Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Environmental effects on arsenosugars and arsenolipids in Ectocarpus (Phaeophyta)

Ásta H. Pétursdóttir A B C D , Kyle Fletcher B , Helga Gunnlaugsdóttir C , Eva Krupp A , Frithjof C. Küpper B and Jörg Feldmann A D
+ Author Affiliations
- Author Affiliations

A TESLA – Trace Element Speciation Laboratory, Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK.

B Oceanlab, University of Aberdeen, Newburgh, AB41 6AA, UK.

C Matis, Food Safety, Environment and Genetics Department, Vinlandsleid 12, IS-113 Reykjavik, Iceland.

D Corresponding authors. Email: astap@matis.is; j.feldmann@abdn.ac.uk

Environmental Chemistry 13(1) 21-33 https://doi.org/10.1071/EN14229
Submitted: 25 October 2014  Accepted: 2 March 2015   Published: 28 July 2015

Journal Compilation © CSIRO Publishing 2016 Open Access CC BY-NC-ND

Environmental context. Arsenolipids, which are present in seaweed, can show high toxicity, emphasising the need for more information on these compounds. We investigated the effects of different stress factors on the arsenic compounds formed by cultures of brown algae, and compared the results with those from field-collected samples. We show that the arsenolipid and arsenosugar profiles differ depending on the experimental conditions, and that a deficiency in phosphate has a direct positive effect on the biosynthesis of arsenic-containing phospholipids.

Abstract. Seaweeds have recently been shown to contain a significant proportion of arsenic in the form of arsenolipids (AsLp). Three strains of the filamentous brown alga Ectocarpus species were grown in the laboratory with different simulations of environmental stress: control conditions (1/2 Provasoli-enriched seawater), low nitrate (30 % of the amount of nitrates in the control), low phosphate (30 % of the amount of phosphate in the control) and under oxidative stress levels (2 mM H2O2). Generally, the major AsLp was an arsenic-containing hydrocarbon, AsHC360 (50–80 %), but additionally, several arsenic-containing phospholipids (AsPL) were identified and quantified using high-performance liquid chromatography–inductively coupled plasma mass spectrometry and electrospray ionisation mass spectrometry (HPLC-ICP-MS/ESI-MS). The AsLps in cultures were compared with AsLps in Ectocarpus found in its natural habitat as well as with other brown filamentous algae. The AsLp and arsenosugar profiles differed depending on the experimental conditions. Under low phosphate conditions, a significant reduction of phosphorus-containing arsenosugars was noticed, and a significant increase of phosphate-containing AsLps was found when compared with the controls. Strains grown under oxidative stress showed a significant increase in AsLps as well as clear physiological changes.

Additional keywords: chloroplasts, cultures, HPLC-ESIMS, HPLC-ICP-MS, lipid-soluble arsenic, speciation.


References

[1]  Á. H. Pétursdóttir, Inorganic and Lipophilic Arsenic in Different Food Commodities with Emphasis on Seafood 2014, Ph.D. thesis, University of Aberdeen, Aberdeen, UK.

[2]  V. Sele, J. J. Sloth, B. Holmelid, S. Valdersnes, K. Skov, H. Amlund, Arsenic-containing fatty acids and hydrocarbons in marine oils – determination using reversed-phase HPLC-ICP-MS and HPLC-qTOE-MS. Talanta 2014, 121, 89.
Arsenic-containing fatty acids and hydrocarbons in marine oils – determination using reversed-phase HPLC-ICP-MS and HPLC-qTOE-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjs1Kru7Y%3D&md5=73219b79c56210048a879cfc3f7143dcCAS | 24607114PubMed |

[3]  R. A. Glabonjat, G. Raber, K. B. Jensen, J. Ehgartner, K. A. Francesconi, Quantification of arsenolipids in the certified reference material NMIJ 7405-a (Hijiki) using HPLC/mass spectrometry after chemical derivatization. Anal. Chem. 2014, 86, 10282.
Quantification of arsenolipids in the certified reference material NMIJ 7405-a (Hijiki) using HPLC/mass spectrometry after chemical derivatization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFOrurnK&md5=01db9bc7664f42d167c5fa8ccf204bf8CAS | 25241916PubMed |

