Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Characterisation of microplastics and toxic chemicals extracted from microplastic samples from the North Pacific Gyre

Lorena M. Rios Mendoza A C and Patrick R. Jones B
+ Author Affiliations
- Author Affiliations

A University of Wisconsin, Superior Department of Natural Sciences, Chemistry Program, Belknap and Catlin, PO Box 2000, Superior, WI 54880, USA.

B University of the Pacific, Chemistry Department, 3601 Pacific Avenue, 95211, Stockton, CA 95211, USA. Email: pjones@pacific.edu

C Corresponding author. Email: lriosmen@uwsuper.edu

Environmental Chemistry 12(5) 611-617 https://doi.org/10.1071/EN14236
Submitted: 4 November 2014  Accepted: 29 January 2015   Published: 5 August 2015

Environmental context. Microplastics are a new source of toxic compounds in marine and freshwater environments. This research documents the discovery of microplastic fibres in the seawater column and the chemical analysis of associated toxic chemicals in microplastic marine debris. Microplastic pollution is pervasive and hazardous.

Abstract. Initial studies of floating plastic debris in the oceans dealt with macroscopic particles. This research found microscale plastic present as well. Chemical analysis of sorbed materials revealed toxic materials associated with the microparticles. Seawater and plastic fragment samples were collected in September 2007 in the North Pacific Central Gyre. Polycyclic aromatic hydrocarbons and polychlorinated biphenyls (PCBs) were detected by mass spectrometry in extracts from the plastic fragments. Net concentrations of PCBs ranged from 1 to 223 ng g–1 plastic. The most common synthetic polymers were found to be polypropylene and polyethylene. Microscopic plastic fibres and particles were also discovered in the seawater samples and examined by scanning electron microscopy. Analysis of filtered seawater samples also revealed toxic materials in concentrations lower than found on the plastic particles.

Additional keywords: marine debris, persistent organic pollutants, POPs, plastic debris, PCBs, polychlorinated biphenyls, PAHs, polycyclic aromatic hydrocarbons, synthetic polymers.


References

[1]  Plastics – The Facts 2013. An Analysis of European Latest Plastics Production, Demand and Waste Data for 2012 2013 (Plastics Europe: Association of Plastic Manufacturers). Available at http://www.plasticseurope.org/documents/document/20131014095824-final_plastics_the_facts_2013_published_october2013.pdf [Verified 5 April 2015].

[2]  J. G. B. Derraik, The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 2002, 44, 842.
The pollution of the marine environment by plastic debris: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVWns78%3D&md5=757914de79ed2efe1b2b0e3debf4df61CAS |

[3]  C. J. Moore, Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ. Res. 2008, 108, 131.
Synthetic polymers in the marine environment: a rapidly increasing, long-term threat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Snt7jK&md5=63c2702657d7296b380640352f76f55aCAS | 18949831PubMed |

[4]  M. Cole, P. Lindeque, C. Halsband, T. S. Galloway, Microplastics as contaminanats in the marine environment: a review. Mar. Pollut. Bull. 2011, 62, 2588.
Microplastics as contaminanats in the marine environment: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2gsrfM&md5=fcc64c8a0c712ffd04c42c522f208e69CAS | 22001295PubMed |

[5]  C. M. Rochman, M. A. Browne, B. S. Halpern, B. T. Hentschel, E. Hoh, H. K. Karapanagioti, L. M. Rios, H. Takada, S. Teh, R. C. Thompson, Classify plastic debris as hazardous. Nature 2013, 494, 169.
Classify plastic debris as hazardous.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXis1ajt7k%3D&md5=bb35a4a6e4bd74d741a145d1d46c9b30CAS | 23407523PubMed |

[6]  A. L. Andrady, Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596.
Microplastics in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFKrt74%3D&md5=023b7d5ac18234cb7abff5171550439aCAS | 21742351PubMed |

[7]  M. Eriksen, L. C. M. Lebreton, H. S. Carson, M. Thiel, C. J. Moore, J. C. Borerro, F. Galgani, P. G. Ryan, J. Reisser, Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 2014, 9, e111913.
Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea.Crossref | GoogleScholarGoogle Scholar | 25494041PubMed |

[8]  D. V. Quayle, Plastics in the marine environment: problems and solutions. Chem. Ecol. 1992, 6, 69.
Plastics in the marine environment: problems and solutions.Crossref | GoogleScholarGoogle Scholar |

[9]  J. A. van Franeker, C. Blaize, J. Danielsen, K. Fairclough, J. Gollan, N. Guse, P. L. Hansen, M. Heubeck, J. K. Jensen, G. Le Guillou, B. Olsen, K. O. Olsen, J. Pedersen, W. M. Stienen, D. M. Turner, Monitoring plastic ingestion by the northern fulmar Fulmarus glacialis in the North Sea. Environ. Pollut. 2011, 159, 2609.
Monitoring plastic ingestion by the northern fulmar Fulmarus glacialis in the North Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFehtL%2FO&md5=592df9d00e25ab20a7138aa1266023ecCAS | 21737191PubMed |

[10]  L. M. Rios, C. Moore, P. R. Jones, Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar. Pollut. Bull. 2007, 54, 1230.
Persistent organic pollutants carried by synthetic polymers in the ocean environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlKju7w%3D&md5=eebee4c97581a575c19b9eb95bc4845fCAS | 17532349PubMed |

