Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Isotopic composition of polyhalomethanes from marine macrophytes – systematic effects of the halogen substituents on isotopic composition

Enno Bahlmann A B C , Christian Stolle B , Ingo Weinberg B , Richard Seifert A , Detlef E. Schulz-Bull B and Walter Michaelis A
+ Author Affiliations
- Author Affiliations

A Department of Geosciences, University of Hamburg, Bundesstraße 55, D-20146 Hamburg, Germany.

B Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestraße 15, D-18119 Rostock, Germany.

C Corresponding author. Email: enno.bahlmann@zmaw.de

Environmental Chemistry 12(4) 504-514 https://doi.org/10.1071/EN14210
Submitted: 2 October 2014  Accepted: 3 June 2015   Published: 20 July 2015

Environmental context. Once released to the atmosphere, halocarbons are involved in key chemical reactions. Stable carbon isotope measurements of halocarbons can provide valuable information on their sources and fate in the atmosphere. Here, we report δ13C values of 13 polyhalomethanes released from brown algae, which may provide a basis for inferring their sources and fate in future studies.

Abstract. Halocarbons are important vectors of reactive halogens to the atmosphere, where the latter participate in several key chemical processes. An improved understanding of the biogeochemical controls of the production–destruction equilibrium on halocarbons is of vital importance to address potential future changes in their fluxes to the atmosphere. Carbon stable isotope ratios of halocarbons could provide valuable additional information on their sources and fate that cannot be derived from mixing ratios alone. We determined the δ13C values of 13 polyhalomethanes from three brown algae species (Laminaria digitata, Fucus vesiculosus, Fucus serratus) and one seagrass species (Zostera noltii). The δ13C values were determined in laboratory incubations under variable environmental conditions of light, water levels (to simulate tidal events) and addition of hydrogen peroxide (H2O2). The δ13C values of the polyhalomethanes ranged from –42.2 ‰ (±3.5 s.d.) for CHCl3 to 6.9 ‰ (±4.5) for CHI2Br and showed a systematic effect of the halogen substituents that could empirically be described in terms of linear free energy relationships. We further observed an enrichment in the δ13C of the polyhalomethanes with decreasing polyhalomethane yield that is attributed to the competing formation of halogenated ketones. Though variable, the isotopic composition of polyhalomethanes may provide useful additional information to discriminate between marine polyhalomethane sources.

Additional keywords: brown algae, halocarbons, LFER, stable carbon isotopes.


References

[1]  S. C. Wofsy, M. B. McElroy, Y. L. Yung, The chemistry of atmospheric bromine. Geophys. Res. Lett. 1975, 2, 215.
The chemistry of atmospheric bromine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhtFSrurw%3D&md5=a71da6ff29465f1dbf373a5362fdec98CAS |

[2]  S. Solomon, R. R. Garcia, A. R. Ravishankara, On the role of iodine in ozone depletion. J. Geophys. Res. 1994, 99, 20491.
On the role of iodine in ozone depletion.Crossref | GoogleScholarGoogle Scholar |

[3]  W. T. Sturges, D. E. Oram, L. J. Carpenter, S. A. Penkett, A. Engel, Bromoform as a source of stratospheric bromine. Geophys. Res. Lett. 2000, 27, 2081.
Bromoform as a source of stratospheric bromine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslalt70%3D&md5=2d09400e295300baa825e406d3c29230CAS |

[4]  R. von Glasow, Atmospheric chemistry: sun, sea and ozone destruction. Nature 2008, 453, 1195.
Atmospheric chemistry: sun, sea and ozone destruction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslGksrc%3D&md5=978a03ebd2e75b67f579d7be52b0dc9cCAS | 18580939PubMed |

[5]  R. Sander, R. Vogt, G. W. Harris, P. J. Crutzen, Modelling the chemistry of ozone, halogen compounds, and hydrocarbons in the Arctic troposphere during spring. Tellus B Chem. Phys. Meterol. 1997, 49, 522.
Modelling the chemistry of ozone, halogen compounds, and hydrocarbons in the Arctic troposphere during spring.Crossref | GoogleScholarGoogle Scholar |