[4]  J. Alexander, D. Benford, A. Boobis, S. Ceccatelli, J.-P. Cravedi, A. Di Domenico, D. Doerge, E. Dogliotti, L. Edler, P. Farmer, M. Filipič, J. Fink-Gremmels, P. Fürst, T. Guerin, H. K. Knutsen, M. Machala, A. Mutti, J. Schlatter, R. van Leeuwen, P. Verger, Scientific opinion on arsenic in food. EFSA J. 2009, 7, 1351.
Scientific opinion on arsenic in food.Crossref | GoogleScholarGoogle Scholar |

[5]  Inorganic arsenic in seaweed and certain fish. NSW/FA/CP043/1102 2010 (NSW Food Authority: Sydney, NSW).

[6]  J. Borak, H. D. Hosgood, Seafood arsenic: implications for human risk assessment. Regul. Toxicol. Pharmacol. 2007, 47, 204.
Seafood arsenic: implications for human risk assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFOjt78%3D&md5=e4a6039d0a0ac36fa4352379796dcd07CAS | 17092619PubMed |

[7]  C. I. Ullrich-Eberius, A. Sanz, A. J. Novacky, Evaluation of arsenate-associated and vanadate-associated changes of electrical membrane-potential and phosphate transport in Lemna gibba G1. J. Exp. Bot. 1989, 40, 119.
Evaluation of arsenate-associated and vanadate-associated changes of electrical membrane-potential and phosphate transport in Lemna gibba G1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitV2gu70%3D&md5=cf86610651aed3f1d04558dc98b5d242CAS |

[8]  F. L. Hellweger, K. J. Farley, U. Lall, D. M. Di Toro, Greedy algae reduce arsenate. Limnol. Oceanogr. 2003, 48, 2275.
| 1:CAS:528:DC%2BD3sXpvFagtrY%3D&md5=7fe1243697e0515773e04b606dc14156CAS |

[9]  E. G. Duncan, W. A. Maher, S. D. Foster, F. Krikowa, The influence of arsenate and phosphate exposure on arsenic uptake, metabolism and species formation in the marine phytoplankton Dunaliella tertiolecta. Mar. Chem. 2013, 157, 78.
The influence of arsenate and phosphate exposure on arsenic uptake, metabolism and species formation in the marine phytoplankton Dunaliella tertiolecta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVWksbzI&md5=c8fd668b8762bf50ab9605db9885905bCAS |

[10]  S. Foster, D. Thomson, W. Maher, Uptake and metabolism of arsenate by anexic cultures of the microalgae Dunaliella tertiolecta and Phaeodactylum tricornutum. Mar. Chem. 2008, 108, 172.
Uptake and metabolism of arsenate by anexic cultures of the microalgae Dunaliella tertiolecta and Phaeodactylum tricornutum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVyrtQ%3D%3D&md5=336a5860645e704a0942df74fc9c7c95CAS |

[11]  S. García-Salgado, G. Raber, R. Raml, C. Magnes, K. A. Francesconi, Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae. Environ. Chem. 2012, 9, 63.
Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae.Crossref | GoogleScholarGoogle Scholar |

[12]  A. Raab, C. Newcombe, D. Pitton, R. Ebel, J. Feldmann, Comprehensive analysis of lipophilic arsenic species in a brown alga (Saccharina latissima). Anal. Chem. 2013, 85, 2817.
Comprehensive analysis of lipophilic arsenic species in a brown alga (Saccharina latissima).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1ehsr0%3D&md5=325414c75c20e013339d1d903a22979eCAS | 23394220PubMed |

[13]  B. A. S. Van Mooy, H. F. Fredricks, B. E. Pedler, S. T. Dyhrman, D. M. Karl, M. Koblizek, M. W. Lomas, T. J. Mincer, L. R. Moore, T. Moutin, M. S. Rappe, E. A. Webb, Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 2009, 458, 69.
Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ehtbY%3D&md5=2d0bd6132922e798b4185521d8fd8abeCAS |

