Iron-catalysed oxidation and halogenation of organic matter in nature
Peter Comba A B D , Marion Kerscher A , Torsten Krause C and Heinz Friedrich Schöler C DA Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany.
B Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany.
C Institut für Geowissenschaften, Universität Heidelberg, Im Neuenheimer Feld 234-236, D-69120 Heidelberg, Germany.
D Corresponding authors. Email: peter.comba@aci.uni-heidelberg.de; heinfried.schoeler@geow.uni-heidelberg.de
Peter Comba obtained a diploma in chemistry and chemical education from ETH Zürich and Ph.D. from the Université de Neuchâtel. He had research positions at the Australian National University, Canberra, the Université de Lausanne and the Universität Basel, before taking up his present position as Professor of Chemistry at the Universität Heidelberg. He is interested in fundamental transition metal coordination chemistry, involving ligand design and synthesis, preparative coordination chemistry, spectroscopy as well as theoretical and computational inorganic chemistry, with projects in bioinorganic and medicinal inorganic chemistry, molecular magnetism and molecular catalysis. |
Marion Kerscher was awarded a Ph.D. degree from the University of Heidelberg in 2003. Subsequently, she got a permanent position as a scientist in the Inorganic Chemistry Department of the University of Heidelberg, where she is working in the field of coordination chemistry and focuses on synthesis and spectroscopy. |
Torsten Krause obtained a diploma in chemistry with a thesis on analytical and pharmaceutical applications of quantum dots from the University of Marburg. From the University of Heidelberg he obtained his Ph.D. degree for research on salt lake chemistry and volatile organic compounds emitting therefrom. Today, he works at the Max Rubner-Institute, the German Federal Research Institute of Nutrition and Food within the department for safety and quality of milk and fish in Kiel. |
Heinfried Schöler studied in Bonn and obtained the diploma in chemistry and Ph.D. from the University of Bonn. He had a research position at the Medical Department of the University of Bonn. After habilitation he became Professor of Environmental Hygiene at the University of Bonn and in 1992 Professor for Environmental Organic Geochemistry at the University of Heidelberg. He is especially interested in naturally produced organohalogens (trichloroacetic acid, chlorobenzoic acids, methyl halides, chlorethene, chloroethyne, trihalomethanes) and volatile organic carbon (carbon suboxide, furan, and furan derivatives) in soils, sediments, and fluid inclusions. |
Environmental Chemistry 12(4) 381-395 https://doi.org/10.1071/EN14240
Submitted: 8 November 2014 Accepted: 2 March 2015 Published: 22 June 2015
Environmental context. Natural organohalogens produced in and released from soils are of utmost importance for ozone depletion in the stratosphere. Formation mechanisms of natural organohalogens are reviewed with particular attention to recent advances in biomimetic chemistry as well as in radical-based Fenton chemistry. Iron-catalysed oxidation in biotic and abiotic systems converts organic matter in nature to organohalogens.
Abstract. Natural and anthropogenic organic matter is continuously transformed by abiotic and biotic processes in the biosphere. These reactions include partial and complete oxidation (mineralisation) or reduction of organic matter, depending on the redox milieu. Products of these transformations are, among others, volatile substances with atmospheric relevance, e.g. CO2, alkanes and organohalogens. Natural organohalogens, produced in and released from soils and salt surfaces, are of utmost importance for stratospheric (e.g. CH3Cl, CH3Br for ozone depletion) and tropospheric (e.g. Br2, BrCl, Cl2, HOCl, HOBr, ClNO2, BrNO2 and BrONO2 for the bromine explosion in polar, marine and continental boundary layers, and I2, CH3I, CH2I2 for reactive iodine chemistry, leading to new particle formation) chemistry, and pose a hazard to terrestrial ecosystems (e.g. halogenated carbonic acids such as trichloroacetic acid). Mechanisms for the formation of volatile hydrocarbons and oxygenated as well as halogenated derivatives are reviewed with particular attention paid to recent advances in the field of mechanistic studies of relevant enzymes and biomimetic chemistry as well as radical-based processes.
References
[1] S. R. Taylor, Abundance of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Acta 1964, 28, 1273.| Abundance of chemical elements in the continental crust: a new table.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXkslGntrk%3D&md5=3e25224851e8257822b113989df26ac0CAS |
[2] F. Scheffer, H. P. Blume, G. W. Brümmer, P. Schachtschabel, R. Horn, E. Kandeler, I. Kögel-Knabner, R. Krezschmar, K. Stahr, B. M. Wilke, C. Welp, S. Thiele-Bruhn, Lehrbuch der Bodenkunde 2010 (Spektrum Verlag: Heidelberg).
[3] D. R. Lovley, Dissimilatory FeIII and MnIV reduction. Microbiol. Rev. 1991, 55, 259.
| 1:CAS:528:DyaK3MXltFSjtLY%3D&md5=43dc1620953c864b549fbf2d6ad75097CAS | 1886521PubMed |
[4] W. Stumm, J. J. Morgan, Aquatic Chemistry 1981 (Wiley: New York).
[5] T. R. Khan, C. H. Langford, G. B. Skippen, Complexation and reduction as factors in the link between metal ion concentrations and organic matter in the Indian River. Org. Geochem. 1984, 7, 261.
| Complexation and reduction as factors in the link between metal ion concentrations and organic matter in the Indian River.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhslSiu7g%3D&md5=58ccee0f83e89bc9e13a5bacea28a8a2CAS |
[6] B. Goodell, J. Jellison, L. Liu, G. Daniel, A. Paszczynski, F. Fekete, S. Krishnamurthy, L. Jun, G. Xu, Low-molecular-weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J. Biotechnol. 1997, 53, 133.
| Low-molecular-weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvVWntrw%3D&md5=71a22e5e001ae23631929cff7193950eCAS |
[7] V. Römheld, H. Marschner, Mechanisms of iron uptake by peanut plants: reduction, chelate splitting, and release of phenolics. Plant Physiol. 1983, 71, 949.
| Mechanisms of iron uptake by peanut plants: reduction, chelate splitting, and release of phenolics.Crossref | GoogleScholarGoogle Scholar | 16662934PubMed |
[8] B. Meunier (Ed.), Metal-Oxo and Metal-Peroxo Species in Catalytic Oxidations 2000, Vol. 97 (Springer Verlag: Berlin).
[9] B. Meunier (Ed.), Biomimetic Oxidations Catalyzed by Transition Metal Complexes 2000 (Imperial College Press: London).
[10] S. P. de Visser, D. Kumar (Eds), Iron-Containing Enzymes: Versatile Catalysts of Hydroxylation Reactions in Nature 2011 (RSC Publishing: Cambridge, UK).
[11] R. J. P. Williams, J. J. R. Fraústo da Silva, The Natural Selection of the Chemical Elements 1997 (Oxford University Press: Oxford, UK).
[12] K. D. Karlin, S. Itoh (Eds), Copper–Oxygen Chemistry 2011 (Wiley: New York).
[13] S. C. Sawant, X. Wu, J. Cho, K.-B. Cho, S. H. Kim, M. S. Seo, Y. M. Lee, M. Kubo, T. Ogura, S. Shaik, W. Nam, Water as an oxygen source: synthesis, characterization, and reactivity studies of a mononuclear non-heme manganese(IV) oxo complex. Angew. Chem. Int. Ed. 2010, 49, 8190.
| Water as an oxygen source: synthesis, characterization, and reactivity studies of a mononuclear non-heme manganese(IV) oxo complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlalu7zN&md5=ae6f436cd6b82fe5fd99e0258c03db96CAS |
[14] W. Liu, X. Huang, M. J. Cheng, R. J. Nielsen, W. A. Goddard, J. T. Groves, Oxidative aliphatic C–H fluorination with fluoride ion catalyzed by a manganese porphyrin. Science 2012, 337, 1322.
| Oxidative aliphatic C–H fluorination with fluoride ion catalyzed by a manganese porphyrin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlaitL%2FM&md5=0df375bf3402ae353660c06d71023f84CAS | 22984066PubMed |
[15] T. Taguchi, R. Gupta, B. Lassalle-Kaiser, D. W. Boyce, V. K. Yachandra, W. B. Tolman, J. Yano, M. P. Hendrich, A. S. Borovich, Preparation and properties of a monomeric high-spin MnV–oxo complex. J. Am. Chem. Soc. 2012, 134, 1996.
| Preparation and properties of a monomeric high-spin MnV–oxo complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1ahtw%3D%3D&md5=ca06425122fa1ba49aea8491d6cf2217CAS | 22233169PubMed |
[16] D. Leto, R. Ingram, V. W. Daya, T. A. Jackson, Spectroscopic properties and reactivity of a mononuclear oxomanganese(IV) complex. Chem. Commun. 2013, 5378.
