977896CAS | 16124284PubMed |

[9]  R. Y. Li, J. L. Stroud, J. F. Ma, S. P. McGrath, F. J. Zhao, Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ. Sci. Technol. 2009, 43, 3778.
Mitigation of arsenic accumulation in rice with water management and silicon fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVCht78%3D&md5=24ccf848162a60855748e99473fb6779CAS | 19544887PubMed |

[10]  M. Kuramata, T. Abe, A. Kawasaki, K. Ebana, T. Shibaya, M. Yano, S. Ishikawa, Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains. Rice 2013, 6, 3.
Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains.Crossref | GoogleScholarGoogle Scholar | 24280235PubMed |

[11]  M. Kuramata, T. Abe, S. Matsumoto, S. Ishikawa, Arsenic accumulation and speciation in Japanese paddy rice cultivars. Soil Sci. Plant Nutr. 2011, 57, 248.
Arsenic accumulation and speciation in Japanese paddy rice cultivars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKjs7fE&md5=14d9100b5a02e914783328bf99e057c0CAS |

[12]  C. Lomax, W. J. Liu, L. Wu, K. Xue, J. Xiong, J. Zhou, S. P. McGrath, A. A. Meharg, A. J. Miller, F. J. Zhao, Methylated arsenic species in plants originate from soil microorganisms. New Phytol. 2012, 193, 665.
Methylated arsenic species in plants originate from soil microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVejsbk%3D&md5=d8b94c897558e9a671274af3ed088104CAS | 22098145PubMed |

[13]  Y. Jia, H. Huang, M. Zhong, F. H. Wang, L. M. Zhang, Y. G. Zhu, Microbial arsenic methylation in soil and rice rhizosphere. Environ. Sci. Technol. 2013, 47, 3141.
Microbial arsenic methylation in soil and rice rhizosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFGjtL4%3D&md5=f4cc22c021657e7371650466738861a0CAS | 23469919PubMed |

[14]  F. J. Zhao, E. Harris, J. Yan, J. Ma, L. Wu, W. Liu, S. P. McGrath, J. Zhou, Y. G. Zhu, Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice. Environ. Sci. Technol. 2013, 47, 7147.
Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFehtL8%3D&md5=c1a91b404e3f290e3a147048fb6dd65eCAS | 23750559PubMed |

[15]  J. Qin, B. P. Rosen, Y. Zhang, G. Wang, S. Franke, C. Rensing, Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc. Natl. Acad. Sci. USA 2006, 103, 2075.
Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslGjsro%3D&md5=12dd9010741502d22d59399869a5a046CAS | 16452170PubMed |

[16]  M. Kuramata, F. Sakakibara, R. Kataoka, T. Abe, M. Asano, K. Baba, K. Takagi, S. Ishikawa, Arsenic biotransformation by Streptomyces sp. isolated from rice rhizosphere. Environ. Microbiol. 2015, 17, 1897.
Arsenic biotransformation by Streptomyces sp. isolated from rice rhizosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVWgs7zN&md5=595a5864d1dc23faf380931f401d4942CAS | 25039305PubMed |

[17]  M. Kimura, H. Wada, Y. Takai, Studies of the rhizosphere of paddy rice (part 4). Physical and chemical features of rhizosphere (II). J. Sci. Soil Manure Japan 1977, 48, 540.. [In Japanese]

[18]  N. Yoshioka, M. Asano, A. Kuse, T. Mitsuhashi, Y. Nagasaki, Y. Ueno, Rapid determination of glyphosate, glufosinate, bialaphos, and their major metabolites in serum by liquid chromatography–tandem mass spectrometry using hydrophilic interaction chromatography. J. Chromatogr. A 2011, 1218, 3675.
Rapid determination of glyphosate, glufosinate, bialaphos, and their major metabolites in serum by liquid chromatography–tandem mass spectrometry using hydrophilic interaction chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFantbg%3D&md5=54957d3921d9b671d739f4f043bbd69fCAS | 21530973PubMed |

[19]  A. Ciprandi, R. A. Baraúna, A. V. Santos, E. C. Gonçalves, M. S. P. Carepo, M. P. C. Schneider, A. Silva, Proteomic response to arsenic stress in Chromobacterium violaceum. J. Integr. OMICS 2012, 2, 69.
Proteomic response to arsenic stress in Chromobacterium violaceum.Crossref | GoogleScholarGoogle Scholar |

[20]  H. Ura, N. Furuya, K. Iiyama, M. Hidaka, K. Tsuchiya, N. Matsuyama, Burkholderia gladioli associated with symptoms of bacterial grain rot and leaf-sheath browning of rice plants. J. Gen. Plant Pathol. 2006, 72, 98.
Burkholderia gladioli associated with symptoms of bacterial grain rot and leaf-sheath browning of rice plants.Crossref | GoogleScholarGoogle Scholar |

[21]  Y. S. Seo, J. Lim, B. S. Choi, H. Kim, E. Goo, B. Lee, J. S. Lim, I. Y. Choi, J. S. Moon, J. Kim, I. Hwang, Complete genome sequence of Burkholderia gladioli BSR3. J. Bacteriol. 2011, 193, 3149.
Complete genome sequence of Burkholderia gladioli BSR3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFyktrk%3D&md5=5bf8006e74152311e727357fb3c9d9a5CAS | 21478339PubMed |

[22]  D. Páez-Espino, J. Tamames, V. de Lorenzo, D. Canovas, Microbial responses to environmental arsenic. Biometals 2009, 22, 117.
Microbial responses to environmental arsenic.Crossref | GoogleScholarGoogle Scholar | 19130261PubMed |

[23]  D. Schwartz, S. Berger, E. Heinzelmann, K. Muschko, K. Welzel, W. Wohlleben, Biosynthetic gene cluster of the herbicide phosphinothricin tripeptide from Streptomyces viridochromogenes Tü494. Appl. Environ. Microbiol. 2004, 70, 7093.
Biosynthetic gene cluster of the herbicide phosphinothricin tripeptide from Streptomyces viridochromogenes Tü494.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFaisbfI&md5=9898adc6434cf9ec249dd0048e8455d6CAS | 15574905PubMed |

[24]  R. Manderscheid, A. Wild, Studies on the mechanism of inhibition by phosphinothricin of glutamine synthetase isolated from Triticum aestivum L. J. Plant Physiol. 1986, 123, 135.
Studies on the mechanism of inhibition by phosphinothricin of glutamine synthetase isolated from Triticum aestivum L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xkt1Sqsr4%3D&md5=ce8b87a634a9170e0f5623994e15e5dbCAS |

[25]  W. R. Ullrich, C. I. Ullricheberius, H. Kocher, Uptake of glufosinate and concomitant membrane-potential changes in Lemna gibba G1. Pestic. Biochem. Physiol. 1990, 37, 1.
Uptake of glufosinate and concomitant membrane-potential changes in Lemna gibba G1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktF2gtbc%3D&md5=cdb0bf16cecffd82e37a790549b5a183CAS |

[26]  R. Altenburger, R. Callies, L. H. Grimme, D. Leibfritz, A. Mayer, The mode of action of glufosinate in algae: the role of uptake and nitrogen assimilation pathways. Pestic. Sci. 1995, 45, 305.
The mode of action of glufosinate in algae: the role of uptake and nitrogen assimilation pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSntbjP&md5=378dbae1dd98f7a38876b8c61477068fCAS |