[14]  R. V. Cooney, R. O. Mumma, A. A. Benson, Arsoniumphospholipid in algae. Proc. Natl. Acad. Sci. USA 1978, 75, 4262.
Arsoniumphospholipid in algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhvFShtQ%3D%3D&md5=e424ee224ed4d498a9998f63074c468bCAS | 16592562PubMed |

[15]  K. A. Francesconi, Arsenic species in seafood: origin and human health implications. Pure Appl. Chem. 2010, 82, 373.
Arsenic species in seafood: origin and human health implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVShsLg%3D&md5=6fc30a530c87f2132f688c65afd68274CAS |

[16]  J. S. Edmonds, K. A. Francesconi, Transformations of arsenic in the marine environment. Experientia 1987, 43, 553.
Transformations of arsenic in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltFaqtrc%3D&md5=f06dda7dfc9b15c098fc88132cfd1215CAS | 3556209PubMed |

[17]  M. S. Taleshi, K. B. Jensen, G. Raber, J. S. Edmonds, H. Gunnlaugsdottir, K. A. Francesconi, Arsenic-containing hydrocarbons: natural compounds in oil from the fish capelin, Mallotus villosus. Chem. Commun. 2008, 4706.
Arsenic-containing hydrocarbons: natural compounds in oil from the fish capelin, Mallotus villosus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2mtr7I&md5=c1d9e99c114830365358e711c69de41bCAS |

[18]  V. Sele, J. J. Sloth, A. K. Lundebye, E. H. Larsen, M. H. G. Berntssen, H. Amlund, Arsenolipids in marine oils and fats: a review of occurrence, chemistry and future research needs. Food Chem. 2012, 133, 618.
Arsenolipids in marine oils and fats: a review of occurrence, chemistry and future research needs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivV2msb0%3D&md5=86bf6a94809223d8a068cf66bc34e9adCAS |

[19]  S. Meyer, M. Matissek, S. M. Mueller, M. S. Taleshi, F. Ebert, K. A. Francesconi, T. Schwerdtle, In vitro toxicological characterisation of three arsenic-containing hydrocarbons. Metallomics 2014, 6, 1023.
In vitro toxicological characterisation of three arsenic-containing hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslyksLg%3D&md5=50e30bbe602284328eb8ca31ab6ee979CAS | 24718560PubMed |

[20]  B. Charrier, S. M. Coelho, A. Le Bail, T. Tonon, G. Michel, P. Potin, B. Kloareg, C. Boyen, A. F. Peters, J. M. Cock, Development and physiology of the brown alga Ectocarpus siliculosus: two centuries of research. New Phytol. 2008, 177, 319.
Development and physiology of the brown alga Ectocarpus siliculosus: two centuries of research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFGltbY%3D&md5=7d52054e0d2b30cc680328ed2b502d1cCAS | 18181960PubMed |

[21]  A. F. Peters, D. Marie, D. Scornet, B. Kloareg, J. M. Cock, Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics. J. Phycol. 2004, 40, 1079.
Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics.Crossref | GoogleScholarGoogle Scholar |

[22]  D. G. Müller, C. M. M. Gachon, F. C. Küpper, Axenic clonal cultures of filamentous brown algae: initiation and maintenance. Cah. Biol. Mar. 2008, 49, 59.