| Spectroscopic properties and reactivity of a mononuclear oxomanganese(IV) complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVWrs7w%3D&md5=206f0de46779c90b1ab8005dcf5a129dCAS |
[17] H. M. Neu, T. Yang, R. A. Baglia, T. H. Yosca, M. T. Green, M. G. Quesne, S. P. de Visser, D. P. Goldberg, Oxygen-atom transfer reactivity of axially ligated MnV-oxo complexes: evidence for enhanced electrophilic and nucleophilic pathways. J. Am. Chem. Soc. 2014, 136, 13 845.
| Oxygen-atom transfer reactivity of axially ligated MnV-oxo complexes: evidence for enhanced electrophilic and nucleophilic pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyjtb3P&md5=9b2a28d85b9d5ba69c04e5082a513928CAS |
[18] P. Barman, A. K. Vardhaman, B. Martin, S. J. Wörner, C. V. Sastri, P. Comba, Infuence of ligand architecture on oxidation reactions by high-valent non-heme manganese–oxo complexes using water as a source of oxygen. Angew. Chem. Int. Ed. 2015, 54, 2095.
| Infuence of ligand architecture on oxidation reactions by high-valent non-heme manganese–oxo complexes using water as a source of oxygen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsVw%3D&md5=aa737c922570a91b1e6da684f3caf0b4CAS |
[19] T. Nagataki, Y. Tachi, S. Itoh, NiII(TPA) as an efficient catalyst for alkane hydroxylation with m-CPBA. Chem. Commun. 2006, 4016.
| NiII(TPA) as an efficient catalyst for alkane hydroxylation with m-CPBA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvF2mtr4%3D&md5=f57a4f65a4ff097c8872b61801fa77edCAS |
[20] T. Nagataki, K. Ishii, Y. Tachi, S. Itoh, Ligand effects on NiII-catalysed alkane hydroxylation with m-CPBA. Dalton Trans. 2007, 1120.
| Ligand effects on NiII-catalysed alkane hydroxylation with m-CPBA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVKksL4%3D&md5=b0cf364286445810ef8e693fc5a891e3CAS | 17339995PubMed |
[21] M. Sankaralingam, M. Balamurugan, M. Palaniandavar, P. Vadivelu, C. H. Suresh, Nickel(II) complexes of pentadentate N5 ligands as catalysts for alkane hydroxylation by using m-CPBA as oxidant: a combined experimental and computational study. Chemistry 2014, 20, 11 346.
| Nickel(II) complexes of pentadentate N5 ligands as catalysts for alkane hydroxylation by using m-CPBA as oxidant: a combined experimental and computational study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlWmtLrN&md5=5ca6899d34f038436f3ee76fe6920bccCAS |
[22] W. Stumm, B. Sulzberger, The cycling of iron in natural environments: considerations based on laboratory studies of heterogeneous redox processes. Geochim. Cosmochim. Acta 1992, 56, 3233.
| The cycling of iron in natural environments: considerations based on laboratory studies of heterogeneous redox processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtF2gtrk%3D&md5=ba59f863196550869ef3d5afd56e6497CAS |
[23] K. J. Olszyna, J. F. Meagher, E. M. Bailey, Gas-phase, cloud and rain-water measurements of hydrogen peroxide at a high-elevation site. Atmos. Environ. 1988, 22, 1699.
| Gas-phase, cloud and rain-water measurements of hydrogen peroxide at a high-elevation site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvFKhu7g%3D&md5=eef4a89aeea45e51262e4303dc2129beCAS |
[24] K. Yoshizumi, K. Aoki, I. Nouchi, T. Okita, T. Kobayashi, S. K. Amakura, M. Tajima, Measurements of the concentration in rainwater and of the Henry’s Law constant of hydrogen peroxide. Atmos. Environ. 1984, 18, 395.
| Measurements of the concentration in rainwater and of the Henry’s Law constant of hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXitFGiur0%3D&md5=f1da7ef6223472fce06265e0c7992424CAS |
[25] G. L. Kok, Measurements of hydrogen peroxide in rainwater. Atmos. Environ. 1980, 14, 653.
| Measurements of hydrogen peroxide in rainwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlslWmt7w%3D&md5=0aaa685d452465d8bf0af6bfee2ff6cfCAS |
[26] Y. Zuo, Y. Deng, Evidence for the production of hydrogen peroxide in rainwater by lightning during thunderstorms. Geochim. Cosmochim. Acta 1999, 63, 3451.
| Evidence for the production of hydrogen peroxide in rainwater by lightning during thunderstorms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVCktr0%3D&md5=5a6cb92faa501faf6cc0b34633825e1eCAS |
[27] Y. Deng, Y. Zuo, Factors affecting the levels of hydrogen peroxide in rainwater. Atmos. Environ. 1999, 33, 1469.
| Factors affecting the levels of hydrogen peroxide in rainwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsVykt74%3D&md5=8463880e95e5fdd93ad5b220e4754d59CAS |
[28] G. L. Kok, K. R. Darnall, A. M. Winer, J. N. Pitts, B. W. Gay, Ambient air measurements of hydrogen peroxide in the California south coast air basin. Environ. Sci. Technol. 1978, 12, 1077.
| Ambient air measurements of hydrogen peroxide in the California south coast air basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXmtF2qur4%3D&md5=ea25ea7acf57decc95d3d24214faba29CAS |
[29] H. Levy, Normal atmosphere: large radical and formaldehyde concentrations predicted. Science 1971, 173, 141.
| Normal atmosphere: large radical and formaldehyde concentrations predicted.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXks1Kgu7o%3D&md5=c39fa65b42bf1b39114025de749b3d1aCAS | 17739642PubMed |
[30] R. I. Martinez, J. T. Herron, R. E. Huie, The mechanism of ozone–alkene reactions in the gas phase. A mass spectrometric study of the reactions of eight linear and branched-chain alkenes. J. Am. Chem. Soc. 1981, 103, 3807.
| The mechanism of ozone–alkene reactions in the gas phase. A mass spectrometric study of the reactions of eight linear and branched-chain alkenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksVWrtbY%3D&md5=e684abc89b2039fa6f2e41d0448cf69bCAS |
[31] W. M. Draper, D. G. Crosby, The photochemical generation of hydrogen peroxide in natural waters. Arch. Environ. Contam. Toxicol. 1983, 12, 121.
| The photochemical generation of hydrogen peroxide in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhs1Kmuro%3D&md5=1a84381acc5ea2dc5f9bacd04ba0daa7CAS |
[32] B. H. Yocis, D. J. Kieber, K. Mopper, Photochemical production of hydrogen peroxide in Antarctic waters. Deep Sea Res. Part I Oceanogr. Res. Pap. 2000, 47, 1077.
| Photochemical production of hydrogen peroxide in Antarctic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis1Witbo%3D&md5=270ecbe9c1294832e844fb3c96b8a335CAS |
[33] B. C. Faust, C. Anastasio, J. M. Allen, T. Arakaki, Aqueous-phase photochemical formation of peroxides in authentic cloud and fog waters. J. Geophys. Res., D, Atmospheres 1993, 260, 73.
| 1:CAS:528:DyaK3sXhvFOmtr0%3D&md5=fb4bfba4a81194d5f2b0f3f14bf454fbCAS |
[34] W. J. Cooper, R. G. Zika, R. G. Petasne, J. M. C. Plane, Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. Environ. Sci. Technol. 1988, 22, 1156.
| Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltlCmsb0%3D&md5=d607cc53fd87bd907776259808b668f5CAS | 22148607PubMed |
[35] J. Weiss, Elektronenübergangsprozesse im Mechanismus von Oxydations- und Reduktionsreaktionen in Lösungen. Naturwissenschaften 1935, 23, 64.
| Elektronenübergangsprozesse im Mechanismus von Oxydations- und Reduktionsreaktionen in Lösungen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2MXjtVaitQ%3D%3D&md5=80f3120671ec41d0bd5b3fc7f2325148CAS |
[36] S. D. Aust, L. A. Morehouse, C. E. Thomas, Role of metals in oxygen radical reactions. J. Free Radic. Biol. Med. 1985, 1, 3.
| Role of metals in oxygen radical reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXksFSjurc%3D&md5=7dbe92b05e21d6e48486cff40802c97dCAS | 3013969PubMed |
[37] B. M. Voelker, F. M. M. Morel, B. Sulzberger, Iron redox cycling in surface waters: effects of humic substances and light. Environ. Sci. Technol. 1997, 31, 1004.
| Iron redox cycling in surface waters: effects of humic substances and light.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFGgsbs%3D&md5=4b2b2c15b33a46660a891ef38f1140f9CAS |
[38] M. A. Kessick, J. J. Morgan, Mechanism of autoxidation of manganese in aqueous solution. Environ. Sci. Technol. 1975, 9, 157.
