Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Relationship of arsenic speciation and bioavailability in mine wastes for human health risk assessment

Violet Diacomanolis A , Barry N. Noller B , Raijeli Taga A B , Hugh H. Harris C , Jade B. Aitken D and Jack C. Ng A E F
+ Author Affiliations
- Author Affiliations

A The University of Queensland, National Research Centre for Environmental Toxicology, 39 Kessel Road, Coopers Plains, Brisbane, Qld 4018, Australia.

B The University of Queensland, Centre for Mined Land Rehabilitation, St Lucia, Brisbane, Qld 4072, Australia.

C Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia.

D School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.

E Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building University Drive, Callaghan, NSW 2308, Australia.

F Corresponding author. Email: j.ng@uq.edu.au

Environmental Chemistry 13(4) 641-655 https://doi.org/10.1071/EN14152
Submitted: 14 January 2015  Accepted: 22 June 2015   Published: 18 December 2015

Environmental context. X-ray absorption near-edge spectroscopy (XANES) was applied to give arsenic chemical forms directly in the solid phase of mine wastes from two mine sites, including fluvial dispersion. The arsenic speciation data explained the variation of in vitro bioaccessibility and in vivo bioavailability (rat uptake) data of the mine wastes. The As speciation from XANES fitting supported the hypothesis that when soil intake is adjusted for bioaccessibility, the potential health risk estimate to local residents is significantly lower.

Abstract. X-ray absorption near-edge spectroscopy (XANES) was used for arsenic speciation in mine processing and waste samples from two mines in northern Australia. XANES fitting of model compound spectra to samples was used, in combination with in vitro bioaccessibility data for the pure compounds, to predict bioaccessibility of each mine waste sample (Pearson’s correlation R2 = 0.756, n = 51). The XANES fitting data for a smaller set of the samples (n = 12) were compared with in vivo bioavailability and in vitro bioaccessibility data. The bioavailability of arsenic (As) in the mine wastes, which is dependent, at least in part, on its oxidation state, was found to be <14 % (0.9–13.5 %) for arsenite (AsIII) and <17 % (3.5–16.4) for arsenate (AsV). Arsenic bioaccessibility in the mine wastes ranged from 8–36 % in the stomach to 1–16 % in the intestinal phase, indicating that a small portion of the total As concentration in the mine waste was available for absorption. A significant correlation showed that bioaccessibility can be used as a predictor of bioavailability. The XANES results support that bioavailability and bioaccessibility results were very similar and show a strong association with the presence of ferric arsenate and As sulfides. It can be concluded that, when soil intake is adjusted for bioaccessibility, the potential health risk estimate to local residents exposed to the mine waste was significantly lower than that estimated based on a 100 % bioavailability often employed for the risk assessment.

Additional keywords: bioaccessibility, health investigation levels, tier-two risk assessment, XANES.


References

[1]  Enduring Value, The Australia Minerals Industry Framework for Sustainable Development 2005 (Minerals Council of Australia, Canberra). Available at http://www.minerals.org.au/file_upload/files/resources/enduring_value/EV_GuidanceForImplementation_July2005.pdf [Verified 3 November 2015].

[2]  Guideline on Health-based investigation levels. Schedule B7, in National Environment Protection (Assessment of Site Contamination) Measure. – Guideline on Investigation Levels for Soil and Groundwater 2013 (National Environmental Protection Council: Canberra) pp. 10–11. Available at http://www.scew.gov.au/nepms/assessment-of-site-contamination.html [Verified 3 November 2015].

[3]  D. Paktunc, A. Foster, S. Heald, G. Laflamme, Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 2004, 68, 969.
Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVCgtr8%3D&md5=9732bdfada9a58208a8f31016722267aCAS |

[4]  D. Paktunc, A. Foster, G. Laflamme, Speciation and characterization of arsenic in Ketza River mine tailings using X-ray absorption spectroscopy. Environ. Sci. Technol. 2003, 37, 2067.
Speciation and characterization of arsenic in Ketza River mine tailings using X-ray absorption spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1KgtLw%3D&md5=146c638098ce0e80082d64cf20f1aa49CAS | 12785509PubMed |