[23]  J. M. Cock, L. Sterck, P. Rouzé, D. Scornet, A. E. Allen, G. Amoutzias, V. Anthouard, F. Artiguenave, J.-M. Aury, J. H. Badger, B. Beszteri, K. Billiau, E. Bonnet, J. H. Bothwell, C. Bowler, C. Boyen, C. Brownlee, C. J. Carrano, B. Charrier, G. Y. Cho, S. M. Coelho, J. Collen, E. Corre, C. Da Silva, L. Delage, N. Delaroque, S. M. Dittami, S. Doulbeau, M. Elias, G. Farnham, C. M. M. Gachon, B. Gschloessl, S. Heesch, K. Jabbari, C. Jubin, H. Kawai, K. Kimura, B. Kloareg, F. C. Kuepper, D. Lang, A. Le Bail, C. Leblanc, P. Lerouge, M. Lohr, P. J. Lopez, C. Martens, F. Maumus, G. Michel, D. Miranda-Saavedra, J. Morales, H. Moreau, T. Motomura, C. Nagasato, C. A. Napoli, D. R. Nelson, P. Nyvall-Collen, A. F. Peters, C. Pommier, P. Potin, J. Poulain, H. Quesneville, B. Read, S. A. Rensing, A. Ritter, S. Rousvoal, M. Samanta, G. Samson, D. C. Schroeder, B. Segurens, M. Strittmatter, T. Tonon, J. W. Tregear, K. Valentin, P. von Dassow, T. Yamagishi, Y. Van de Peer, P. Wincker, The Ectocarpus genome and the independent evolution of multicellularity in the brown algae. Nature 2010, 465, 617.
The Ectocarpus genome and the independent evolution of multicellularity in the brown algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFWlu7c%3D&md5=60569d836ff090c5bc2b9c1ba6686199CAS | 20520714PubMed |

[24]  R. C. Starr, J. A. Zeikus, UTEX – the culture collection of algae at the University of Texas at Austin. J. Phycol. 1987, 23, 1.

[25]  H. C. Bold, M. J. Wynne (Eds), Introduction to the Algae: Structure and Reproduction 1985 (Prentice-Hall: Englewood Cliffs, NJ, USA).

[26]  M. D. Patey, M. J. A. Rijkenberg, P. J. Statham, M. C. Stinchcombe, E. P. Achterberg, M. Mowlem, Determination of nitrate and phosphate in seawater at nanomolar concentrations. TrAC – Trend. Anal. Chem. 2008, 27, 169.
Determination of nitrate and phosphate in seawater at nanomolar concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVSitLw%3D&md5=b30f9f5376f3cd66902d5d9b6e82c269CAS |

[27]  F. C. Küpper, L. J. Carpenter, G. B. McFiggans, C. J. Palmer, T. J. Waite, E. M. Boneberg, S. Woitsch, M. Weiller, R. Abela, D. Grolimund, P. Potin, A. Butler, G. W. Luther, P. M. H. Kroneck, W. Meyer-Klaucke, M. C. Feiters, Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc. Natl. Acad. Sci. USA 2008, 105, 6954.
Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar | 18458346PubMed |

[28]  P. L. Smedley, D. G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517.
A review of the source, behaviour and distribution of arsenic in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVSmur0%3D&md5=36c2895b8fea47d7e3c145f44bf012daCAS |

[29]  S. Musil, A. H. Petursdottir, A. Raab, H. Gunnlaugsdottir, E. Krupp, J. Feldmann, Speciation without chromatography using selective hydride generation: inorganic arsenic in rice and samples of marine origin. Anal. Chem. 2014, 86, 993.
Speciation without chromatography using selective hydride generation: inorganic arsenic in rice and samples of marine origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKhtr%2FE&md5=af43e65b5980de8c4db33ee38e621312CAS | 24354293PubMed |

[30]  K. O. Amayo, A. Petursdottir, C. Newcombe, H. Gunnlaugsdottir, A. Raab, E. M. Krupp, J. Feldmann, Identification and quantification of arsenolipids using reversed-phase HPLC coupled simultaneously to high-resolution ICPMS and high-resolution electrospray MS without species-specific standards. Anal. Chem. 2011, 83, 3589.
Identification and quantification of arsenolipids using reversed-phase HPLC coupled simultaneously to high-resolution ICPMS and high-resolution electrospray MS without species-specific standards.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFaktL4%3D&md5=532d21d376def6287d9c40ffd1c55575CAS | 21446761PubMed |