[6]  R. P. Mason, G. R. Sheu, Role of the ocean in the global mercury cycle. Global Biogeochem. Cycles 2002, 16, 1093.
Role of the ocean in the global mercury cycle.Crossref | GoogleScholarGoogle Scholar |

[7]  L. J. Carpenter, Iodine in the marine boundary layer. Chem. Rev. 2003, 103, 4953.
Iodine in the marine boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Kltbk%3D&md5=80f7191f08c71ef5800c9171e187eff1CAS | 14664638PubMed |

[8]  B. Quack, D. W. R. Wallace, Air–sea flux of bromoform: controls, rates, and implications. Global Biogeochem. Cycles 2003, 17, 1023.
Air–sea flux of bromoform: controls, rates, and implications.Crossref | GoogleScholarGoogle Scholar |

[9]  J. H. Butler, D. B. King, J. M. Lobert, S. A. Montzka, S. A. Yvon-Lewis, B. D. Hall, N. J. Warwick, D. J. Mondeel, J. W. Aydin, Elkins, Oceanic distributions and emissions of short-lived halocarbons. Global Biogeochem. Cycles 2007, 21, GB1023.
Elkins, Oceanic distributions and emissions of short-lived halocarbons.Crossref | GoogleScholarGoogle Scholar |

[10]  L. J. Carpenter, C. E. Jones, R. M. Dunk, K. E. Hornsby, J. Woeltjen, Air–sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean. Atmos. Chem. Phys. 2009, 9, 1805.
Air–sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFKgs7o%3D&md5=02044f133528a6c9729b8f06e7ebf467CAS |

[11]  C. J. Palmer, C. J. Reason, Relationships of surface bromoform concentrations with mixed-layer depth and salinity in the tropical oceans. Global Biogeochem. Cycles 2009, 23, GB2014.
Relationships of surface bromoform concentrations with mixed-layer depth and salinity in the tropical oceans.Crossref | GoogleScholarGoogle Scholar |

[12]  L. M. O’Brien, N. R. P. Harris, A. D. Robinson, B. Gostlow, N. Warwick, X. Yang, J. A. Pyle, Bromocarbons in the tropical marine boundary layer at the Cape Verde Observatory – measurements and modelling. Atmos. Chem. Phys. 2009, 9, 9083.
Bromocarbons in the tropical marine boundary layer at the Cape Verde Observatory – measurements and modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Gjur4%3D&md5=f737240938b04c76bca017c93d386d9fCAS |

[13]  Q. Liang, R. S. Stolarski, S. R. Kawa, J. E. Nielsen, A. R. Douglass, J. M. Rodriguez, D. R. Blake, E. L. Atlas, L. E. Ott, Finding the missing stratospheric Bry: a global modeling study of CHBr3 and CH2Br2. Atmos. Chem. Phys. 2010, 10, 2269.
Finding the missing stratospheric Bry: a global modeling study of CHBr3 and CH2Br2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslOqtLw%3D&md5=44fe3425fade90d1aafd042f92501863CAS |

[14]  J. A. Pyle, M. J. Ashfold, N. R. P. Harris, A. D. Robinson, N. J. Warwick, G. D. Carver, B. Gostlow, L. M. O’Brien, A. J. Manning, S. M. Phang, S. E. Yong, K. P. Leong, E. H. Ung, S. Ong, Bromoform in the tropical boundary layer of the Maritime Continent during OP3. Atmos. Chem. Phys. 2011, 11, 529.
Bromoform in the tropical boundary layer of the Maritime Continent during OP3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFClsbw%3D&md5=b83b452d0b8b1c2baed68606498f43caCAS |

[15]  S. A. Montzka, S. Reimann, A. Engel, K. Krüger, S. O'Doherty, W. T. Sturges, D. R. Blake, M. Dorf, P. J. Fraser, L. Froidevaux, K. Jucks, K. Kreher, M. J. Kurylo, A. Mellouki, J. Miller, O. -J. Nielsen, V. L. Orkin, R. G. Prinn, R. Rhew, M. L. Santee, and D. P. Verdonik, Chapter 1. Ozone-depleting substances (ODSs) and related chemicals, in Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project - Report 52 2011 (World Meteorological Organization: Geneva, Switzerland).