[5]  P. G. Smith, I. Koch, R. A. Gordon, D. F. Mandoli, B. D. Chapman, K. J. Reimer, X-ray absorption near-edge structure analysis of arsenic species for application to biological environmental samples. Environ. Sci. Technol. 2005, 39, 248.
X-ray absorption near-edge structure analysis of arsenic species for application to biological environmental samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvVGgsrk%3D&md5=56b0b8e320c41cdf398e1881c017867fCAS | 15667101PubMed |

[6]  Y. Takahashi, N. Ohtaku, S. Mitsunobu, K. Yuita, M. Nomura, Determination of the AsIII/AsV ratio in soil by X-ray absorption near-edge structure (XANES) and its application to the arsenic distribution between soil and water. Anal. Sci. 2003, 19, 891.
Determination of the AsIII/AsV ratio in soil by X-ray absorption near-edge structure (XANES) and its application to the arsenic distribution between soil and water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslOku7k%3D&md5=fe283ce0a7235e75d275c40acb32d482CAS | 12834230PubMed |

[7]  S. M. Webb, J. F. Gaillard, L. Q. Ma, C. Tu, XAS speciation of arsenic in a hyperaccumulating fern. Environ. Sci. Technol. 2003, 37, 754.
XAS speciation of arsenic in a hyperaccumulating fern.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFertA%3D%3D&md5=df84a6cb94f536d5f026674f120cbe59CAS | 12636275PubMed |

[8]  V. P. Matanitobua, B. N. Noller, B. Chiswell, J. C. Ng, S. L. Bruce, D. Huang, M. Riley, H. H. Harris, Using synchrotron-based X-ray absorption spectrometry to identify the arsenic chemical forms in mine waste materials, in AIP Conference Proceedings, Synchrotron Radiation Instrumentation: Ninth International Conference on Synchrotron Radiation Instrumentation; 2006, Daegu, Korea (Eds J. Y. Choi and S. Rah) 2007 (American Institute of Physics). Available at http://link.aip.org/link/?APCPCS/879/1845/1 [Verified 3 November 2015].

[9]  S. Bruce, B. Noller, V. Matanitobua, J. Ng, In vitro physiologically based extraction test (PBET) and bioaccessibility of arsenic and lead from various mine waste materials. J. Toxicol. Environ. Health A 2007, 70, 1700.
In vitro physiologically based extraction test (PBET) and bioaccessibility of arsenic and lead from various mine waste materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXps1Gluro%3D&md5=4f71458fda08590e6c77aad7cdc4f25cCAS | 17763089PubMed |

[10]  E. Deshommes, R. Tardif, M. Edwards, S. Sauve, M. Prevost, Experimental determination of the oral bioavailability and bioaccessibility of lead particles. Chem. Cent. J. 2012, 6, 138.
Experimental determination of the oral bioavailability and bioaccessibility of lead particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivVens7Y%3D&md5=64f0e407e63be4873b8a6f948cfff828CAS | 23173867PubMed |

[11]  P. E. Rasmussen, S. Beauchemin, M. Chénier, C. Levesque, L. C. W. MacLean, L. Marro, H. Jones-Otazo, S. Petrovic, L. T. McDonald, H. D. Gardner, Canadian house dust study: lead bioaccessibility and speciation. Environ. Sci. Technol. 2011, 45, 4959.
Canadian house dust study: lead bioaccessibility and speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVCms7g%3D&md5=cb678b9d1869df72327484221e57bc92CAS | 21563758PubMed |

[12]  L. C. W. MacLean, S. Beauchemin, P. E. Rasmussen, Lead speciation in house dust from Canadian urban homes using EXAFS, micro-XRF, and micro-XRD. Environ. Sci. Technol. 2011, 45, 5491.
Lead speciation in house dust from Canadian urban homes using EXAFS, micro-XRF, and micro-XRD.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFyitbg%3D&md5=af5f35a2a11e09101434c9daa4e25db5CAS |

[13]  V. Diacomanolis, R. Haymont, J. C. Ng, B. N. Noller, Development of site-specific guidelines for future land use at the Woodcutters lead zinc mine, in 19th World Congress of Soil Science: Soil Solutions for a Changing World, 1–6 August 2010, Brisbane, Qld (Eds R Gilkes, N Prakongkep) 2010, paper 1331 (On DVD) (International Union of Soil Sciences).

