Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Seasonal distributions and sources of low molecular weight dicarboxylic acids, ω-oxocarboxylic acids, pyruvic acid, α-dicarbonyls and fatty acids in ambient aerosols from subtropical Okinawa in the western Pacific Rim

Bhagawati Kunwar A B and Kimitaka Kawamura A C
+ Author Affiliations
- Author Affiliations

A Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, Japan.

B Graduate School of Environmental Science, Hokkaido University, N11 W5, Kita-ku, Sapporo, Japan.

C Corresponding author. Email: kawamura@lowtem.hokudai.ac.jp

Environmental Chemistry 11(6) 673-689 https://doi.org/10.1071/EN14097
Submitted: 9 May 2014  Accepted: 23 July 2014   Published: 10 November 2014

Environmental context. Water-soluble dicarboxylic acids and related compounds are ubiquitous in atmospheric aerosols. They are abundantly emitted from Asian countries and transported to the Pacific Ocean. During the long-range transport, photochemical processing modifies organic aerosols. We conducted a 1-year observation of diacids and related compounds at Okinawa Island, an outflow region of the Asian Continent, to clarify their sources and photochemical aging.

Abstract. Ambient aerosol samples were collected for 1 year at Okinawa Island, Japan, and were analysed for water-soluble dicarboxylic acids, oxoacids, α-dicarbonyls and fatty acids to better understand biogenic v. anthropogenic sources and the formation–transformation of organic aerosols during long-range atmospheric transport. Here, we report seasonal variations of diacids and related compounds in Okinawa. We found a predominance of oxalic acid (C2) followed by malonic (C3) and succinic (C4) acid. Total diacids and oxoacids maximised in spring when air masses originated from the Asian Continent with westerly winds. In contrast, phthalic acid (Ph), a tracer of anthropogenic sources, peaked in winter. We found an increased C3/C4 ratio in summer, suggesting an enhanced photochemical aging of organic aerosols. The average ratio of total diacid-C/total carbon (TC) (5.4 %) is higher than that (3.1 %) from the East China Sea, suggesting that Okinawa aerosols are more aged than East Asian aerosols but less aged compared to those from the remote Pacific including tropics (8.8 %). Biogenic short-chain fatty acids and azelaic acid (C9), the latter is a specific oxidation product of unsaturated fatty acids, maximised in summer, whereas higher plant-derived long-chain fatty acids maximised in spring. This study demonstrates that the ambient aerosols in Okinawa are strongly influenced by the Asian outflow in winter and spring and by biogenic organic matter in summer and spring. Enhanced contribution of oxalic acid to aerosol TC in spring suggests that Okinawa organic aerosols are mainly produced in East Asia and photochemically transformed during the transport.

Additional keywords: diacids, oxoacids, photochemical aging.


References

[1]  D. Grosjean, K. V. Cauwenberghe, J. P. Schmid, P. E. Kelly, J. N. Pitts, Identification of C3-C10 aliphatic dicarboxylic acids in airborne particulate matter. Environ. Sci. Technol. 1978, 12, 313.
Identification of C3-C10 aliphatic dicarboxylic acids in airborne particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhsFOlt7Y%3D&md5=f288b2807060d73852acdacc94c07ec2CAS |

[2]  K. Kawamura, K. Ikushima, Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ. Sci. Technol. 1993, 27, 2227.
Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsVGnt78%3D&md5=4ce4a894c57b27aec996d005971ef7d7CAS |

[3]  W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, B. R. T. Simoneit, Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmos. Environ. A 1993, 27, 1309.
Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation.Crossref | GoogleScholarGoogle Scholar |

[4]  K. Kawamura, O. Yasui, Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmos. Environ. 2005, 39, 1945.
Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlSlu78%3D&md5=1cf947153286be135fc09bdde6e1f136CAS |

[5]  N. K. Tran, S. M. Steinberg, B. J. Johnson, Volatile aromatic hydrocarbons and dicarboxylic acid concentrations in air at an urban site in the South western US. Atmos. Environ. 2000, 34, 1845.
Volatile aromatic hydrocarbons and dicarboxylic acid concentrations in air at an urban site in the South western US.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVWkurk%3D&md5=78b03ff2289cc2cef44b6210a6e3487eCAS |

[6]  V.-M. Kerminen, C. Ojanen, T. Pakkanen, R. Hillamo, M. Aurela, J. Merilainen, Low-molecular weight dicarboxylic acids in an urban and rural atmosphere. J. Aerosol Sci. 2000, 31, 349.
Low-molecular weight dicarboxylic acids in an urban and rural atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslKgurY%3D&md5=9e43bf634232f165e1a72650937cf0baCAS |