[11]  L. M. Rios, P. R. Jones, C. Moore, U. V. Narayan, Quantitation of persistent organic pollutants adsorbed on plastic debris from the Northern Pacific Gyres’s ‘eastern garbage patch’. J. Environ. Monit. 2010, 12, 2226.
Quantitation of persistent organic pollutants adsorbed on plastic debris from the Northern Pacific Gyres’s ‘eastern garbage patch’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFWisbvE&md5=edd50c80b46ed384f3826db24b2c181aCAS | 21042605PubMed |

[12]  H. Hirai, H. Takada, Y. Ogata, R. Yamashita, K. Mizukawa, M. Saha, C. Kwan, C. Moore, H. Gray, D. Laursen, E. R. Zettle, J. W. Farrigton, C. M. Reddy, E. E. Peacock, M. W. Ward, Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 2011, 62, 1683.
Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFKrtb4%3D&md5=d9ea2694acd16e4b034f8901971694c8CAS | 21719036PubMed |

[13]  H. C. Huang, C. L. Lee, C. H. Lai, M. D. Fang, I. C. Lai, Transportation movement of polycyclic aromatic hydrocarbons (PAHs) in the Kuroshio Sphere of the western Pacific Ocean. Atmos. Environ. 2012, 54, 470.
Transportation movement of polycyclic aromatic hydrocarbons (PAHs) in the Kuroshio Sphere of the western Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsFGkurg%3D&md5=db2ed24c2aa5c35a30f3adbdfa2f81c6CAS |

[14]  M. Cannas, F. Atzori, F. Rupsard, P. Bustamante, V. Loizeau, C. Lefrancois, PCBs contamination does not alter aerobic metabolism and tolerance to hypoxia of juvenile sole (Solea solea L. 1758). Aquat. Toxicol. 2013, 127, 54.
PCBs contamination does not alter aerobic metabolism and tolerance to hypoxia of juvenile sole (Solea solea L. 1758).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvVOrtQ%3D%3D&md5=f9c7f4f0e34965bd28da77a5bf2ae9a0CAS | 22682372PubMed |

[15]  C. J. Moore, S. L. Moore, M. K. Leecaster, S. B. Weisberg, A comparison of plastic and plankton in the North Pacific Central Gyre. Mar. Pollut. Bull. 2001, 42, 1297.
A comparison of plastic and plankton in the North Pacific Central Gyre.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFGgtL0%3D&md5=e9d29e2cb460847a5809773bf08a5f1cCAS | 11827116PubMed |

[16]  C. Arthur, J. Baker, H. Bamford, (Eds) Proceedings of the International Research Workshop on the Occurrence, Effects and Fate of Microplastic Marine Debris, 9–11 September 2008, Tacoma, WA, USA. Technical Memorandum NOS-OR&R-30 2009 (National Oceanic and Atmospheric Administration). Available at http://marinedebris.noaa.gov/sites/default/files/Microplastics.pdf [Verified 5 April 2015].

[17]  E. Crecelius, L. Lefkovitz, HOC Sampling Media Preaparation and Handling: XAD-2 Resin and GF/F Filters. Standard Operating Procedure MSL-M-09-00 1994 (US EPA). Available at http://www.epa.gov/glnpo/lmmb/methods/msl090.pdf [Verified 5 April 2015].

[18]  C. M. Boerger, G. L. Lattin, S. L. Moore, C. J. Moore, Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull. 2010, 60, 2275.
Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKjtL%2FE&md5=d78e9da099f43954e322f9279c15a455CAS | 21067782PubMed |

[19]  M. P. Zakaria, H. Takada, S. Tsutsumi, K. Ohno, J. Yamada, E. Kouno, Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs. Environ. Sci. Technol. 2002, 36, 1907.
Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVOhtbY%3D&md5=ef02a265e0311de1e4af41ba1544e18aCAS | 12026970PubMed |

[20]  S. Endo, R. Takizawa, K. Okuda, H. Takada, K. Chiba, H. Kanehiro, H. Ogi, R. Yamashita, T. Date, Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences. Mar. Pollut. Bull. 2005, 50, 1103.
Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKhu7nN&md5=1898f1e21a30865aa485c73e6b485aa5CAS | 15896813PubMed |

[21]  J. Sangster, Octanol–water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data 1989, 18, 1111.
Octanol–water partition coefficients of simple organic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhsVKmsro%3D&md5=c5a05c1e72b90ea5b088859d45e980a2CAS |

[22]  N. Bellotti, B. del Amo, R. Romagnoli, Quaternary ammonium ‘tannate’ for antifouling coatings. Ind. Eng. Chem. Res. 2012, 51, 16626.
Quaternary ammonium ‘tannate’ for antifouling coatings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKkt7jE&md5=e9f340662edc96d8fe45c1011820433aCAS |

[23]  M. R. Detty, R. Ciriminna, F. V. Bright, M. Pagliaro, Environmentally benign sol-gel antifouling and foul-releasing coatings. Acc. Chem. Res. 2014, 47, 678.
Environmentally benign sol-gel antifouling and foul-releasing coatings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlChsw%3D%3D&md5=585c2f7d89db48f17431b7c2093cb6e4CAS | 24397288PubMed |