[16]  P. M. Gschwend, J. K. MacFarlane, K. A. Newman, Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science 1985, 227, 1033.
Volatile halogenated organic compounds released to seawater from temperate marine macroalgae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhsFCnsrc%3D&md5=18174824e00a0911a3e756c90e0b947eCAS | 17794227PubMed |

[17]  S. L. Manley, M. N. Dastoor, Methyl halide (CH3X) production from the giant kelp, Macrocystis, and estimates of global CH3X production by kelp. Limnol. Oceanogr. 1987, 32, 709.
Methyl halide (CH3X) production from the giant kelp, Macrocystis, and estimates of global CH3X production by kelp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlslantbo%3D&md5=c697f0bea6c2de37dd68b33e05302cbbCAS |

[18]  S. L. Manley, M. N. Dastoor, Methyl iodide (CH3I) production by kelp and associated microbes. Mar. Biol. 1988, 98, 477.
Methyl iodide (CH3I) production by kelp and associated microbes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsVKgurk%3D&md5=6db7ec479be6b87771fc49b7a59c8fc0CAS |

[19]  S. L. Manley, K. Goodwin, W. J. North, Laboratory production of bromoform, methylene bromide, and methyl iodide by macroalgae and distribution in near-shore southern California waters. Limnol. Oceanogr. 1992, 37, 1652.
Laboratory production of bromoform, methylene bromide, and methyl iodide by macroalgae and distribution in near-shore southern California waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlt1CmsLk%3D&md5=0178dc9446f6ffd5c45a812bc1c8a7abCAS |

[20]  P. D. Nightingale, G. Marlin, P. S. Liss, Production of chloroform and other low-molecular-weight halocarbons by some species of macroalgae. Limnol. Oceanogr. 1995, 40, 680.
Production of chloroform and other low-molecular-weight halocarbons by some species of macroalgae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXos1GmsLs%3D&md5=2cb64aec84570c06e6f20d85c94479fdCAS |

[21]  B. Giese, F. Laturnus, F. C. Adams, C. Wiencke, Release of volatile iodinated C1–C4 hydrocarbons by marine macroalgae from various climate zones. Environ. Sci. Technol. 1999, 33, 2432.
Release of volatile iodinated C1–C4 hydrocarbons by marine macroalgae from various climate zones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFCqtr8%3D&md5=8a2a763149b29808130309ee8dd79166CAS |

[22]  L. J. Carpenter, G. Malin, P. S. Liss, F. C. Küpper, Novel biogenic iodine-containing trihalomethanes and other short-lived halocarbons in the coastal east Atlantic. Global Biogeochem. Cycles 2000, 14, 1191.
Novel biogenic iodine-containing trihalomethanes and other short-lived halocarbons in the coastal east Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVGksA%3D%3D&md5=37912ff04f8080df94e590909ccbccb9CAS |

[23]  F. Laturnus, B. Giese, C. Wiencke, F. C. Adams, Low-molecular-weight organoiodine and organobromine compounds released by polar macroalgae – the influence of abiotic factors. Fresenius J. Anal. Chem. 2000, 368, 297.
Low-molecular-weight organoiodine and organobromine compounds released by polar macroalgae – the influence of abiotic factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFGmurg%3D&md5=c4e557a6fc4f59c3a5007ce27a89e234CAS | 11220596PubMed |

[24]  J. M. Baker, W. T. Sturges, J. Sugier, G. Sunnenberg, A. A. Lovett, C. E. Reeves, P. D. Nightingale, S. A. Penkett, Emissions of CH3Br, organochlorines, and organoiodines from temperate macroalgae. Chemosphere, Glob. Chang. Sci. 2001, 3, 93.
Emissions of CH3Br, organochlorines, and organoiodines from temperate macroalgae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlGktbk%3D&md5=368d96054e64f9d048c4e1f0ab21502cCAS |

[25]  E. C. Leedham, C. Hughes, F. S. L. Keng, S. M. Phang, G. Malin, W. T. Sturges, Emission of atmospherically significant halocarbons by naturally occurring and farmed tropical macroalgae. Biogeosciences 2013, 10, 3615.
Emission of atmospherically significant halocarbons by naturally occurring and farmed tropical macroalgae.Crossref | GoogleScholarGoogle Scholar |