[14]  Analysis of soils – extraction of heavy metals and metalloids from soil by aqua regia – hotplate digestion method – AS 4479.2-1997 1997 (Standards Association of Australia, Sydney, NSW).

[15]  M. J. Duggan, M. J. Inskip, S. A. Rundle, J. S. Moorcroft, Lead in playground dust and on the hands of schoolchildren. Sci. Total Environ. 1985, 44, 65.
Lead in playground dust and on the hands of schoolchildren.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M3nt1GntQ%3D%3D&md5=1f5644d9457deb8c4673dfebb1fd9147CAS | 4023696PubMed |

[16]  J. C. Ng, A. L. Juhasz, E. Smith, R. Naidu, Contaminant Bioavailability and Bioaccessibility Part 2: Guidance for Industry. Technical Report number 14 2009 (CRC for Contamination Assessment and Remediation of the Environment Pty Ltd: Adelaide, SA).

[17]  7500 ICP-MS Chemstation and Instrument Training. Course number H8974A. 2003 (Agilent Technologies: Tokyo, Japan).

[18]  G. N. George, I. J. Pickering, EXAFSPAK: A Suite of Computer Programs for Analysis of X-Ray Absorption Spectra 2000 (Stanford Synchrotron Radiation Laboratory: Stanford, CA).

[19]  A. Schutz, I. A. Bergdahl, A. Ekholm, S. Skerfving, Measurement by ICP-MS of lead in plasma and whole blood of lead workers and controls. Occup. Environ. Med. 1996, 53, 736.
Measurement by ICP-MS of lead in plasma and whole blood of lead workers and controls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXosV2n&md5=11cd89357e84abdb3ef65d47cbdb6024CAS | 9038796PubMed |

[20]  Agilent Technologies, Application Handbook for Agilent 7500CS ICP-MS 2000 (Agilent Technologies: Tokyo, Japan).

[21]  I. De Blas Bravo, R. Sanz Castro, N. L. Riquelme, C. T. Díaz, D. A. Goyenaga, Optimization the trace element determined by ICP-MS in human blood serum. J. Trace Elem. Med. Biol. 2007, 21, 14.
Optimization the trace element determined by ICP-MS in human blood serum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVCkuro%3D&md5=795be5b1d4bd2d017e294fca0af08815CAS | 18039488PubMed |

[22]  M. Ruby, A. Davis, R. School, S. Eberle, C. Sellstone, Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ. Sci. Technol. 1996, 30, 422.
Estimation of lead and arsenic bioavailability using a physiologically based extraction test.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtFWitQ%3D%3D&md5=164a8a12295002a66172672118ea6e7aCAS |

[23]  Y. Zhang, M. Huo, J. Zhou, S. Xie, PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Meth. Prog. Biol. 2010, 99, 306.
PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel.Crossref | GoogleScholarGoogle Scholar |

[24]  J. Ng, A. Juhasz, E. Smith, R. Naidu, Assessing bioavailability and bioaccessibility of metals and metalloids. Environ. Sci. Pollut. Res. 2015, 22, 8802.
Assessing bioavailability and bioaccessibility of metals and metalloids.Crossref | GoogleScholarGoogle Scholar |

[25]  H. A. Elliott, M. R. Liberati, C. P. Huang, Competitive adsorption of heavy metals by soils. J. Environ. Qual. 1986, 15, 214.
Competitive adsorption of heavy metals by soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltVSlurc%3D&md5=afee4867e0470dc4ed6d081544339dd9CAS |

[26]  D. L. Sparks, Environmental Soil Chemistry 1995 (Elsevier Inc.: San Diego, CA).

[27]  B. C. Bostick, S. Fendorf, G. R. Helz, Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2). Environ. Sci. Technol. 2003, 37, 285.
Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1Cmurs%3D&md5=a1fef03335c9d1d3f0b237c9ebfd1ed5CAS | 12564899PubMed |

[28]  V. P. Matanitobua, Arsenic Speciation of Mine wastes for Risk Assessment 2007, Ph.D. thesis, The University of Queensland, Brisbane, Qld.