| Mechanism of autoxidation of manganese in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXptVGqug%3D%3D&md5=91c03f29f433e384c8ce87e4b6bedcd6CAS |
[39] W. Stumm, G. F. Lee, Oxygenation of ferrous iron. Ind. Eng. Chem. 1961, 53, 143.
| Oxygenation of ferrous iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXnslymsQ%3D%3D&md5=67307e4e191305687da8e26aaf953717CAS |
[40] F. J. Millero, The effect of ionic interactions on the oxidation of metals in natural waters. Geochim. Cosmochim. Acta 1985, 49, 547.
| The effect of ionic interactions on the oxidation of metals in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtFOjtrs%3D&md5=844811656ee4bc12757621fd0363f42fCAS |
[41] F. J. Millero, Effect of ionic interactions on the oxidation of FeII and CuI in natural waters. Mar. Chem. 1989, 28, 1.
| Effect of ionic interactions on the oxidation of FeII and CuI in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXht1Clsb8%3D&md5=a52decd2853c023cfd3b5050d9df91e3CAS |
[42] J. M. Trapp, F. J. Millero, The oxidation of iron(II) with oxygen in NaCl brines. J. Solution Chem. 2007, 36, 1479.
| The oxidation of iron(II) with oxygen in NaCl brines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKmtrrK&md5=6d42539245faeb475957f6105370d298CAS |
[43] R. G. Petasne, R. G. Zika, Fate of superoxide in coastal sea water. Nature 1987, 325, 516.
| Fate of superoxide in coastal sea water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXht1Gms70%3D&md5=3f303e2564bb613fc6557e3ed3646116CAS |
[44] J. D. Rush, B. H. J. Bielski, Pulse radiolytic studies of the reaction of perhydroxyl/superoxide O2– with iron(II)/iron(III) ions. The reactivity of HO2/O2– with ferric ions and its implication on the occurrence of the Haber–Weiss reaction. J. Phys. Chem. 1985, 89, 5062.
| Pulse radiolytic studies of the reaction of perhydroxyl/superoxide O2– with iron(II)/iron(III) ions. The reactivity of HO2/O2– with ferric ions and its implication on the occurrence of the Haber–Weiss reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXls1Krur4%3D&md5=18359111429b73774965af17294705e1CAS |
[45] J. W. Koenigs, Production of hydrogen peroxide by wood-rotting fungi in wood and its correlation with weight loss, depolymerization, and pH changes. Arch. Microbiol. 1974, 99, 129.
| Production of hydrogen peroxide by wood-rotting fungi in wood and its correlation with weight loss, depolymerization, and pH changes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXivVegtQ%3D%3D&md5=3db68fb75a8e070f74f6806baf30747dCAS |
[46] F. C. Küpper, D. G. Müller, A. F. Peters, B. Kloareg, P. Potin, Oligoalginate recognition and oxidative burst play a key role in natural and induced resistance of sporophytes of laminariales. J. Chem. Ecol. 2002, 28, 2057.
| Oligoalginate recognition and oxidative burst play a key role in natural and induced resistance of sporophytes of laminariales.Crossref | GoogleScholarGoogle Scholar | 12474900PubMed |
[47] D. L. Pardieck, E. J. Bouwer, A. T. Stone, Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: a review. J. Contam. Hydrol. 1992, 9, 221.
| Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvVSgsrw%3D&md5=a839d5f96bd00dd6b543f48b5bb290ddCAS |
[48] W. J. M. Bowen, Environmental Chemistry of the Elements 1979 (Academic Press: London).
[49] M. S. Matheson, W. A. Mulac, J. L. Weeks, J. Rabani, The pulse radiolysis of deaerated aqueous bromide solutions. J. Phys. Chem. 1966, 70, 2092.
| The pulse radiolysis of deaerated aqueous bromide solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XktlGns7Y%3D&md5=0d7e51ea393a764e7ef76f6139985a57CAS |
[50] M. Anbar, J. K. Thomas, Pulse radiolysis studies of aqueous sodium chloride solutions. J. Phys. Chem. 1964, 68, 3829.
| Pulse radiolysis studies of aqueous sodium chloride solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXhtlWgug%3D%3D&md5=53f5f4222c1e6b36d03989a2cbf9505eCAS |
[51] G. G. Jayson, B. J. Parsons, A. J. Swallow, Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution. Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter. J. Chem. Soc., Faraday Trans. I 1973, 69, 1597.
| Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution. Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXlsV2qsLg%3D&md5=9a1479392664a2baa7f1b09420495eb9CAS |
[52] J. Weiss, Reaction mechanism of the enzymes catalase and peroxidase in the light of the theory of chain reactions. J. Phys. Chem. 1937, 41, 1107.
| Reaction mechanism of the enzymes catalase and peroxidase in the light of the theory of chain reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA1cXjslWj&md5=f2204f6a722fb17c820ac22297ee8819CAS |
[53] M. G. Evans, N. S. Hush, N. Uri, The energetics of reactions involving hydrogen peroxide, its radicals, and its ions. Q. Rev. Chem. Soc. 1952, 6, 186.
| The energetics of reactions involving hydrogen peroxide, its radicals, and its ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XltFWruw%3D%3D&md5=2f6ae251618855701e5e79adb4c229a4CAS |
[54] M. M. Abu-Omar, A. Loaiza, N. Hontzeas, Reaction mechanisms of mononuclear non-heme iron oxygenases. Chem. Rev. 2005, 105, 2227.
| Reaction mechanisms of mononuclear non-heme iron oxygenases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivV2lu7s%3D&md5=0d296d8256108f6d02fc5ec6551aad75CAS | 15941213PubMed |
[55] C. Krebs, D. Galonić Fujimori, C. T. Walsh, J. M. Bollinger, Non-heme FeIV–oxo intermediates. Acc. Chem. Res. 2007, 40, 484.
| Non-heme FeIV–oxo intermediates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVKktr8%3D&md5=35754357f3193f874bc088652a9ecba2CAS | 17542550PubMed |
[56] A. R. McDonald, L. Que, High-valent non-heme iron-oxo complexes: synthesis, structure, and spectroscopy. Coord. Chem. Rev. 2013, 257, 414.
| High-valent non-heme iron-oxo complexes: synthesis, structure, and spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlOls77E&md5=b2bc3237d9a5398c2b5eb27a97473a92CAS |
[57] P. Comba, in Molecular Catalysis (Eds. L. H. Gade, P. Hofmann) 2014, pp. 123–145 (Wiley-VCH: Weinheim).
[58] X. Y. Yu, J. R. Barker, Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism. J. Phys. Chem. A 2003, 107, 1313.
| Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVaitQ%3D%3D&md5=4351ab862bb7a84646f77f33db06db91CAS |
[59] A. J. Fudge, K. W. Sykes, 25. The reaction between ferric and iodide ions. Part I. Kinetics and mechanism. J. Chem. Soc. 1952, 1952, 119.
[60] C. L. Copper, E. Koubek, A kinetics experiment to demonstrate the role of a catalyst in a chemical reaction: a versatile exercise for general or physical chemistry students. J. Chem. Educ. 1998, 75, 87.
| A kinetics experiment to demonstrate the role of a catalyst in a chemical reaction: a versatile exercise for general or physical chemistry students.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtFyitw%3D%3D&md5=c2e3af811368e4573c7231471c2c203fCAS |
[61] H. Landolt, Ueber die Zeitdauer der Reaction zwischen Jodsäure und schwefliger Säure. Ber. Dtsch. Chem. Ges. 1886, 19, 1317.
| Ueber die Zeitdauer der Reaction zwischen Jodsäure und schwefliger Säure.Crossref | GoogleScholarGoogle Scholar |
[62] H. Landolt, Ueber die Zeitdauer der Reaction zwischen Jodsäure und schwefliger Säure. Ber. Dtsch. Chem Ges. 1887, 20, 745.
| Ueber die Zeitdauer der Reaction zwischen Jodsäure und schwefliger Säure.Crossref | GoogleScholarGoogle Scholar |
[63] F. C. Küpper, L. J. Carpenter, G. B. McFiggans, C. J. Palmer, T. J. Waite, E.-M. Boneberg, S. Woitsch, M. Weiller, R. R. Abela, D. Grolimund, P. Potin, A. Butler, G. W. Luther, P. M. Kroneck, W. Meyer-Laucke, M. C. Feiters, Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc. Natl. Acad. Sci. USA 2008, 105, 6954.
| Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar | 18458346PubMed |
[64] V. M. Solyanikov, E. T. Denisov, Formation of radicals in the reaction of hydrogen peroxide with the bromide anion. Bull. Academy Sci. USSR. Chem Sci. 1968, 17, 1415.