[26]  I. Weinberg, E. Bahlmann, W. Michaelis, R. Seifert, Determination of fluxes and isotopic composition of halocarbons from seagrass meadows using a dynamic flux chamber. Atmos. Environ. 2013, 73, 34.
Determination of fluxes and isotopic composition of halocarbons from seagrass meadows using a dynamic flux chamber.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVyktr4%3D&md5=c72566fc4073bec8916d38258f26ff00CAS |

[27]  I. Weinberg, E. Bahlmann, T. Eckhardt, W. Michaelis, R. Seifert, A halocarbon survey from a seagrass-dominated subtropical lagoon, Ria Formosa (Portugal): flux pattern and isotopic composition. Biogeosciences Discuss. 2014, 11, 10605.
A halocarbon survey from a seagrass-dominated subtropical lagoon, Ria Formosa (Portugal): flux pattern and isotopic composition.Crossref | GoogleScholarGoogle Scholar |

[28]  J. C. Morris, B. Baum, Precursors and Mechanisms of Haloform Formation in the Chlorination of Water Supplies, in Water Chlorination: Chemistry, Environmental Impact and Health Effects, Volume 2 (Eds R. L. Jolley, H. Gorchex and D. H. Hamilton Jr) 1978, pp. 29–48 (Ann Arbor Science Publishers: Ann Arbor, MI).

[29]  R. Theiler, J. C. Cook, L. P. Hager, J. F. Siuda, Halohydrocarbon synthesis by bromoperoxidase. Science 1978, 202, 1094.
Halohydrocarbon synthesis by bromoperoxidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXot1yitg%3D%3D&md5=b276e0d79bde079a4b17ddedaf89441fCAS | 17777960PubMed |

[30]  R. S. Beissner, W. J. Guilford, R. M. Coates, L. P. Hager, Synthesis of brominated heptanones and bromoform by a bromoperoxidase of marine origin. Biochemistry 1981, 20, 3724.
Synthesis of brominated heptanones and bromoform by a bromoperoxidase of marine origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktlOqsLc%3D&md5=f0b678843f0fc4ded45d82c0ab3af643CAS | 7272274PubMed |

[31]  S. Manley, Phytogenesis of halomethanes: a product of selection or a metabolic accident? Biogeochemistry 2002, 60, 163.
Phytogenesis of halomethanes: a product of selection or a metabolic accident?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtlGgtLw%3D&md5=9dbdb5c6112be59d3140c0295d609fefCAS |

[32]  C. Y. Lin, S. L. Manley, Bromoform production from seawater treated with bromoperoxidase. Limnol. Oceanogr. 2012, 57, 1857.
Bromoform production from seawater treated with bromoperoxidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptlCgsg%3D%3D&md5=26baf1d0d724aa2e3c7b39440ce53eddCAS |

[33]  K. Ballschmiter, Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens. Chemosphere 2003, 52, 313.
Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVGnsLg%3D&md5=61e3cf9aaf5aa9aa8ec0b25ff4eefa02CAS | 12738255PubMed |

[34]  C. E. Jones, L. J. Carpenter, Solar photolysis of CH2I2, CH2ICl, and CH2IBr in water, saltwater, and seawater. Environ. Sci. Technol. 2005, 39, 6130.
Solar photolysis of CH2I2, CH2ICl, and CH2IBr in water, saltwater, and seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVWjurw%3D&md5=f37c93459f8e4c3faf302ed49ca019b6CAS | 16173573PubMed |

[35]  S. E. McCauley, A. H. Goldstein, D. J. DePaolo, An isotopic approach for understanding the CH3Br budget of the atmosphere. Proc. Natl. Acad. Sci. USA 1999, 96, 10006.
An isotopic approach for understanding the CH3Br budget of the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvFehu7c%3D&md5=327f55e78beeadc46d4922e0b7678aabCAS | 10468552PubMed |