[29]  D. Langmuir, J. Mahoney, A. MacDonald, J. Rowson, Predicting arsenic concentrations in the porewaters of buried uranium mill tailings. Geochim. Cosmochim. Acta 1999, 63, 3379.
Predicting arsenic concentrations in the porewaters of buried uranium mill tailings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVCksLc%3D&md5=0f5971624ade17124bba172e7528509bCAS |

[30]  D. Paktunc, K. Bruggeman, Solubility of nanocrystalline scorodite and amorphous ferric arsenate: implications for stabilization of arsenic in mine wastes. Appl. Geochem. 2010, 25, 674.
Solubility of nanocrystalline scorodite and amorphous ferric arsenate: implications for stabilization of arsenic in mine wastes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFCgsL0%3D&md5=8b5c2bf996605c8ed8b62f2935b59effCAS |

[31]  P. Drahota, M. Filippi, Secondary arsenic minerals in the environment: a review. Environ. Int. 2009, 35, 1243.
Secondary arsenic minerals in the environment: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2lu7zF&md5=2c1b82b50939de6c74c9b3f6ddd39217CAS | 19665230PubMed |

[32]  M. Vahter, E. Marafante, L. Dencker, Metabolism of arsenobetaine in mice, rats and rabbits. Sci. Total Environ. 1983, 30, 197.
Metabolism of arsenobetaine in mice, rats and rabbits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvV2htr0%3D&md5=2383ff2d9b446a0a98f02a9ebda17556CAS | 6648507PubMed |

[33]  Y. L. Cheng, J. E. Preslan, M. B. Anderson, W. J. George, Solubility and bioavailability of lead following oral ingestion of vitrified slagged aggregate. J. Hazard. Mater. 1991, 27, 137.
Solubility and bioavailability of lead following oral ingestion of vitrified slagged aggregate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlslKrtbg%3D&md5=2c40377f1ac83651fa0b9427c35f13d6CAS |

[34]  J. C. Ng, S. M. Kratzmann, L. X. Qi, H. Crawley, B. Chiswell, M. R. Moore, Speciation and absolute bioavailability: risk assessment of arsenic-contaminated sites in a residential suburb in Canberra. Analyst (Lond.) 1998, 123, 889.
Speciation and absolute bioavailability: risk assessment of arsenic-contaminated sites in a residential suburb in Canberra.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXislykurg%3D&md5=a7160e0150058463193fc87d297e1593CAS |

[35]  J. C. Ng, M. R. Moore, Bioavailability of arsenic in soil from contaminated sites using a 96-hour rat blood model, in The Health Risk Assessment and Management of Contaminated Sites. number 5. Adelaide, Australia. Contaminated Sites Monograph Series (Eds A. Langley, B. Markey, H. Hill) 1996, pp. 355–363 (Springer: Rotterdam, Netherlands).

[36]  S. W. Casteel, R. P. Cowart, C. P. Weis, G. M. Henningsen, E. Hoffman, W. J. Brattin, R. E. Guzman, M. F. Starost, J. T. Payne, S. L. Stockham, S. V. Becker, J. W. Drexler, J. R. Turk, Bioavailability of lead to juvenile swine dosed with soil from the smuggler mountain NPL site of Aspen, Colorado. Fundam. Appl. Toxicol. 1997, 36, 177.
Bioavailability of lead to juvenile swine dosed with soil from the smuggler mountain NPL site of Aspen, Colorado.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1ejtLw%3D&md5=976d89148d745261a31b94402c3a5cacCAS | 9143487PubMed |

[37]  G. B. Freeman, R. A. Schoof, M. V. Ruby, A. O. Davis, J. A. Dill, S. C. Liao, C. A. Lapin, P. D. Bergstrom, Bioavailability of arsenic in soil and house dust impacted by smelter activities following oral administration in cynomolgus monkeys. Fundam. Appl. Toxicol. 1995, 28, 215.
Bioavailability of arsenic in soil and house dust impacted by smelter activities following oral administration in cynomolgus monkeys.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVOqsw%3D%3D&md5=95a7feb1150a87add291e11426bd48f5CAS | 8835231PubMed |

[38]  K. Groen, H. A. Vaessen, J. J. Kliest, J. L. de Boer, T. van Ooik, A. Timmerman, R. F. Vlug, Bioavailability of inorganic arsenic from bog ore-containing soil in the dog. Environ. Health Perspect. 1994, 102, 182.
Bioavailability of inorganic arsenic from bog ore-containing soil in the dog.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvVKns7c%3D&md5=571a9f494696e55caa5dcceb5d54cf8eCAS | 8033848PubMed |