[7]  A. Limbeck, H. Puxbaum, L. Otter, M. C. Scholes, Semivolatile behavior of dicarboxylic acids and other polar organic species at a rural background site (Nylsvley, RSA). Atmos. Environ. 2001, 35, 1853.
Semivolatile behavior of dicarboxylic acids and other polar organic species at a rural background site (Nylsvley, RSA).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1yqu7Y%3D&md5=6d1380e3bdb09dd883b445e3d5b23b9dCAS |

[8]  M. Legrand, S. Preunkert, T. Oliveira, C. A. Pio, S. Hammer, A. Gelencsér, A. Kasper-Giebl, P. Laj, Origin of C2-C5 dicarboxylic acids in the European atmosphere inferred from year-around aerosol study conducted at a west-east transect. J. Geophys. Res. 2007, 112, D23S07.
Origin of C2-C5 dicarboxylic acids in the European atmosphere inferred from year-around aerosol study conducted at a west-east transect.Crossref | GoogleScholarGoogle Scholar |

[9]  K. Kawamura, F. Sakaguchi, Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropic. J. Geophys. Res. 1999, 104, 3501.
Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFWjs7o%3D&md5=7ad8e01173e73a731b515cc6ca9cc6abCAS |

[10]  M. Mochida, A. Kawabata, K. Kawamura, H. Hatsushika, K. Yamazaki, Seasonal variation and origins of dicarboxylic acids in the marine atmosphere over the western North Pacific. J. Geophys. Res. 2003, 108, 4193.
Seasonal variation and origins of dicarboxylic acids in the marine atmosphere over the western North Pacific.Crossref | GoogleScholarGoogle Scholar |

[11]  M. Mochida, K. Kawamura, N. Umemoto, M. Kobayashi, S. Matsunaga, H.-J. Lim, B. J. Turpin, T. S. Bates, B. R. T. Simoneit, Spatial distributions of oxygenated organic compounds (dicarboxylic acids, fatty acids, and levoglucosan) in marine aerosols over the western Pacific and off the coast of East Asia: continental outflow of organic aerosols during the ACE-Asia campaign. J. Geophys. Res. 2003, 108, 8638.
Spatial distributions of oxygenated organic compounds (dicarboxylic acids, fatty acids, and levoglucosan) in marine aerosols over the western Pacific and off the coast of East Asia: continental outflow of organic aerosols during the ACE-Asia campaign.Crossref | GoogleScholarGoogle Scholar |

[12]  K. Kawamura, M. Kobayashi, N. Tsubonuma, M. Mochida, T. Watanabe, M. Lee, Organic and inorganic compositions of marine aerosols from East Asia: Seasonal variations of water soluble dicarboxylic acids, major ions, total carbon and nitrogen, and stable C and N isotopic composition, in Geochemical Investigation in Earth and Space Science; A Tribute to Issac R. Kaplan. The Geochemical Society Special Publication Series (Ed. R. J. Hill) 2004, Vol. 9, pp. 243–265, (Elsevier: Amsterdam, the Netherlands).

[13]  G. H. Wang, K. Kawamura, S. C. Lee, K. F. Ho, J. J. Cao, Molecular, seasonal and spatial distribution of organic aerosols from fourteen Chinese cities. Environ. Sci. Technol. 2006, 40, 4619.
Molecular, seasonal and spatial distribution of organic aerosols from fourteen Chinese cities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFensrs%3D&md5=1a0dd20596cc4d63f982706a70f02251CAS |

[14]  K. Kawamura, H. Kasukabe, L. A. Barrie, Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: one year of observations. Atmos. Environ. 1996a, 30, 1709.
Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: one year of observations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivVKmtbw%3D&md5=27fe9d8e15bc8b938f4c1e1eae6cdfd9CAS |

[15]  M. Narukawa, K. Kawamura, K. G. Anlauf, L. A. Barrie, Fine and coarse modes of dicarboxylic acids in the arctic aerosols collected during the Polar Sunrise Experiment 1997. J. Geophys. Res. 2003, 108, 4575.
Fine and coarse modes of dicarboxylic acids in the arctic aerosols collected during the Polar Sunrise Experiment 1997.Crossref | GoogleScholarGoogle Scholar |