[36]  D. B. Harper, J. T. G. Hamilton, V. Ducrocq, J. T. Kennedy, A. Downey, R. M. Kalin, The distinctive isotopic signature of plant-derived chloromethane: possible application in constraining the atmospheric chloromethane budget. Chemosphere 2003, 52, 433.
The distinctive isotopic signature of plant-derived chloromethane: possible application in constraining the atmospheric chloromethane budget.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVGnsbk%3D&md5=d276cbe2f03eaedf78043d00ad18fc2bCAS | 12738266PubMed |

[37]  F. Keppler, D. B. Harper, T. Röckmann, R. M. Moore, J. T. G. Hamilton, New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. Atmos. Chem. Phys. 2005, 5, 2403.
New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kgs7rM&md5=69b9b7a8984e8a5964cd3a15e1365070CAS |

[38]  T. Saito, Y. Yokouchi, Stable carbon isotope ratio of methyl chloride emitted from glasshouse-grown tropical plants and its implication for the global methyl chloride budget. Geophys. Res. Lett. 2008, 35, L08807.
Stable carbon isotope ratio of methyl chloride emitted from glasshouse-grown tropical plants and its implication for the global methyl chloride budget.Crossref | GoogleScholarGoogle Scholar |

[39]  N. R. Auer, B. U. Manzke, D. E. Schulz-Bull, Development of a purge-and-trap continuous flow system for the stable carbon isotope analysis of volatile halogenated organic compounds in water. J. Chromatogr. A 2006, 1131, 24.
Development of a purge-and-trap continuous flow system for the stable carbon isotope analysis of volatile halogenated organic compounds in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVGjtbjM&md5=84abc41d533351d046b83e14a04522f9CAS | 16899248PubMed |

[40]  N. R. Auer, Stable carbon isotope analysis of volatile halogenated organic compounds (VHOCs) in the marine environment 2005, Ph.D. thesis, University of Rostock, Rostock, Germany.

[41]  E. Bahlmann, I. Weinberg, R. Seifert, C. Tubbesing, W. Michaelis, A high-volume sampling system for isotope determination of volatile halocarbons and hydrocarbons. Atmos. Meas. Tech. 2011, 4, 2073.
A high-volume sampling system for isotope determination of volatile halocarbons and hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVGmu7Y%3D&md5=2281cd7f1b4fa5d2e1639ae72e2999f4CAS |

[42]  A. Ekdahl, M. Pedersén, K. Abrahamsson, A study of the diurnal variation of biogenic volatile halocarbons. Mar. Chem. 1998, 63, 1.
A study of the diurnal variation of biogenic volatile halocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslKitLY%3D&md5=76ee28e7953758315dedce32df191193CAS |

[43]  K. Abrahamsson, K.-S. Choo, M. Pedersén, G. Johansson, P. Snoeijs, Effects of temperature on the production of hydrogen peroxide and volatile halocarbons by brackish-water algae. Phytochemistry 2003, 64, 725.
Effects of temperature on the production of hydrogen peroxide and volatile halocarbons by brackish-water algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1yitb0%3D&md5=a9cfd7a731a99f6d89b245acc1e024ffCAS | 13679095PubMed |

[44]  Y. Liu, D. C. O. Thornton, T. S. Bianchi, W. A. Arnold, M. R. Shields, J. Chen, S. A. Yvon-Lewis, Dissolved organic matter composition drives the marine production of brominated very short-lived substances. Environ. Sci. Technol. 2015, 49, 3366.
Dissolved organic matter composition drives the marine production of brominated very short-lived substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjsFCgs7s%3D&md5=3c15952b051431f6cd57b12e445947faCAS | 25723123PubMed |

[45]  H. Kennedy, J. Beggins, C. M. Duarte, J. W. Fourqurean, M. Holmer, N. Marbà, J. J. Middelburg, Seagrass sediments as a global carbon sink: isotopic constraints. Global Biogeochem. Cycles 2010, 24, GB4026.
Seagrass sediments as a global carbon sink: isotopic constraints.Crossref | GoogleScholarGoogle Scholar |

[46]  G. Schaal, P. Riera, C. Leroux, Trophic significance of the kelp Laminaria digitata (Lamour.) for the associated food web: a between-sites comparison. Estuar. Coast. Shelf Sci. 2009, 85, 565.
Trophic significance of the kelp Laminaria digitata (Lamour.) for the associated food web: a between-sites comparison.Crossref | GoogleScholarGoogle Scholar |