[39]  A. L. Juhasz, E. Smith, J. Weber, R. Naidu, M. Rees, A. Rofe, T. Kuchel, L. Sansom, Effect of soil ageing on in vivo arsenic bioavailability in two dissimilar soils. Chemosphere 2008, 71, 2180.
Effect of soil ageing on in vivo arsenic bioavailability in two dissimilar soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVCnsbw%3D&md5=76b97b2268792202df81d8f05213ec0eCAS | 18267324PubMed |

[40]  A. L. Juhasz, E. Smith, J. Weber, M. Rees, A. Rofe, T. Kuchel, L. Sansom, R. Naidu, In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environ. Health Perspect. 2006, 114, 1826.
| 1:CAS:528:DC%2BD2sXisFClsw%3D%3D&md5=45f4b361da4e55086586c5257a84e190CAS | 17185270PubMed |

[41]  A. L. Juhasz, E. Smith, J. Weber, M. Rees, A. Rofe, T. Kuchel, L. Sansom, R. Naidu, Application of an in vivo swine model for the determination of arsenic bioavailability in contaminated vegetables. Chemosphere 2008, 71, 1963.
Application of an in vivo swine model for the determination of arsenic bioavailability in contaminated vegetables.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFGntbY%3D&md5=537241fce6145ed9379f32199a2a8cadCAS | 18262220PubMed |

[42]  M. Rees, L. Sansom, A. Rofe, A. L. Juhasz, E. Smith, J. Weber, R. Naidu, T. Kuchel, Principles and application of an in vivo swine assay for the determination of arsenic bioavailability in contaminated matrices. Environ. Geochem. Health 2009, 31, 167.
Principles and application of an in vivo swine assay for the determination of arsenic bioavailability in contaminated matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslSns7w%3D&md5=6d4131a3a40244fb51df033720f8828dCAS | 19105032PubMed |

[43]  S. M. Roberts, J. W. Munson, Y. W. Lowney, M. V. Ruby, Relative oral bioavailability of arsenic from contaminated soils measured in the cynomolgus monkey. J. Toxicol. Sci. 2007, 95, 281.
Relative oral bioavailability of arsenic from contaminated soils measured in the cynomolgus monkey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlChtLjL&md5=d64a56feb687bc8647b2cdf69ef3671dCAS |

[44]  S. M. Roberts, W. R. Weimar, J. R. Vinson, J. W. Munson, R. J. Bergeron, Measurement of arsenic bioavailability in soil using a primate model. J. Toxicol. Sci. 2002, 67, 303.
Measurement of arsenic bioavailability in soil using a primate model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xkt1Slu7w%3D&md5=e1b3f5381abec4922216831f2c4b328dCAS |

[45]  Estimation of Relative Bioavailability of Lead in Soil and Soil-Like Material Using In Vivo and In Vitro Methods 2007 (US Environmental Protection Agency, Exposure Assessment Group: Washington, DC).

[46]  J. K. Yang, M. O. Barnett, J. Zhuang, S. E. Fendorf, P. M. Jardine, Adsorption, oxidation, and bioaccessibility of AsIII in soils. Environ. Sci. Technol. 2005, 39, 7102.
Adsorption, oxidation, and bioaccessibility of AsIII in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXns1aiurk%3D&md5=51a22597c1e6406d963322d0d7daa0adCAS | 16201635PubMed |

[47]  J. Ryan, K. Scheckel, W. Berti, S. Brown, S. Casteel, R. Chaney, J. Hallfrisch, M. Doolan, P. Grevatt, M. Maddaloni, D. Mosby, Reducing children’s risk from lead in soil. Environ. Sci. Technol. 2004, 38, 18A.
Reducing children’s risk from lead in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlah&md5=36a29dc0d9f23e3edec380878568c345CAS | 14740710PubMed |

[48]  S. A. Lerman, T. W. Clarkson, The metabolism of arsenite and arsenate by the rat. Toxicol. Sci. 1983, 3, 309.
The metabolism of arsenite and arsenate by the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlslSqs70%3D&md5=3f8483040bd75bb288a551a70506fc69CAS |