[16]  V.-M. Kerminen, K. Teinila, R. Hillamo, T. Makela, Size segregated chemistry of particulate dicarboxylic acids in the Artic atmosphere. Atmos. Environ. 1999, 33, 2089.
Size segregated chemistry of particulate dicarboxylic acids in the Artic atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1Kqs7k%3D&md5=ddfd4e027b0eb0b95dff9f434bf636ccCAS |

[17]  K. Kawamura, Y. Imai, L. A. Barrie, Photochemical production and loss of organic acids in high Arctic aerosols during long range transport and polar sunrise ozone depletion events. Atmos. Environ. 2005, 39, 599.
Photochemical production and loss of organic acids in high Arctic aerosols during long range transport and polar sunrise ozone depletion events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVCjtw%3D%3D&md5=f1c65e4a3709ae2472d8ff3d67edbf00CAS |

[18]  K. Kawamura, K. H. Kasukabe, L. A. Barrie, Secondary formation of water-soluble organic acids and α-dicarbonyls and their contribution to total carbon and water-soluble organic carbon: photochemical ageing of organic aerosols in the Arctic spring. J. Geophys. Res. 2010, 115, D21306.
Secondary formation of water-soluble organic acids and α-dicarbonyls and their contribution to total carbon and water-soluble organic carbon: photochemical ageing of organic aerosols in the Arctic spring.Crossref | GoogleScholarGoogle Scholar |

[19]  K. Kawamura, R. Sempéré, Y. Imai, M. Hayashi, Y. Fujii, Water soluble dicarboxylic acids and related compounds in the Antarctic aerosols. J. Geophys. Res. 1996b, 101, 18 721.
Water soluble dicarboxylic acids and related compounds in the Antarctic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlslKltLc%3D&md5=9704c9eaa5d4fa6055ca879f7447c963CAS |

[20]  R. Sempéré, K. Kawamura, Low molecular weight dicarboxylic acids and related polar compounds in the remote marine rain samples collected from western Pacific. Atmos. Environ. 1996, 30, 1609.
Low molecular weight dicarboxylic acids and related polar compounds in the remote marine rain samples collected from western Pacific.Crossref | GoogleScholarGoogle Scholar |

[21]  T. Novakov, J. E. Penner, Large contribution of organic aerosols to cloud-condensation-nuclei concentrations. Nature 1993, 365, 823.
Large contribution of organic aerosols to cloud-condensation-nuclei concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslGmtLo%3D&md5=0ad2fcef1a665aa3c0222da24b18dd4aCAS |

[22]  P. Saxena, L. Hildemann, P. McMurry, J. Seinfeld, Organics alter hygroscopic behavior of atmospheric particles. J. Geophys. Res. 1995, 100, 18 755.
Organics alter hygroscopic behavior of atmospheric particles.Crossref | GoogleScholarGoogle Scholar |

[23]  T. Novakov, C. E. Corrigan, J. E. Penner, C. C. Chuang, O. Rosario, O. L. Mayol Bracero, Organic aerosols in the Caribbean trade winds: a natural source? J. Geophys. Res. 1997, 102, 21 307.
Organic aerosols in the Caribbean trade winds: a natural source?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmslWgsb8%3D&md5=05e269aebb09a7bacd28847c5e4fb052CAS |

[24]  K. M. Gierlus, O. Laskina, T. L. Abernathy, V. H. Grassian, Laboratory study of the effect of oxalic acid on the cloud condensation nuclei activity of mineral dust aerosol. Atmos. Environ. 2012, 46, 125.
Laboratory study of the effect of oxalic acid on the cloud condensation nuclei activity of mineral dust aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGks73M&md5=b96559d8981ef1dbd061856f21a117ecCAS |

[25]  R. Zhang, I. Suh, J. Zhao, D. Zhang, E. Fortner, X. Tie, L. Molina, M. Molina, Atmospheric New Particle Formation Enhanced by Organic Acids. Science 2004, 304, 1487.
Atmospheric New Particle Formation Enhanced by Organic Acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVGmsb8%3D&md5=768e16c3b66991bae61e87321dc8a0adCAS | 15178797PubMed |

[26]  L. Wang, A. F. Khalizov, J. Zheng, W. Xu, V. Lal, Y. Ma, R. Zhang, Atmospheric nanoparticles formed from heterogeneous reactions of organics. Nat. Geosci. 2010, 3, 238.
Atmospheric nanoparticles formed from heterogeneous reactions of organics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVWru7s%3D&md5=e3cdc9c6c1bdebcc48606d2b4a97b36aCAS |