[47]  W. A. Arnold, J. Bolotin, U. v. Gunten, T. B. Hofstetter, Evaluation of functional groups responsible for chloroform formation during water chlorination using compound-specific isotope analysis. Environ. Sci. Technol. 2008, 42, 7778.
Evaluation of functional groups responsible for chloroform formation during water chlorination using compound-specific isotope analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlOmsr8%3D&md5=9fc068deb884d868f2e9722406f1e366CAS | 19031860PubMed |

[48]  F. Breider, D. Hunkeler, Mechanistic insights into the formation of chloroform from natural organic matter using stable carbon isotope analysis. Geochim. Cosmochim. Acta 2014, 125, 85.
Mechanistic insights into the formation of chloroform from natural organic matter using stable carbon isotope analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVWju7fE&md5=3c9f10eacec4a44fd3781c1978d11c4bCAS |

[49]  V. A. Klap, M. A. Hemminga, J. J. Boon, Retention of lignin in seagrasses: angiosperms that returned to the sea. Mar. Ecol. Prog. Ser. 2000, 194, 1.
Retention of lignin in seagrasses: angiosperms that returned to the sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvVWitbc%3D&md5=bd2776a5ea15afd611375461c279ac24CAS |

[50]  W. A. P. Black, Seasonal variation in chemical composition of some of the littoral seaweeds common to Scotland. Part II. Fucus serratus, Fucus vesiculosus, Fucus spiralis and Pelvetia canaliculata. J. Soc. Chem. Ind. 1949, 68, 183.
Seasonal variation in chemical composition of some of the littoral seaweeds common to Scotland. Part II. Fucus serratus, Fucus vesiculosus, Fucus spiralis and Pelvetia canaliculata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXks1yjtA%3D%3D&md5=56d9bdab0742baec4e3796ac89cfbbe6CAS |

[51]  W. A. P. Black, The seasonal variation in chemical constitution of some of the sub-littoral seaweeds common to Scotland. Part II. Laminaria digitata. J. Soc. Chem. Ind. 1948, 67, 169.
The seasonal variation in chemical constitution of some of the sub-littoral seaweeds common to Scotland. Part II. Laminaria digitata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXptlU%3D&md5=0550df6e077b11f0243eddd9fa48cd19CAS |

[52]  R. W. Taft, Separation of Polar, Steric and Resonance Effects in Reactivity 1956 (Wiley: New York).

[53]  C. Hansch, A. Leo, R. W. Taft, A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165.
A survey of Hammett substituent constants and resonance and field parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1ehsLo%3D&md5=5c1f3bbe1f238860ce5c0b31a0ce6598CAS |

[54]  R. P. Schwarzenbach, P. M. Gschweno, D. M. Imboden, Environmental Organic Chemistry 1993 (Wiley: New York).

[55]  R. W. Taft, Linear free-energy relationships from rates of esterification and hydrolysis of aliphatic and ortho-substituted benzoate esters. J. Am. Chem. Soc. 1952, 74, 2729.
Linear free-energy relationships from rates of esterification and hydrolysis of aliphatic and ortho-substituted benzoate esters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38Xls1CnsQ%3D%3D&md5=043aa67f7633721ee18779ec60be7a56CAS |

[56]  V. Glezer, B. Harris, N. Tal, B. Iosefzon, O. Lev, Hydrolysis of haloacetonitriles: linear free-energy relationships, kinetics and products. Water Res. 1999, 33, 1938.
Hydrolysis of haloacetonitriles: linear free-energy relationships, kinetics and products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFKmurc%3D&md5=e09d20e1912a5df4a8da7819f420badaCAS |

[57]  M. DeNiro, S. Epstein, Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 1977, 197, 261.
Mechanism of carbon isotope fractionation associated with lipid synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkvVWjsLo%3D&md5=f174d3ea2b273dda5247612c2da57164CAS | 327543PubMed |

[58]  M. H. O’Leary, Carbon isotope fractionation in plants. Phytochemistry 1981, 20, 553.
Carbon isotope fractionation in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXltFWlsLY%3D&md5=ba2d6bb060f3d17ce2497bbd4d9c569aCAS |

[59]  E. M. Hodnett, R. L. Rowton, 14C-isotope effects in the decarboxylation of 2-benzoylpropionic acid, in Radioisotopes in the Physical Science and Industry 1962, pp. 225–234 (International Atomic Energy Agency: Vienna, Austria).