[65] V. I. Skudaev, A. B. Solomonov, A. I. Morozovskii, N. A. Isakov, Oxidation of hydrogen chloride with hydrogen peroxide in aqueous solution. Russ. J. Appl. Chem. 2008, 81, 14.
| Oxidation of hydrogen chloride with hydrogen peroxide in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislWgsL8%3D&md5=66a08f93bf598565f3530c683f6e83bfCAS |
[66] R. E. Connick, The interaction of hydrogen peroxide and hypochlorous acid in acidic solutions containing chloride ion. J. Am. Chem. Soc. 1947, 69, 1509.
| The interaction of hydrogen peroxide and hypochlorous acid in acidic solutions containing chloride ion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2sXis12ltA%3D%3D&md5=7aedb95b79c3824af0c18f1db8207b6cCAS |
[67] U. Von Gunten, Y. Oliveras, Kinetics of the reaction between hydrogen peroxide and hypobromous acid: implication on water treatment and natural systems. Water Res. 1997, 31, 900.
| Kinetics of the reaction between hydrogen peroxide and hypobromous acid: implication on water treatment and natural systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitVykurc%3D&md5=04e984ba33966c3a1d7aa4c2a4d71aeaCAS |
[68] W. C. Bray, H. A. Liebhafsky, Reactions involving hydrogen peroxide, iodine and iodate ion. I. Introduction. J. Am. Chem. Soc. 1931, 53, 38.
| Reactions involving hydrogen peroxide, iodine and iodate ion. I. Introduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3MXhtlaqtQ%3D%3D&md5=0e7a9730d1ba725c906908ef8af0831eCAS |
[69] M. G. Peard, C. F. Cullis, A periodic chemical reaction. The reaction between hydrogen peroxide and iodic acid. Trans. Faraday Soc. 1951, 47, 616.
| A periodic chemical reaction. The reaction between hydrogen peroxide and iodic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3MXlvV2jsA%3D%3D&md5=2110efc63e381971d035c2d6ac71e1e9CAS |
[70] M. Barcellos da Rosa, Untersuchungen heterogener troposphärenrelevanter Reaktionen von Schwefel- und Halogenverbindungen 2003, Ph.D. thesis, University Bayreuth.
[71] H. J. H. Fenton, LXXIII. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 1894, 65, 899.
| LXXIII. Oxidation of tartaric acid in presence of iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaD28XmtlCnsQ%3D%3D&md5=df6c09b18b8ca208e8aafc79b1a660efCAS |
[72] C. Walling, Fenton’s reagent revisited. Acc. Chem. Res. 1975, 8, 125.
| Fenton’s reagent revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhs1Sksro%3D&md5=7de1be590ea780d04e97a0f4f03cb8c3CAS |
[73] C. Walling, Intermediates in the reactions of Fenton-type reagents. Acc. Chem. Res. 1998, 31, 155.
| Intermediates in the reactions of Fenton-type reagents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVejtLo%3D&md5=1ccd7b7e59d5637fb75100c8dd2a2eb3CAS |
[74] F. Haber, J. Weiss, Über die Katalyse des Hydroperoxydes. Naturwissenschaften 1932, 20, 948.
| Über die Katalyse des Hydroperoxydes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3sXhslWktg%3D%3D&md5=b6f2b23820e30169f201002f916825cfCAS |
[75] W. C. Bray, M. H. Gorin, Ferryl ion, a compound of tetravalent iron. J. Am. Chem. Soc. 1932, 54, 2124.
| Ferryl ion, a compound of tetravalent iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA38Xjtlaquw%3D%3D&md5=5bcd1ea463dae0b13d274585bc2024e1CAS |
[76] F. Buda, B. Ensing, M. C. M. Gribnau, E. J. Baerends, DFT study of the active intermediate in the Fenton reaction. Chem. Eur. J. 2001, 7, 2775.
| DFT study of the active intermediate in the Fenton reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFantrg%3D&md5=bb52a2f650b3b4c8d734f6739ef228e8CAS | 11486953PubMed |
[77] C. A. Grapperhaus, B. Miener, E. Bill, T. Weyhermüller, K. Wieghardt, Mononuclear (nitrido)iron(V) and (oxo)iron(IV) complexes via photolysis of [(cyclam-acetato)FeIII(N3)]+ and ozonolysis of [(cyclam-acetato)FeIII(O3SCF3)]+ in water/acetone mixtures. Inorg. Chem. 2000, 39, 5306.
| Mononuclear (nitrido)iron(V) and (oxo)iron(IV) complexes via photolysis of [(cyclam-acetato)FeIII(N3)]+ and ozonolysis of [(cyclam-acetato)FeIII(O3SCF3)]+ in water/acetone mixtures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFGltLc%3D&md5=5603cb8cf2e40fd92af9a34a59627607CAS | 11187471PubMed |
[78] J. U. Rohde, J. H. In, M. H. Lim, W. W. Brennesse, M. R. Bukowski, A. Stubna, E. Münck, W. Nam, L. Que, Crystallographic and spectroscopic characterization of a non-heme Fe(IV)=O complex. Science 2003, 299, 1037.
| Crystallographic and spectroscopic characterization of a non-heme Fe(IV)=O complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFarsLs%3D&md5=0f0a7b632e06e08c7359d5b49753e730CAS | 12586936PubMed |
[79] D. A. Proshlyakov, T. F. Henshaw, G. R. Monterosso, M. J. Ryle, R. P. Hausinger, Direct detection of oxygen intermediates in the non-heme Fe enzyme taurine/alpha-ketoglutarate dioxygenase. J. Am. Chem. Soc. 2004, 126, 1022.
| Direct detection of oxygen intermediates in the non-heme Fe enzyme taurine/alpha-ketoglutarate dioxygenase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFOmug%3D%3D&md5=3a2819b30122340a4c353ad83e105238CAS | 14746461PubMed |
[80] P. J. Riggs-Gelasco, J. C. Price, R. B. Guyer, J. H. Brehm, E. W. Barr, J.-M. Bollinger, C. Krebs, EXAFS spectroscopic evidence for an FeO unit in the FeIV intermediate observed during oxygen activation by taurine:α-ketoglutarate dioxygenase. J. Am. Chem. Soc. 2004, 126, 8108.
| EXAFS spectroscopic evidence for an FeO unit in the FeIV intermediate observed during oxygen activation by taurine:α-ketoglutarate dioxygenase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkslWhsb0%3D&md5=185bf5414111b64f5a3889d496151b3dCAS | 15225039PubMed |
[81] J. C. Price, E. W. Barr, B. Tirupati, J. M. Bollinger, C. Krebs, The first direct characterization of a high-valent iron intermediate in the reaction of an α-ketoglutarate-dependent dioxygenase: a high-spin FeIV complex in taurine/α-ketoglutarate dioxygenase (TauD) from Escherichia coli. Biochemistry 2003, 42, 7497.
| The first direct characterization of a high-valent iron intermediate in the reaction of an α-ketoglutarate-dependent dioxygenase: a high-spin FeIV complex in taurine/α-ketoglutarate dioxygenase (TauD) from Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVCjsL0%3D&md5=66578c1fbd006e5afb26ba7b238b026aCAS | 12809506PubMed |
[82] J. C. Price, E. W. Barr, T. E. Glass, C. Krebs, J. M. Bollinger, Evidence for hydrogen abstraction from C1 of taurine by the high-spin FeIV intermediate detected during oxygen activation by taurine:α-ketoglutarate dioxygenase (TauD). J. Am. Chem. Soc. 2003, 125, 13 008.
| Evidence for hydrogen abstraction from C1 of taurine by the high-spin FeIV intermediate detected during oxygen activation by taurine:α-ketoglutarate dioxygenase (TauD).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslagt7w%3D&md5=8c72d8a8e153cbe35391ce29cdafa843CAS |
[83] O. Pestovsky, S. Stoian, E. L. Bominaar, X. Shan, E. L. Q. Münck, E. Münck, L. Que, Aqueous FeIV=O: spectroscopic identification and oxo-group exchange. Angew. Chem. Int. Ed. 2005, 44, 6871.
| Aqueous FeIV=O: spectroscopic identification and oxo-group exchange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1amu7fL&md5=a44afacf5587e1c3991be5ff5dee1341CAS |
[84] J. Bautz, P. Comba, C. Lopez de Laorden, M. Menzel, G. Rajaraman, Biomimetic high-valent non-heme iron oxidants for the cis-dihydroxylation and epoxidation of olefins. Angew. Chem. Int. Ed. 2007, 46, 8067.
| Biomimetic high-valent non-heme iron oxidants for the cis-dihydroxylation and epoxidation of olefins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1KnsrvM&md5=1bb5ac1a19464992a42fd5676b01a891CAS |
[85] J. England, M. Martinho, E. R. Farquhar, J. R. Frisch, E. L. Bominaar, E. Münck, L. Que, A synthetic high-spin oxoiron(IV) complex: generation, spectroscopic characterization, and reactivity. Angew. Chem. Int. Ed. 2009, 48, 3622.