[27]  W. Xu, R. Zhang, Theoretical investigation of interaction of dicarboxylic acids with common aerosol nucleation precursors. J. Phys. Chem. A 2012, 116, 4539.
Theoretical investigation of interaction of dicarboxylic acids with common aerosol nucleation precursors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFOnu7c%3D&md5=401cf4555d1432435d0f73b98b44d067CAS | 22471839PubMed |

[28]  Y. Xu, A. B. Nadykto, F. Yu, J. Herb, W. Wang, Interaction between common organic acids and trace nucleation species in the earth’s atmosphere. J. Phys. Chem. A 2010, 114, 387.
Interaction between common organic acids and trace nucleation species in the earth’s atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSrsbbP&md5=79427cedc4449c26990ffb0e819dd0eaCAS | 19957986PubMed |

[29]  E. J. Highwood, R. P. Kinnersley, When smoke gets in our eyes: the multiple impacts of atmospheric black carbon on climate, air quality and health. Environ. Int. 2006, 32, 560.
When smoke gets in our eyes: the multiple impacts of atmospheric black carbon on climate, air quality and health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1ygsLs%3D&md5=51e05c87aed2f03b244208554ab9a5bbCAS | 16513170PubMed |

[30]  K. F. Ho, S. C. Lee, J. J. Cao, K. Kawamura, T. Watanabe, Y. Cheng, J. C. Chow, Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmos. Environ. 2006, 40, 3030.
Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVajsrs%3D&md5=6d5e95a830c21732106b6ba12e19aaa7CAS |

[31]  W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, B. R. T. Simoneit, Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations. Environ. Sci. Technol. 1991, 25, 1112.
Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitFeiu7g%3D&md5=459daedbbcd7f3b2f98810b3d8c39146CAS |

[32]  J. J. Schauer, M. J. Kleeman, G. R. Cass, B. R. T. Simoneit, Measurement of emissions from air pollution sources – I. C1 through C29 organic compounds from meat charboiling. Environ. Sci. Technol. 1999, 33, 1566.
Measurement of emissions from air pollution sources – I. C1 through C29 organic compounds from meat charboiling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1Kgtbg%3D&md5=425c159e616478f140b85514e2df82ffCAS |

[33]  M. A. Yamasoe, P. Artaxo, A. H. Miguel, A. G. Allen, Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmos. Environ. 2000, 34, 1641.
Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitFOjtL0%3D&md5=76867ad81a5cbcf2fbb32acbd1436bfdCAS |

[34]  S. Gao, D. A. Hegg, P. V. Hobbs, T. W. Kirchstetter, B. I. Magi, M. Sadilek, Water-soluble organic components in aerosols associated with savanna fires in southern Africa: identification, evolution, and distribution. J. Geophys. Res. 2003, 108, 8491.
Water-soluble organic components in aerosols associated with savanna fires in southern Africa: identification, evolution, and distribution.Crossref | GoogleScholarGoogle Scholar |

[35]  S. Kundu, K. Kawamura, T. W. Andreae, A. Hoffer, M. O. Andreae, Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers. Atmos. Chem. Phys. 2010a, 10, 2209.
| 1:CAS:528:DC%2BC3cXlslOqt7Y%3D&md5=0d08f5e9b9425780b2aa0261a437bbd5CAS |

[36]  K. Kawamura, R. B. Gagosian, Implications of ω-oxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids. Nature 1987, 325, 330.
Implications of ω-oxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXovFCgtw%3D%3D&md5=6d2550ad03e627243fe44ae01d0a5457CAS |

[37]  S. Hatakeyama, M. Ohno, J. Weng, H. Takagi, H. Akimoto, Mechanism for the formation of gaseous and particulate products from ozone-cycloalkene reactions in air. Environ. Sci. Technol. 1987, 21, 52.
Mechanism for the formation of gaseous and particulate products from ozone-cycloalkene reactions in air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXit1GitQ%3D%3D&md5=c766208fa4c809f09973a0f6de867a3bCAS |

[38]  P. Warneck, In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere. Atmos. Environ. 2003, 37, 2423.
In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVegsLs%3D&md5=b232521b4bf90c1f788f0a4b243eafddCAS |

[39]  H.-J. Lim, A. G. Carlton, B. J. Turpin, Isoprene forms secondary organic aerosol through cloud processing: model simulations. Environ. Sci. Technol. 2005, 39, 4441.
Isoprene forms secondary organic aerosol through cloud processing: model simulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVWrsrg%3D&md5=40e52d0d1b652e3cf81547c1b7bdf343CAS | 16047779PubMed |