[31]  J. S. Edmonds, K. A. Francesconi, Arsenic in seafoods – human health aspects and regulations. Mar. Pollut. Bull. 1993, 26, 665.
Arsenic in seafoods – human health aspects and regulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvV2qsb8%3D&md5=d19263608a1941075c4e6fbd15f60c66CAS |

[32]  O. Díaz, Y. Tapia, O. Munoz, R. Montoro, D. Velez, C. Almela, Total and inorganic arsenic concentrations in different species of economically important algae harvested from coastal zones of Chile. Food Chem. Toxicol. 2012, 50, 744.
Total and inorganic arsenic concentrations in different species of economically important algae harvested from coastal zones of Chile.Crossref | GoogleScholarGoogle Scholar | 22138359PubMed |

[33]  C. Almela, M. J. Clemente, D. Velez, R. Montoro, Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed sold in Spain. Food Chem. Toxicol. 2006, 44, 1901.
Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed sold in Spain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvFGms70%3D&md5=fc1291e2cf260247bff26ea315ced8d5CAS | 16901603PubMed |

[34]  J. Navratilova, G. Raber, S. J. Fisher, K. A. Francesconi, Arsenic cycling in marine systems: degradation of arsenosugars to arsenate in decomposing algae, and preliminary evidence for the formation of recalcitrant arsenic. Environ. Chem. 2011, 8, 44.
Arsenic cycling in marine systems: degradation of arsenosugars to arsenate in decomposing algae, and preliminary evidence for the formation of recalcitrant arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1GlsLc%3D&md5=1eaf1c1822c0a44201b740cbb2d35d2bCAS |

[35]  M. S. Taleshi, G. Raber, J. S. Edmonds, K. B. Jensen, K. A. Francesconi, Arsenolipids in oil from blue whiting Micromesistius poutassou – evidence for arsenic-containing esters. Sci. Rep. 2014, 4, 7492.
Arsenolipids in oil from blue whiting Micromesistius poutassou – evidence for arsenic-containing esters.Crossref | GoogleScholarGoogle Scholar | 25502848PubMed |

[36]  U. Arroyo-Abad, S. Lischka, C. Piechotta, J. Mattusch, T. Reemtsma, Determination and identification of hydrophilic and hydrophobic arsenic species in methanol extract of fresh cod liver by RP-HPLC with simultaneous ICP-MS and ESI-Q-TOF-MS detection. Food Chem. 2013, 141, 3093.
Determination and identification of hydrophilic and hydrophobic arsenic species in methanol extract of fresh cod liver by RP-HPLC with simultaneous ICP-MS and ESI-Q-TOF-MS detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWkurjO&md5=9a2b4486382bcd78147156bdf5d7680eCAS | 23871064PubMed |

[37]  U. Arroyo-Abad, J. Mattusch, T. Reemtsma, C. Piechotta, Arsenolipids in commercial canned cod liver: an occurrence and distribution study. Eur. J. Lipid Sci. Technol. 2014, 116, 1381.
Arsenolipids in commercial canned cod liver: an occurrence and distribution study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVCqu7jI&md5=4be02b178ba6449431e22e84b7b4d6f5CAS |

[38]  V. Sele, H. Amlund, M. H. G. Berntssen, J. A. Berntsen, K. Skov, J. J. Sloth, Detection of arsenic-containing hydrocarbons in a range of commercial fish oils by GC-ICPMS analysis. Anal. Bioanal. Chem. 2013, 405, 5179.
Detection of arsenic-containing hydrocarbons in a range of commercial fish oils by GC-ICPMS analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1WlsLk%3D&md5=9bc482a4d340df07de18d38405b79cccCAS | 23620370PubMed |

[39]  S. Lischka, U. Arroyo-Abad, J. Mattusch, A. Kuehn, C. Piechotta, The high diversity of arsenolipids in herring fillet (Clupea harengus). Talanta 2013, 110, 144.
The high diversity of arsenolipids in herring fillet (Clupea harengus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFeisL0%3D&md5=c9a22204eadd1b44917fc5d8c4405a88CAS | 23618187PubMed |