| A synthetic high-spin oxoiron(IV) complex: generation, spectroscopic characterization, and reactivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVKgsbw%3D&md5=b163dcd676363ab13dda2a01679f5791CAS |
[86] D. C. Lacy, R. Gupta, K. L. Stone, J. Greaves, J. W. Ziller, M. P. Hendrich, A. S. Borovik, Formation, structure, and EPR detection of a high-spin FeIV–oxo species derived from either an FeIII–oxo or FeIII–OH complex. J. Am. Chem. Soc. 2010, 132, 12 188.
| Formation, structure, and EPR detection of a high-spin FeIV–oxo species derived from either an FeIII–oxo or FeIII–OH complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVSmsLfI&md5=56b201668b85a8012b56586c1db127c9CAS |
[87] J. P. Bigi, W. H. Harman, B. Lassalle-Kaiser, D. M. Robles, T. A. Stich, J. B. Yano, D. Britt, C. J. Chang, A high-spin iron(IV)-oxo complex supported by a trigonal non-heme pyrrolide platform. J. Am. Chem. Soc. 2012, 134, 1536.
| A high-spin iron(IV)-oxo complex supported by a trigonal non-heme pyrrolide platform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVaqsg%3D%3D&md5=a287b86e7172ce8bbab39b7bf128513bCAS | 22214221PubMed |
[88] J. Bautz, M. R. Bukowski, M. Kerscher, A. Stubna, P. Comba, A. Lienke, E. Münck, L. Que, Formation of an aqueous oxoiron(IV) complex at pH 2–6 from a non-heme iron(II) complex and H2O2. Angew. Chem. Int. Ed. 2006, 45, 5681.
| Formation of an aqueous oxoiron(IV) complex at pH 2–6 from a non-heme iron(II) complex and H2O2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVWnurg%3D&md5=57d483ac565d2247d530a3f07a04598aCAS |
[89] P. Comba, S. Wunderlich, Iron-catalyzed halogenation of alkanes: modeling of non-heme halogenases by experiment and DFT calculations. Chemistry 2010, 16, 7293.
| Iron-catalyzed halogenation of alkanes: modeling of non-heme halogenases by experiment and DFT calculations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVert70%3D&md5=8354c37cca40fef591eeb0db6bb4c4a8CAS | 20458709PubMed |
[90] O. Planas, M. Clémancey, J.-M. Latour, A. Company, M. Costas, Structural modeling of iron halogenases: synthesis and reactivity of halide–iron(IV)–oxo compounds. Chem. Commun. 2014, 10 887.
| Structural modeling of iron halogenases: synthesis and reactivity of halide–iron(IV)–oxo compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtF2ktrzJ&md5=0d263728e79de441ce310298cfaafc50CAS |
[91] P. Comba, Y. M. Lee, W. Nam, A. Waleska, Catalytic oxidation of alkanes by iron bispidine complexes and dioxygen: oxygen activation versus autoxidation. Chem. Commun. 2014, 50, 412.. [Special Web Themed Issue ‘Biological Oxidation Reactions’]
| 1:CAS:528:DC%2BC3sXhvVyqs73J&md5=4acbfb67297d23400a9d2fc1e97d8638CAS |
[92] P. Comba, M. Maurer, P. Vadivelu, Oxidation of cyclohexane by high-valent iron bispidine complexes: tetradentate versus pentadentate ligands. Inorg. Chem. 2009, 48, 10 389.
| Oxidation of cyclohexane by high-valent iron bispidine complexes: tetradentate versus pentadentate ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CgtrzF&md5=1647bf27a9a99bbd2196bfe1b0dd92b3CAS |
[93] W. G. Barb, J. H. Baxendale, P. George, K. R. Hargrave, Reactions of ferrous and ferric ions with hydrogen peroxide. Part II. The ferric ion reaction. Trans. Faraday Soc. 1951, 47, 591.
| Reactions of ferrous and ferric ions with hydrogen peroxide. Part II. The ferric ion reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3MXlvV2jsw%3D%3D&md5=20eb0500a7908184f05a63111c810268CAS |
[94] S. M. Kim, A. Vogelpohl, Degradation of organic pollutants by the photo-Fenton-process. Chem. Eng. Technol. 1998, 21, 187.
| Degradation of organic pollutants by the photo-Fenton-process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1Citbo%3D&md5=0f592a4fc96c2cdbef271ec3fece90a3CAS |
[95] M. Strlič, J. Kolar, V.-S. Šelih, D. Kočar, B. Pihlar, A comparative study of several transition metals in Fenton-like reaction systems at circumneutral pH. Acta Chim. Slov. 2003, 50, 619.
[96] G. R. A. Johnson, N. B. Nazhat, R. A. Saadalla-Nazhat, Reaction of the aquocopper(I) ion with hydrogen peroxide: evidence against hydroxyl free radical formation. J. Chem. Soc. Chem. Commun. 1985, 407.
| Reaction of the aquocopper(I) ion with hydrogen peroxide: evidence against hydroxyl free radical formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXksVensLw%3D&md5=345a28f3054620241f2e2ea38d0ff73cCAS |
[97] A. N. Pham, G. Xing, C. J. Miller, T. D. Waite, Fenton-like copper redox chemistry revisited: hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J. Catal. 2013, 301, 54.
| Fenton-like copper redox chemistry revisited: hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlslWms7k%3D&md5=19440afa6f2d20a7abea7f2e1aba2465CAS |
[98] A. Ansari, A. Kaushik, G. Rajaraman, Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent FeIV=O and FeV=O intermediates. J. Am. Chem. Soc. 2013, 135, 4235.
| Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent FeIV=O and FeV=O intermediates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVyms7g%3D&md5=c129252a4c7b0887ea948b3c6df3493eCAS | 23373840PubMed |
[99] S. Goldstein, D. Meyerstein, G. Czapski, The Fenton reagents. Free Radic. Biol. Med. 1993, 15, 435.
| The Fenton reagents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvFWkt7w%3D&md5=1e93a21d9d6c8283bdeb4afb7a53b000CAS | 8225025PubMed |
[100] S. Goldstein, D. Meyerstein, Comments on the mechanism of the ‘Fenton-like’ reaction. Acc. Chem. Res. 1999, 32, 547.
| Comments on the mechanism of the ‘Fenton-like’ reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVeisrY%3D&md5=cb25558b4358d1d2d58d6b59f8480b08CAS |
[101] P. Comba, G. Rajaraman, H. Rohwer, A density functional theory study of the reaction of the biomimetic iron(II) complex of a tetradentate bispidine ligand with H2O2. Inorg. Chem. 2007, 46, 3826.
| A density functional theory study of the reaction of the biomimetic iron(II) complex of a tetradentate bispidine ligand with H2O2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFyju78%3D&md5=1994b512575ac7684067c7d59c3bb2a4CAS | 17425302PubMed |
[102] I. Yamazaki, L. H. Piette, EPR spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide. J. Am. Chem. Soc. 1991, 113, 7588.
| EPR spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsl2iur0%3D&md5=52d2d0524ade06e10f55c21b0a22aed8CAS |
[103] F. Gozzo, Radical and non-radical chemistry of the Fenton-like systems in the presence of organic substrates. J. Mol. Catal. Chem. 2001, 171, 1.
| Radical and non-radical chemistry of the Fenton-like systems in the presence of organic substrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktF2nt7w%3D&md5=1551a132ecea461bbe5675ddfc1eca8cCAS |
[104] J. D. Lipscomb, A. M. Orville (Eds) Mechanistic Aspects of Dihydroxybenzoate Dioxygenases 1992, Vol. 28 (Marcel Dekker: New York).
[105] J. Que Jr, Iron carriers and iron proteins, in Iron Carriers and Iron Proteins (Ed. T. M. Loehr) 1989, pp. 243–524 (VCH: New York).
[106] H. J. Krüger, Iron-containing models of catechol dioxygenases, in Biomimetic Oxidations Catalyzed by Transition Metal Complexes (Ed. B. Meunier) 2000, pp. 363–413 (Imperial College Press: Oxford).
[107] E. I. Solomon, M. Y. M. Pau, R. K. Hocking, Nature of the catecholate–Fe(III) bond: high affinity binding and substrate activation in bioinorganic chemistry, in Computational Inorganic and Bioinorganic Chemistry (Eds E. I. Solomon, R. A. Scott, R. B. King) 2009, pp. 241–253 (Wiley: New York).