[49]  H. Naranmandura, N. Bu, K. T. Suzuki, Y. Lou, Y. Ogra, Distribution and speciation of arsenic after intravenous administration of monomethylmonothioarsonic acid in rats. Chemosphere 2010, 81, 206.
Distribution and speciation of arsenic after intravenous administration of monomethylmonothioarsonic acid in rats.Crossref | GoogleScholarGoogle Scholar | 20594576PubMed |

[50]  H. Naranmandura, N. Suzuki, K. Iwata, S. Hirano, T. Suzuki, Arsenic metabolism and thioarsenicals in hamsters and rats. Chem. Res. Toxicol. 2007, 20, 616.
Arsenic metabolism and thioarsenicals in hamsters and rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlCltbw%3D&md5=539cc426f79d44968c4c84927ee9dee1CAS | 17381137PubMed |

[51]  Y. Shiobara, Y. Ogra, K. T. Suzuki, Animal species difference in the uptake of dimethylarsinous acid (DMA(III)) by red blood cells. Chem. Res. Toxicol. 2001, 14, 1446.
Animal species difference in the uptake of dimethylarsinous acid (DMA(III)) by red blood cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtlKnu7g%3D&md5=495214abe0545750ffe0fb504fe9865bCAS | 11599937PubMed |

[52]  K. T. Suzuki, A. Katagiri, Y. Sakuma, Y. Ogra, M. Ohmichi, Distributions and chemical forms of arsenic after intravenous administration of dimethylarsinic and monomethylarsonic acids to rats. Toxicol. Appl. Pharmacol. 2004, 198, 336.
Distributions and chemical forms of arsenic after intravenous administration of dimethylarsinic and monomethylarsonic acids to rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVaiurc%3D&md5=f0fcc4b249fc425cc3652fb9fba67008CAS | 15276413PubMed |

[53]  K. T. Suzuki, T. Tomita, Y. Ogra, M. Ohmichi, Glutathione-conjugated arsenics in the potential hepato-enteric circulation in rats. Chem. Res. Toxicol. 2001, 14, 1604.
Glutathione-conjugated arsenics in the potential hepato-enteric circulation in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosFOqtLk%3D&md5=a7d071da7e9e54f39d036d5afc21ab73CAS | 11743743PubMed |

[54]  Monographs on the Evaluation of Carcinogenic Risks to Human: Some Drinking-Water Disinfectants and Contaminants, Including Arsenic, 84 2004 (International Agency for Research on Cancer, World Health Organization: Geneva, Switzerland).

[55]  V. Diacomanolis, J. C. Ng, B. N. Noller, Development of mine site close-out criteria for arsenic and lead using a health risk approach, in Mine Closure 2007. Proceedings of the Second International Seminar on Mine Closure 2007, 16–19 October 2007, Santiago, Chile (Eds A. Fourie, M. Tibbett and J. Wiertz) 2007, pp 191–198 (Australian Centre for Geomechanics: Perth, WA).

[56]  B. A. Owen, Literature-derived absorption coefficients for 39 chemicals via oral and inhalation routes of exposure. Regul. Toxicol. Pharmacol. 1990, 11, 237.
Literature-derived absorption coefficients for 39 chemicals via oral and inhalation routes of exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvVKis70%3D&md5=4a6615b4b2fe25c8723dd11150ca411fCAS | 2196635PubMed |

[57]  G. B. Freeman, J. D. Johnson, J. M. Killinger, S. C. Liao, A. O. Davis, M. V. Ruby, R. L. Chaney, S. C. Lovre, P. D. Bergstrom, Bioavailability of arsenic in soil impacted by smelter activities following oral administration in rabbits. Fundam. Appl. Toxicol. 1993, 21, 83.
Bioavailability of arsenic in soil impacted by smelter activities following oral administration in rabbits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsFemu7g%3D&md5=061763b4cf09d1ba8439b7bdc9f0aa90CAS | 8365590PubMed |

[58]  S. L. Bruce, Development of a risk assessment tool to minimize the impact of arsenic and lead toxicity from mine tailing 2004, Ph.D. thesis, The University of Queensland, Brisbane, Qld.