[40]  K. O. Amayo, A. Raab, E. M. Krupp, H. Gunnlaugsdottir, J. Feldmann, Novel identification of arsenolipids using chemical derivatizations in conjunction with RP-HPLC-ICPMS/ESMS. Anal. Chem. 2013, 85, 9321.
Novel identification of arsenolipids using chemical derivatizations in conjunction with RP-HPLC-ICPMS/ESMS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlChs7vK&md5=c0a48fc3b85a0f2a3991a9bcda703bd0CAS | 23984920PubMed |

[41]  A. Rumpler, J. S. Edmonds, M. Katsu, K. B. Jensen, W. Goessler, G. Raber, H. Gunnlaugsdottir, K. A. Francesconi, Arsenic-containing long-chain fatty acids in cod-liver oil: a result of biosynthetic infidelity? Angew. Chem. Int. Ed. 2008, 47, 2665.
Arsenic-containing long-chain fatty acids in cod-liver oil: a result of biosynthetic infidelity?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFejsL4%3D&md5=2aa5c6b69565bd290223aa10d11a3a49CAS |

[42]  M. S. Taleshi, J. S. Edmonds, W. Goessler, M. J. Ruiz-Chancho, G. Raber, K. B. Jensen, K. A. Francesconi, Arsenic-containing lipids are natural constituents of sashimi tuna. Environ. Sci. Technol. 2010, 44, 1478.
Arsenic-containing lipids are natural constituents of sashimi tuna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlymtg%3D%3D&md5=85d714a1c6c03b7b0fda76c7dcb4fd6fCAS | 20099809PubMed |

[43]  M. J. Ruiz-Chancho, M. S. Taleshi, W. Goessler, K. A. Francesconi, A method for screening arsenolipids in fish oils by HPLC-ICPMS. J. Anal. At. Spectrom. 2012, 27, 501.
A method for screening arsenolipids in fish oils by HPLC-ICPMS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVKjtbs%3D&md5=927b4b0a674de1039b6e90d207ba7ef9CAS |

[44]  U. Arroyo-Abad, J. Mattusch, S. Mothes, M. Moeder, R. Wennrich, M. P. Elizalde-Gonzalez, F. M. Matysik, Detection of arsenic-containing hydrocarbons in canned cod liver tissue. Talanta 2010, 82, 38.
Detection of arsenic-containing hydrocarbons in canned cod liver tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVyktbo%3D&md5=f925b5100ba31bf68ff50e60df07558dCAS | 20685432PubMed |

[45]  G. Raber, S. Khoomrung, M. S. Taleshi, J. S. Edmonds, K. A. Francesconi, Identification of arsenolipids with GC/MS. Talanta 2009, 78, 1215.
Identification of arsenolipids with GC/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtVSnsL8%3D&md5=c47539f95d177fc076b1577e9bb85ff9CAS | 19269497PubMed |

[46]  K. O. Amayo, A. Raab, E. M. Krupp, J. Feldmann, Identification of arsenolipids and their degradation products in cod-liver oil. Talanta 2014, 118, 217.
Identification of arsenolipids and their degradation products in cod-liver oil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWrsbnF&md5=40dc5f4fb5c37035e4e09c8fc65901f5CAS | 24274291PubMed |

[47]  M. Morita, Y. Shibata, Isolation and identification of arsenolipid from a brown alga, Undaria pinnatifida (wakame). Chemosphere 1988, 17, 1147.
Isolation and identification of arsenolipid from a brown alga, Undaria pinnatifida (wakame).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvVOlt78%3D&md5=80c1d36d94a060c4d6563890105630c8CAS |

[48]  H. Castlehouse, C. Smith, A. Raab, C. Deacon, A. A. Meharg, J. Feldmann, Biotransformation and accumulation of arsenic in soil amended with seaweed. Environ. Sci. Technol. 2003, 37, 951.
Biotransformation and accumulation of arsenic in soil amended with seaweed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslyltA%3D%3D&md5=59985a66fdb97d80a90fd04fcad6ea69CAS | 12666926PubMed |