[108] M. G. Weller, U. Weser, Fe(NTA)-catalyzed dioxygenation of 4-t-butyl catechol, the mechanism of non-heme ferric dioxygenases. Inorg. Chim. Acta 1985, 107, 243.
| Fe(NTA)-catalyzed dioxygenation of 4-t-butyl catechol, the mechanism of non-heme ferric dioxygenases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XislCh&md5=986c9e7edf17b6cf9d070ea7a5d20e16CAS |
[109] W. O. Koch, H. J. Krüger, A highly reactive and catalytically active model system for intradiol-cleaving catechol dioxygenases: structure and reactivity of iron(III) catecholate complexes of N,N′-dimethyl-2,11-diaza[3.3](2,6)pyridinophane. Angew. Chem. Int. Ed. Engl. 1996, 34, 2671.
| A highly reactive and catalytically active model system for intradiol-cleaving catechol dioxygenases: structure and reactivity of iron(III) catecholate complexes of N,N′-dimethyl-2,11-diaza[3.3](2,6)pyridinophane.Crossref | GoogleScholarGoogle Scholar |
[110] M. Duda, M. Pascal, B. Krebs, A highly reactive functional model for catechol 1,2-dioxygenase:reactivity studies of iron(III) catecholate complexes of bis[(2-pyridyl)methyl][(1-methylimidazol-2-yl)methyl]amine. Chem. Commun. 1997, 835.
| A highly reactive functional model for catechol 1,2-dioxygenase:reactivity studies of iron(III) catecholate complexes of bis[(2-pyridyl)methyl][(1-methylimidazol-2-yl)methyl]amine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlGks78%3D&md5=9d87b07690559b67e24003f7b1f1358fCAS |
[111] P. Mialane, L. Tchertanov, F. Banse, J. Sainton, J. J. Girerd, Aminopyridine iron catecholate complexes as models for intradiol catechol dioxygenases. Synthesis, structure, reactivity, and spectroscopic studies. Inorg. Chem. 2000, 39, 2440.
| Aminopyridine iron catecholate complexes as models for intradiol catechol dioxygenases. Synthesis, structure, reactivity, and spectroscopic studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1WktLk%3D&md5=e1e53e2c00d1a96a6532dc6a2becc554CAS | 11196993PubMed |
[112] R. Mayilmurugan, K. Visvaganesan, E. Suresh, M. Palaniandavar, Complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties. Inorg. Chem. 2009, 48, 8771.
| Complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVaitr%2FO&md5=6e876ca12096541269e038e4ee148963CAS | 19694480PubMed |
[113] P. Comba, H. Wadepohl, S. Wunderlich, Oxidation versus dioxygenation of catechol: the iron–bispidine system. Eur. J. Inorg. Chem. 2011, 5242.
| Oxidation versus dioxygenation of catechol: the iron–bispidine system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyrsbbK&md5=77f65cde687f991a8d43df541c5ca7f0CAS |
[114] W. Nam, High-valent iron(IV)–oxo complexes of heme and non-heme ligands in oxygenation reactions. Acc. Chem. Res. 2007, 40, 522.
| High-valent iron(IV)–oxo complexes of heme and non-heme ligands in oxygenation reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslOlsbc%3D&md5=77027c3f561ed6dd57179a378574d021CAS | 17469792PubMed |
[115] Z. Codola, J. Lloret-Fillol, M. Costas, Aminopyridine iron and manganese complexes as molecular catalysts for challenging oxidative transformations. Prog. Inorg. Chem. 2014, 59, 447.
| Aminopyridine iron and manganese complexes as molecular catalysts for challenging oxidative transformations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXosFGnurw%3D&md5=4d0c06a24255b3519279314943f027aeCAS |
[116] M. Jaccob, P. Comba, M. Maurer, P. Vadivelu, P. Venuvanalingam, A combined experimental and computational study on the sulfoxidation by high-valent iron bispidine complexes. Dalton Trans. 2011, 11 276.
| A combined experimental and computational study on the sulfoxidation by high-valent iron bispidine complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlejt7jP&md5=9b4213d047f9f3fca3a47b4707f60a50CAS |
[117] P. Comba, S. Kuwata, G. Linti, H. Pritzkow, M. Tarnai, H. Wadepohl, CH activation with cobalt complexes of tetradentate bispidine ligands. Chem. Commun. 2006, 2074.
| CH activation with cobalt complexes of tetradentate bispidine ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlWltLc%3D&md5=899010948197c67b637814eebe2e3c95CAS |
[118] F. Althoff, K. Benzing, P. Comba, C. McRoberts, D. R. Boyd, S. Greiner, F. Keppler, Abiotic methanogenesis from organosulphur compounds under ambient conditions. Nat. Commun. 2014, 5, 4205.
| Abiotic methanogenesis from organosulphur compounds under ambient conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVWgtrzI&md5=61ad5b45fd8ab1c4c15b034ca8554f6bCAS | 24957135PubMed |
[119] M. Bukowski, P. Comba, C. Limberg, M. Merz, L. Que, T. Wistuba, Bispidine ligand effects on iron/hydrogen peroxide chemistry. Angew. Chem. Int. Ed. 2004, 43, 1283.
| Bispidine ligand effects on iron/hydrogen peroxide chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitlKgtLs%3D&md5=a65b5ca30eb95a131962ace4c1abf962CAS |
[120] P. Comba, M. Maurer, P. Vadivelu, Oxidation of cyclohexane by a high-valent iron bispidine complex: a combined experimental and computational mechanistic study. J. Phys. Chem. A 2008, 112, 13 028.
| Oxidation of cyclohexane by a high-valent iron bispidine complex: a combined experimental and computational mechanistic study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFChsbfM&md5=75dc1c5e9141f61560ab0ce55f5be32cCAS |
[121] M. R. Bukowski, P. Comba, A. Lienke, C. Limberg, C. L. de Laorden, R. Mas-Balleste, M. Merz, L. Que, Catalytic epoxidation and 1,2-dihydroxylation of olefins with bispidine-iron(II)/H2O2 systems. Angew. Chem. Int. Ed. 2006, 45, 3446.
| Catalytic epoxidation and 1,2-dihydroxylation of olefins with bispidine-iron(II)/H2O2 systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsVKjsLw%3D&md5=9a8a68eccbca74835b5555dc7a9648f1CAS |
[122] D. E. Van Sickle, F. R. Mayo, R. M. Arluck, Liquid-phase oxidations of cyclic alkenes. J. Am. Chem. Soc. 1965, 87, 4824.
| Liquid-phase oxidations of cyclic alkenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXkvFOrsLs%3D&md5=e4b1bab9675970f72a485c6a3f918cc3CAS |
[123] P. Comba, S. Fukuzumi, H. Kotani, S. Wunderlich, Electron-transfer properties of an efficient non-heme iron oxidation catalyst with a tetradentate bispidine ligand. Angew. Chem. Int. Ed. 2010, 49, 2622.
| Electron-transfer properties of an efficient non-heme iron oxidation catalyst with a tetradentate bispidine ligand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVajsbs%3D&md5=0ac93e493af4869d0522172a4213bf8dCAS |
[124] D. Wang, K. Ray, M. J. Collins, E. R. Farquhar, J. R. Frisch, L. Gómez, T. A. Jackson, M. Kerscher, A. Waleska, P. Comba, M. Costas, L. Que, Non-heme oxoiron(IV) complexes of pentadentate N5 ligands: spectroscopy, electrochemistry, and oxidative reactivity. Chem. Sci. 2013, 4, 282.
| Non-heme oxoiron(IV) complexes of pentadentate N5 ligands: spectroscopy, electrochemistry, and oxidative reactivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKkurzL&md5=82140f87b466035973b355837d754107CAS | 23227304PubMed |
[125] G. Roelfes, M. Lubben, R. Hage, L. Que, B. L. Feringa, Catalytic oxidation with a non-heme iron complex that generates a low-spin FeIIIOOH intermediate. Chemistry 2000, 6, 2152.
| Catalytic oxidation with a non-heme iron complex that generates a low-spin FeIIIOOH intermediate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvVWgs7c%3D&md5=4a4a27caac600671d97e8df3e2c8e069CAS | 10926220PubMed |
[126] K. Kim, K. Chen, J. Kim, J. Que, Stereospecific alkane hydroxylation with H2O2 catalyzed by an iron(II)–tris(2-pyridylmethyl)amine complex. J. Am. Chem. Soc. 1997, 119, 5964.
| Stereospecific alkane hydroxylation with H2O2 catalyzed by an iron(II)–tris(2-pyridylmethyl)amine complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktVejsLs%3D&md5=08ef661d75ab0744ff5ab3317c840432CAS |
[127] K. Chen, L. Que, Evidence for the participation of a high-valent iron–oxo species in stereospecific alkane hydroxylation by a non-heme iron catalyst. Chem. Commun. 1999, 1375.
| Evidence for the participation of a high-valent iron–oxo species in stereospecific alkane hydroxylation by a non-heme iron catalyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVOis7k%3D&md5=837063811476f5d9a097d022c81f416aCAS |
[128] T. A. Jackson, L. Que, Jr, Structural and functional models for oxygen-activating nonheme iron enzymes, in Concepts and Models in Bioinorganic Chemistry (Eds H.-B. Kraatz, N. Metzler-Nolte) 2006, pp. 260–286 (Wiley-VCH: Weinheim).