[59]  A. L. Juhasz, E. Smith, J. Weber, M. Rees, A. Rofe, T. Kuchel, L. Sansom, R. Naidu, Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere 2007, 69, 961.
Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOgtrrK&md5=995aa918013374f9648e67a3d3e68b43CAS | 17585998PubMed |

[60]  M. Caetano, C. Vale, Retention of arsenic and phosphorus in iron-rich concretions of Tagus salt marshes. Mar. Chem. 2002, 79, 261.
Retention of arsenic and phosphorus in iron-rich concretions of Tagus salt marshes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFygtLw%3D&md5=45042a00f59535e7b1027f76d386a34fCAS |

[61]  X. Cao, L. Q. Ma, Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environ. Pollut. 2004, 132, 435.
Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFyltLs%3D&md5=1d2a8c367fe6b38d62510862e75d0808CAS | 15325459PubMed |

[62]  B. K. Mandal, K. T. Suzuki, Arsenic round the world: a review. Talanta 2002, 58, 201.
Arsenic round the world: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVGnsbg%3D&md5=cf87d63d1a62f760c9c057b76330b41fCAS | 18968746PubMed |

[63]  C. Tu, L. Q. Ma, W. Zhang, Y. Cai, W. G. Harris, Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.). Environ. Pollut. 2003, 124, 223.
Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFWls7s%3D&md5=3fbb70de8a781e022e554abf884debfaCAS | 12713922PubMed |

[64]  G. P. Warren, B. J. Alloway, N. W. Lepp, B. Singh, F. J. Bochereau, C. Penny, Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Sci. Total Environ. 2003, 311, 19.
Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVWjur4%3D&md5=bd5751b4ea7ad3be8a6518b286c1c1abCAS | 12826380PubMed |

[65]  J. R. Hale, A. Foos, J. S. Zubrow, J. Cook, Better characterization of arsenic and chromium in soils: a field‐scale example. J. Soil Contam. 1997, 6, 371.
Better characterization of arsenic and chromium in soils: a field‐scale example.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVGhsb4%3D&md5=8f03c49f864e8eb4c185d14ad40fcd8fCAS |

[66]  D. E. Voigt, S. L. Brantley, R. J. C. Hennet, Chemical fixation of arsenic in contaminated soils. Appl. Geochem. 1996, 11, 633.
Chemical fixation of arsenic in contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsFamt7w%3D&md5=5191a1991883a7dc1fac7f883b1eb06eCAS |

[67]  M. Bauer, C. Blodau, Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Sci. Total Environ. 2006, 354, 179.
Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVCntQ%3D%3D&md5=8b1e11558e22bc00e20610f6e90bc72bCAS | 16398994PubMed |

[68]  H. M. Anawar, J. Akai, K. Komaki, H. Terao, T. Yoshioka, T. Ishizuka, S. Safiullah, K. Kato, Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. J. Geochem. Explor. 2003, 77, 109.
Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Wms7c%3D&md5=feef7f2361a94e0df71f4b1c622b6848CAS |

[69]  K. Kalbitz, R. Wennrich, Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Sci. Total Environ. 1998, 209, 27.
Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXos1KjtA%3D%3D&md5=43b709ca629ee0b9ab83a6dada418887CAS | 9496662PubMed |

[70]  A. D. Redman, D. L. Macalady, D. Ahmann, Natural organic matter affects arsenic speciation and sorption onto hematite. Environ. Sci. Technol. 2002, 36, 2889.
Natural organic matter affects arsenic speciation and sorption onto hematite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFyktLs%3D&md5=5140802892e73dc064bf93a472dc8a74CAS | 12144264PubMed |

[71]  M. Grafe, M. J. Eick, P. R. Grossl, Adsorption of arsenate(V) and arsenite(III) on goethite in the presence and absence of dissolved organic carbon. Soil Sci. Soc. Am. J. 2001, 65, 1680.
Adsorption of arsenate(V) and arsenite(III) on goethite in the presence and absence of dissolved organic carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Smuro%3D&md5=59c3e46fede078f20c0dc875ee843d89CAS |

[72]  M. Grafe, M. J. Eick, P. R. Grossl, A. M. Saunders, Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon. J. Environ. Qual. 2002, 31, 1115.
Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslOmsLk%3D&md5=6074ea28d492de5e166d11532021a3e8CAS | 12175028PubMed |

[73]  M. A. Simeoni, B. D. Batts, C. McRae, Effect of groundwater fulvic acid on the adsorption of arsenate by ferrihydrite and gibbsite. Appl. Geochem. 2003, 18, 1507.
Effect of groundwater fulvic acid on the adsorption of arsenate by ferrihydrite and gibbsite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltF2jtrY%3D&md5=bc8da605cb1263392b7a68257a4f7163CAS |