[60]  P. E. Yankwich, A. L. Promislow, R. F. Nystrom, 14C and 13C intramolecular isotope effects in the decarboxylation of liquid malonic acid at 140.5°. J. Am. Chem. Soc. 1954, 76, 5893.
14C and 13C intramolecular isotope effects in the decarboxylation of liquid malonic acid at 140.5°.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2MXltF2gtA%3D%3D&md5=42be48c1c1efd1f4860fc03ac685f1c8CAS |

[61]  M. J. Stern, P. C. Vogel, Relative 14C–13C kinetic isotope effects. J. Chem. Phys. 1971, 55, 2007.
Relative 14C–13C kinetic isotope effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXltVWltLY%3D&md5=fc3fe698dca93c38f3af83abaacf123fCAS |

[62]  P. B. Kokil, A. Fry, Isotope effects and mechanism in the bromination of alpha- and beta-carbon-14 labeled 4-nitro-4′-methylstilbenes. Tetrahedron Lett. 1986, 27, 5051.
Isotope effects and mechanism in the bromination of alpha- and beta-carbon-14 labeled 4-nitro-4′-methylstilbenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkslOjtrs%3D&md5=a7b85dfca5882ab5f7da444500485cc7CAS |

[63]  X. Zhang, R. A. Minear, Decomposition of trihaloacetic acids and formation of the corresponding trihalomethanes in drinking water. Water Res. 2002, 36, 3665.
Decomposition of trihaloacetic acids and formation of the corresponding trihalomethanes in drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFOmu7c%3D&md5=bf246ec32b29c27688a7c5443d292766CAS | 12230213PubMed |

[64]  J. Hine, N. W. Burske, M. Hine, P. B. Langford, The relative rates of formation of carbanions by haloforms. J. Am. Chem. Soc. 1957, 79, 1406.
The relative rates of formation of carbanions by haloforms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXls1CgtQ%3D%3D&md5=496e304501f650808a25a8432d60b350CAS |

[65]  B. A. Bergamaschi, M. S. Fram, R. Fujii, G. R. Aiken, C. Kendall, S. R. Silva, in Proceedings of the Technical Meeting, Charleston South Carolina 1999 (Charleston).

[66]  B. A. Bergamaschi, M. S. Fram, R. Fujii, G. R. Aiken, C. Kendall, S. R. Silva, The carbon isotopic composition of trihalomethanes formed from chemically distinct dissolved organic carbon isolates from the Sacramento–San Joaquin River Delta, California, USA, in US Geological Survey Toxic Substances Hydrology Program – Proceedings of the Technical Meeting, Volume 2 – Contamination of Hydrologic Systems and Related Ecosystems, Water-Resources Investigation Report 99-4018BA, 8–12 March 1999, Charleston, SC, USA 1999 (US Geological Survey: Charleston, SC). Available at http://toxics.usgs.gov/pubs/wri99-4018/Volume2/sectionA/2212_Bergamaschl/pdf/2212_Berga.pdf [Verified 10 July 2015].

[67]  A. Orlikowska, C. Stolle, F. Pollehne, K. Juergens, D. E. Schulz-Bull, Dynamics of halocarbons in coastal surface waters during short term mesocosm experiments. Environ. Chem. 2015, 12, 515.
Dynamics of halocarbons in coastal surface waters during short term mesocosm experiments.Crossref | GoogleScholarGoogle Scholar |

[68]  D. Hunkeler, T. Laier, F. Breider, O. S. Jacobsen, Demonstrating a natural origin of chloroform in groundwater using stable carbon isotopes. Environ. Sci. Technol. 2012, 46, 6096.
Demonstrating a natural origin of chloroform in groundwater using stable carbon isotopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsVWgu7k%3D&md5=c54e6f036fa7b07f4bf8bbbebc805cb5CAS | 22554551PubMed |