[129] K. Chen, M. Costas, L. Que, Spin-state tuning of non-heme iron-catalyzed hydrocarbon oxidations: participation of FeIII-OOH and FeV=O intermediates. J. Chem. Soc., Dalton Trans. 2002, 672.
| Spin-state tuning of non-heme iron-catalyzed hydrocarbon oxidations: participation of FeIII-OOH and FeV=O intermediates.Crossref | GoogleScholarGoogle Scholar |
[130] J. T. Groves, G. A. McClusky, Aliphatic hydroxylation via oxygen rebound. Oxygen transfer catalyzed by iron. J. Am. Chem. Soc. 1976, 98, 859.
| Aliphatic hydroxylation via oxygen rebound. Oxygen transfer catalyzed by iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XovFaluw%3D%3D&md5=5bd4b7304e5cd5bb27021c04f1949168CAS |
[131] R. M. Burger, Cleavage of nucleic acids by bleomycin. Chem. Rev. 1998, 98, 1153.
| Cleavage of nucleic acids by bleomycin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis12htrc%3D&md5=e8f283bbae99e43555d70183227abbdfCAS | 11848928PubMed |
[132] J. Stubbe, J. W. Kozarich, W. Wu, D. E. Vanderwall, Bleomycins: a structural model for specifity, binding, and dubble strand cleavade. Acc. Chem. Res. 1996, 29, 322.
| Bleomycins: a structural model for specifity, binding, and dubble strand cleavade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjs1GktLY%3D&md5=90445fe5323c718fe959024f5e9976aeCAS |
[133] E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 2003, 98, 33.
| A review of classic Fenton’s peroxidation as an advanced oxidation technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslKjsLw%3D&md5=b480c84d4024991649021e73adff4f3fCAS | 12628776PubMed |
[134] J. H. Merz, W. A. Waters, Electron-transfer reactions. The mechanism of oxidation of alcohols with Fenton’s reagent. Discuss. Faraday Soc. 1947, 2, 179.
| Electron-transfer reactions. The mechanism of oxidation of alcohols with Fenton’s reagent.Crossref | GoogleScholarGoogle Scholar |
[135] K. Sato, M. Aoki, J. Takagi, R. Noyori, Organic solvent- and halide-free oxidation of alcohols with aqueous hydrogen peroxide. J. Am. Chem. Soc. 1997, 119, 12 386.
| Organic solvent- and halide-free oxidation of alcohols with aqueous hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVKj&md5=9c0ac7fbf4f70a17455ff7ef6f4e12ceCAS |
[136] D. G. Fujimori, E. W. Barr, M. L. Matthews, G. M. Koch, J. R. Yonce, C. T. Walsh, J. M. Bollinger, C. Krebs, P. J. Riggs-Gelasco, Spectroscopic evidence for a high-spin Br–FeIV–Oxo intermediate in the α-ketoglutarate-dependent halogenase CytC3 from Streptomyces. J. Am. Chem. Soc. 2007, 129, 13 408.
| Spectroscopic evidence for a high-spin Br–FeIV–Oxo intermediate in the α-ketoglutarate-dependent halogenase CytC3 from Streptomyces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKks73N&md5=51ed8f827654b058a19c413175312e4dCAS |
[137] L. C. Blasiak, F. H. Vaillancourt, C. T. Walsh, C. L. Drennan, Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis. Nature 2006, 440, 368.
| Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitlKgurc%3D&md5=67120e7f524e42f8a24cf18e377552a5CAS | 16541079PubMed |
[138] M. L. Matthews, C. S. Neumann, L. A. Milesc, T. L. Grovea, S. J. Bookera, C. Krebs, C. T. Walsh, J. M. Bollinger, Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2. Proc. Natl. Acad. Sci. USA 2009, 106, 17 723.
| Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSjsLvK&md5=a1bffeacf7eefb46dffcf41fa559aad5CAS |
[139] T. Kojima, R. A. Leising, S. Yan, L. Que, Alkane functionalization at non-heme iron centers. Stoichiometric transfer of metal-bound ligands to alkane. J. Am. Chem. Soc. 1993, 115, 11 328.
| Alkane functionalization at non-heme iron centers. Stoichiometric transfer of metal-bound ligands to alkane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhs1eis7Y%3D&md5=76b6e9da113b2bb2d49e46d0b20a2a12CAS |
[140] S. Rana, S. Bag, P. Patra, D. Maiti, Catalytic electrophilic halogenations and haloalkoxylations by non-heme iron halides. Adv. Synth. Catal. 2014, 356, 2453.
| Catalytic electrophilic halogenations and haloalkoxylations by non-heme iron halides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1GqsLjF&md5=c414b00b46aabcc4d286ec1fe65a4bfeCAS |
[141] A. K. Vardhaman, P. Barman, S. Kumar, C. V. Sastri, D. Kumar, S. P. de Visser, Mechanistic insight into halide oxidation by non-heme iron complexes. Haloperoxidase versus halogenase activity. Chem. Commun. 2013, 10 928.
| Mechanistic insight into halide oxidation by non-heme iron complexes. Haloperoxidase versus halogenase activity.Crossref | GoogleScholarGoogle Scholar |
[142] D. H. R. Barton, B. Hu, D. K. Taylor, R. U. R. Wahl, The selective functionalization of saturated hydrocarbons. Part 32. Distinction between the FeII–FeIV and FeIII–FeV manifolds in Gif chemistry. The importance of carboxylic acids for alkane activation. Evidence for a dimeric iron species involved in Gif-type chemistry. J. Chem. Soc., Perkin Trans. 2 1996, 1031.
| The selective functionalization of saturated hydrocarbons. Part 32. Distinction between the FeII–FeIV and FeIII–FeV manifolds in Gif chemistry. The importance of carboxylic acids for alkane activation. Evidence for a dimeric iron species involved in Gif-type chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsFCiu74%3D&md5=76e7ee03031f38420496827ddb28183aCAS |
[143] K.-B. Cho, X. Wu, Y.-M. Lee, Y. H. Kwan, S. Shaik, W. Nam., Evidence for an alternative to the oxygen rebound mechanism in C–H activation by non-heme FeIVO complexes. J. Am. Chem. Soc. 2012, 134, 20 222.
| Evidence for an alternative to the oxygen rebound mechanism in C–H activation by non-heme FeIVO complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOmu7bJ&md5=595cf9208805d2a05ab8ea3023416c27CAS |
[144] F. Minisci, F. Fontana, Mechanism of the Gif–Barton-type alkane functionalization by halide and pseudohalide ions. Tetrahedron Lett. 1994, 35, 1427.
| Mechanism of the Gif–Barton-type alkane functionalization by halide and pseudohalide ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisVekt78%3D&md5=f942beb6aa526daf5e023c3d155ec6b7CAS |
[145] J. Kiwi, A. Lopez, V. Nadtochenko, Mechanism and kinetics of the OH-radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl–). Environ. Sci. Technol. 2000, 34, 2162.
| Mechanism and kinetics of the OH-radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl–).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVOqu7s%3D&md5=f353e5408c531354abb5dfd6d28b35baCAS |
[146] D. S. Tarbell, P. D. Bartlett, The mechanism of addition reactions. Chloro- and bromo-beta-lactones from dimethylmaleic and dimethylfumaric acids. J. Am. Chem. Soc. 1937, 59, 407.
| The mechanism of addition reactions. Chloro- and bromo-beta-lactones from dimethylmaleic and dimethylfumaric acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2sXhtlSitQ%3D%3D&md5=a98cb35b982ad6418799ec2e140a91fdCAS |
[147] I. Roberts, G. E. Kimball, The halogenation of ethylenes. J. Am. Chem. Soc. 1937, 59, 947.
| The halogenation of ethylenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2sXjtVCrtQ%3D%3D&md5=12cb4df81587297225c4d12f1cc6244aCAS |
[148] M. F. Ruasse, Bromonium ions or beta-bromocarbocations in olefin bromination. A kinetic approach to product selectivities. Acc. Chem. Res. 1990, 23, 87.
| Bromonium ions or beta-bromocarbocations in olefin bromination. A kinetic approach to product selectivities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhsFOgsb0%3D&md5=57bf980cfe7d2bade3721824c91ce5bdCAS |
[149] H. C. Tung, C. Kang, D. T. Sawyer, Nature of the reactive intermediates from the iron-induced activation of hydrogen peroxide: agents for the ketonization of methylenic carbons, the monooxygenation of hydrocarbons, and the dioxygenation of aryl olefins. J. Am. Chem. Soc. 1992, 114, 3445.
| Nature of the reactive intermediates from the iron-induced activation of hydrogen peroxide: agents for the ketonization of methylenic carbons, the monooxygenation of hydrocarbons, and the dioxygenation of aryl olefins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvFentbs%3D&md5=c106299f6f26eebf7fe26530185c8e1dCAS |
[150] H. F. Schöler, F. Keppler, Abiotic formation of organohalogens during early diagenetic processes, in The Handbook of Environmental Chemistry. The Natural Production of Organohalogen Compounds (Eds O. Hutzinger, G.W. Gribble). 2003, Vol. 3, pp. 63–84 (Springer: Heidelberg).