[74]  K. D. Bradham, K. G. Scheckel, C. M. Nelson, P. E. Seales, G. E. Lee, M. F. Hughes, B. W. Miller, A. Yeow, T. Gilmore, S. M. Serda, S. Harper, D. J. Thomas, Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils. Environ. Health Perspect. 2011, 119, 1629.
Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCrsLbL&md5=6686140d0c46e2f608372c870d7b3342CAS | 21749965PubMed |

[75]  R. Palumbo, B. Clinck, Bioaccessibility of arsenic in mine waste contaminated soil: a case study for an abandoned arsenic mine in SW England. J. Toxicol. Environ. Health A 2007, 42, 1251.

[76]  T. M. Williams, B. G. Rawlins, B. Smith, N. Breward, In vitro determination of arsenic bioavailability in contaminated soil and mineral beneficiation waste from Ron Phibun, southern Thailand: a basis for improved human risk assessment. Environ. Geochem. Health 1998, 20, 169.
In vitro determination of arsenic bioavailability in contaminated soil and mineral beneficiation waste from Ron Phibun, southern Thailand: a basis for improved human risk assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlejsLk%3D&md5=0c5588e9f1a3bee0b5170f07a6867ccdCAS |

[77]  J. Wragg, M. Cave, P. Nathanail, A study of the relationship between arsenic bioaccessibility and its solid-phase distribution in soils from Wellingborough, UK. J. Environ. Sci. Health A 2007, 42, 1303.
A study of the relationship between arsenic bioaccessibility and its solid-phase distribution in soils from Wellingborough, UK.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFahsbk%3D&md5=3845fd14f3f27d742dbb669e988801bdCAS |

[78]  L. Carrizales, I. Razo, J. I. Tellez-Hernandez, R. Torres-Nerio, A. Torres, L. E. Batres, A. C. Cubillas, F. Díaz-Barriga, Exposure to arsenic and lead of children living near a copper smelter in San Luis Potosi, Mexico: importance of soil contamination for exposure of children. Environ. Res. 2006, 101, 1.
Exposure to arsenic and lead of children living near a copper smelter in San Luis Potosi, Mexico: importance of soil contamination for exposure of children.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1Wqurw%3D&md5=3434070e61f8b9c8fad8c7121aef5f00CAS | 16171795PubMed |

[79]  D. Rai, J. M. Zachara, Chemical Attenuation Rates, Coefficients, and Constants in Leachate Migration. Contract EA-3356, Vol. 1 1984 (Electric Power Research Institute: Richland, WA, USA).

[80]  A. L. Juhasz, J. Weber, E. Smith, R. Naidu, M. Rees, A. Rofe, T. Kuchel, L. Sansom, Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils. Environ. Sci. Technol. 2009, 43, 9487.
Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtl2qu77O&md5=488381fb62c87d0bb4024b8c42b82000CAS | 20000545PubMed |

[81]  N. T. Basta, J. N. Foster, E. A. Dayton, R. R. Rodriguez, S. W. Casteel, The effect of dosing vehicle on arsenic bioaccessibility in smelter contaminated soils. J. Environ. Sci. Health A 2007, 42, 1275.
The effect of dosing vehicle on arsenic bioaccessibility in smelter contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFahtrg%3D&md5=ec064d990f5836ae050b6b23656f9a16CAS |

[82]  R. R. Rodriguez, N. T. Basta, S. W. Casteel, L. W. Pace, An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environ. Sci. Technol. 1999, 33, 642.
An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXosFak&md5=cc33c20d8a15c37ac9f2b179373cee87CAS |

[83]  N. M. Levy, M. B. Koeppen, A. B. Stanton, Principles of Physiology, Digestion and Absorption, 4th edn 2006 (Elsevier: Philadelphia, PA, USA).

[84]  V. Diacomanolis, B. Noller, J. Ng, Interaction effects of lead on bioavailability and pharmacokinetics of arsenic in the rat. Environ. Geochem. Health 2013, 35, 757.
Interaction effects of lead on bioavailability and pharmacokinetics of arsenic in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Oqt7rO&md5=641a3e4adc8a8f35255826b62df85202CAS | 23728997PubMed |