[151] F. Keppler, R. Eiden, V. Niedan, J. Pracht, H. F. Schöler, Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature 2000, 403, 298.
| Halocarbons produced by natural oxidation processes during degradation of organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1ChsA%3D%3D&md5=c99967dc51e17d29c8d517dfdab9200dCAS | 10659846PubMed |
[152] F. Althoff, A. Jugold, F. Keppler, Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide. Chemosphere 2010, 80, 286.
| Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslWhurY%3D&md5=3e227c978529caf476b8a9b07296118fCAS | 20444486PubMed |
[153] P. Comba, B. Nuber, A. Ramlow, The design of a new type of very rigid tetradentate ligand. J. Chem. Soc., Dalton Trans. 1997, 347.
| The design of a new type of very rigid tetradentate ligand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtlGlurk%3D&md5=052a9187f013ffc74012c734c1f48db7CAS |
[154] H. Börzel, P. Comba, K. S. Hagen, Y. D. Lampeka, A. Lienke, G. Linti, H. Pritzkow, L. V. Tsymbal, Iron coordination chemistry with tetra-, penta- and hexadentate bispidine-type ligands. Inorg. Chim. Acta 2002, 337, 407.
| Iron coordination chemistry with tetra-, penta- and hexadentate bispidine-type ligands.Crossref | GoogleScholarGoogle Scholar |
[155] P. Comba, M. Kerscher, W. Schiek, Bispidine coordination chemistry. Prog. Inorg. Chem. 2007, 55, 613.
| Bispidine coordination chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1OrtLg%3D&md5=85e1f26efbeef2a2dcd1d47b53a972deCAS |
[156] P. Comba, M. Kerscher, Computation of structures and properties of transition metal compounds. Coord. Chem. Rev. 2009, 253, 564.
| Computation of structures and properties of transition metal compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFSks78%3D&md5=fd2f49215d0219a231243d15de000fb4CAS |
[157] C. P. Huang, C. Dong, Z. Tang, Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Manag. 1993, 13, 361.
| Advanced chemical oxidation: its present role and potential future in hazardous waste treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXit1Glt7g%3D&md5=f667ec0374978c9e92dd43d2c7c78332CAS |
[158] F. J. Potter, J. A. Roth, Oxidation of chlorinated phenols using Fenton’s reagent. Hazard. Waste Hazard. Mater. 1993, 10, 151.
| Oxidation of chlorinated phenols using Fenton’s reagent.Crossref | GoogleScholarGoogle Scholar |
[159] J. Pracht, J. Boenigk, M. Isenbeck-Schröter, F. Keppler, H. F. Schöler, Abiotic FeIII-induced mineralization of phenolic substances. Chemosphere 2001, 44, 613.
| Abiotic FeIII-induced mineralization of phenolic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVehtro%3D&md5=7bd42157ddb2a72ed13d180c26690cffCAS | 11482648PubMed |
[160] F. Keppler, R. Borchers, J. Pracht, S. Rheinberger, H. F. Schöler, Natural formation of vinyl chloride in the terrestrial environment. Environ. Sci. Technol. 2002, 36, 2479.
| Natural formation of vinyl chloride in the terrestrial environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVGgtLo%3D&md5=810e268850daecade50562ef616034a3CAS | 12075808PubMed |
[161] I. J. Fahimi, F. Keppler, H. F. Schöler, Formation of chloroacetic acids from soil, humic acid and phenolic moieties. Chemosphere 2003, 52, 513.
| Formation of chloroacetic acids from soil, humic acid and phenolic moieties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVGntrk%3D&md5=ca850a8b72d3eb0a3fc45390cf1e8d8dCAS | 12738276PubMed |
[162] J. A. Zazo, J. A. Casas, A. F. Mohedano, M. A. Gilarranz, J. J. Rodríguez, Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environ. Sci. Technol. 2005, 39, 9295.
| Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCitLfP&md5=e678b1b22e9affc801dac942a908597dCAS | 16382955PubMed |
[163] A. M’Hemdi, B. Dbira, R. Abdelhedi, E. Brillas, S. Ammar, Mineralization of catechol by Fenton and photo-Fenton processes. CLEAN – Soil, Air, Water 2012, 40, 878.
| 1:CAS:528:DC%2BC38XhtVGgsbjF&md5=2397ce7a165719bef0766cd8b39e2d05CAS |
[164] S. Studenroth, S. G. Huber, K. Kotte, H. F. Schöler, Natural abiotic formation of oxalic acid in soils: results from aromatic model compounds and soil samples. Environ. Sci. Technol. 2013, 47, 1323.
| 1:CAS:528:DC%2BC3sXntVWltg%3D%3D&md5=c6bd4a26721f59d3e3666dd35ecf77f6CAS | 23311299PubMed |
[165] F. Keppler, R. Borchers, J. T. G. Hamilton, G. Kilian, J. Pracht, H. F. Schöler, De novo formation of chloroethyne in soil. Environ. Sci. Technol. 2006, 40, 130.
| De novo formation of chloroethyne in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1emsbfN&md5=df461d1e6e3a92b10726b1aa3307e38bCAS | 16433342PubMed |
[166] S. G. Huber, G. Kilian, H. F. Schöler, Carbon suboxide, a highly reactive intermediate from the abiotic degradation of aromatic compounds in soil. Environ. Sci. Technol. 2007, 41, 7802.
| Carbon suboxide, a highly reactive intermediate from the abiotic degradation of aromatic compounds in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGisrzF&md5=8f221e0e60cd005662a97978752bfdf3CAS | 18075091PubMed |
[167] S. G. Huber, K. Kotte, H. F. Schöler, J. Williams, Natural abiotic formation of trihalomethanes in soil: results from laboratory studies and field samples. Environ. Sci. Technol. 2009, 43, 4934.
| Natural abiotic formation of trihalomethanes in soil: results from laboratory studies and field samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVGnsbY%3D&md5=878e371b694f0cd74e15b81156df73f5CAS | 19673288PubMed |
[168] S. G. Huber, S. Wunderlich, H. F. Schöler, J. Williams, Natural abiotic formation of furans in soil. Environ. Sci. Technol. 2010, 44, 5799.
| Natural abiotic formation of furans in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Wgurw%3D&md5=24e5250700bdaac70f32fa667427b83cCAS | 20614942PubMed |
[169] T. Krause, C. Tubbesing, K. Benzing, H. F. Schöler, Model reactions and natural occurrence of furans from hypersaline environments. Biogeosciences 2014, 11, 2871.
| Model reactions and natural occurrence of furans from hypersaline environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Sju73J&md5=7cb50be77d560436d32122398576f2cbCAS |
[170] F. Keppler, R. Borchers, P. Elsner, I. J. Fahimi, J. Pracht, H. F. Schöler, Formation of volatile iodinated alkanes in soil: results from laboratory studies. Chemosphere 2003, 52, 477.
| Formation of volatile iodinated alkanes in soil: results from laboratory studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVGntro%3D&md5=4a8e296dbc8d396521a3bcdc2400460cCAS | 12738273PubMed |
[171] R. C. Fuson, B. A. Bull, The haloform reaction. Chem. Rev. 1934, 15, 275.
| The haloform reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2MXit1OisQ%3D%3D&md5=096a6a75bad4543608dde17551d82ac9CAS |
[172] E. J. Hoekstra, E. W. B. de Leer, U. A. T. Brinkman, Findings supporting the natural formation of trichloroacetic acid in soil. Chemosphere 1999, 38, 2875.
| Findings supporting the natural formation of trichloroacetic acid in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlOlur4%3D&md5=aef80a7b7725e477987c3dd59ae670c1CAS |
[173] W. Z. Tang, C. P. Huang, The effect of chlorine position of chlorinated phenols on their dechlorination kinetics by Fenton’s reagent. Waste Manag. 1995, 15, 615.
| The effect of chlorine position of chlorinated phenols on their dechlorination kinetics by Fenton’s reagent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntlShurg%3D&md5=d57127a1dbf885789f927d73210de32eCAS |