[40]  A. G. Carlton, B. J. Turpin, H.-J. Lim, K. E. Altieri, S. Seitzinger, Link between isoprene and secondary organic aerosol (SOA): pyruvic acid oxidation yields low volatility organic acids in clouds. Geophys. Res. Lett. 2006, 33, L06822.
Link between isoprene and secondary organic aerosol (SOA): pyruvic acid oxidation yields low volatility organic acids in clouds.Crossref | GoogleScholarGoogle Scholar |

[41]  B. Ervens, G. Feingold, G. J. Frost, S. M. Kreidenweis, A modelling study of aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass production. J. Geophys. Res. 2004, 109, D15205.
A modelling study of aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass production.Crossref | GoogleScholarGoogle Scholar |

[42]  S. Myriokefalitakis, K. Tsigaridis, N. Mihalopoulos, J. Sciare, A. Nenes, K. Kawamura, A. Segers, M. Kanakidou, In-cloud oxalate formation in the global troposphere: a 3-D modeling study. Atmos. Chem. Phys. 2011, 11, 5761.
| 1:CAS:528:DC%2BC3MXht1WjtrvI&md5=a3d18886622ffdc9a906928544b9461fCAS |

[43]  D. G. Streets, T. C. Bond, T. Lee, C. Jang, On the future of carbonaceous aerosol emissions. J. Geophys. Res. 2004, 109, D24212.
On the future of carbonaceous aerosol emissions.Crossref | GoogleScholarGoogle Scholar |

[44]  Z. Shen, Y. Han, J. Cao, J. Tian, C. Zhu, S. Liu, P. Liu, Y. Wang, Characteristics of traffic-related emissions: a case study in roadside ambient air over Xi’an, China. Aerosol Air Qual. Res. 2010, 10, 292.
| 1:CAS:528:DC%2BC3cXpvFKlu7w%3D&md5=e08c10746ff27dcc9d578e55e613dd88CAS |

[45]  W. W. Hu, M. Hu, B. Yuan, J. L. Jimenez, Q. Tang, J. F. Peng, W. Hu, M. Shao, M. Wang, L. M. Zeng, Y. S. Wu, Z. H. Gong, X. F. Huang, L. Y. He, Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China. Atmos. Chem. Phys. 2013, 13, 10 095.
| 1:CAS:528:DC%2BC3sXhs1ymsrfF&md5=3a15f88d4a6887222d98fea31f29d33eCAS |

[46]  K. F. Ho, S. C. Lee, J. J. Cao, Y. S. Li, J. C. Chow, J. G. Watson, K. Fung, Variability of organic and elemental carbon, water soluble organic carbon, and isotopes in Hong Kong. Atmos. Chem. Phys. 2006, 6, 4569.
| 1:CAS:528:DC%2BD2sXhtlKltLg%3D&md5=3bfc2349364863b9f2c95cd966b61703CAS |

[47]  T. Ohara, H. Akimoto, J. Kurokawa, N. Horii, K. Yamaji, X. Yan, T. Hayasaka, An Asian emission inventory of anthropogenic emission sources for the period 1980. Atmos. Chem. Phys. 2007, 7, 4419.
| 1:CAS:528:DC%2BD2sXhtlWiurbL&md5=3b8e064e5a0ff9c8e8458ea1f2f7ede5CAS |

[48]  Y. Cheng, G. Engling, K.-B. He, F.-K. Duan, Y.-L. Ma, Z.-Y. Du, J.-M. Liu, M. Zheng, R. J. Weber, Biomass burning contribution to Beijing aerosol. Atmos. Chem. Phys. 2013, 13, 7765.
| 1:CAS:528:DC%2BC3sXhsleht7bN&md5=a85f2145bf2cf48596fd48a3d9ec289cCAS |

[49]  K. Kawamura, E. Tachibana, K. Okuzawa, S. G. Aggarwal, Y. Kanaya, Z. F. Wang, High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season. Atmos. Chem. Phys. 2013, 13, 8285.
| 1:CAS:528:DC%2BC3sXhsleqtbrE&md5=05cc4940ede6b1958f8b85c5e7c173deCAS |

[50]  P. Fu, K. Kawamura, Y. Kanaya, Z. Wang, Contributions of biogenic volatile organic compounds to the formation of secondary organic aerosols over Mt Tai, Central East China. Atmos. Environ. 2010, 44, 4817.
Contributions of biogenic volatile organic compounds to the formation of secondary organic aerosols over Mt Tai, Central East China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlahs7%2FI&md5=2c7c346c26534e9268f66ef4a0f6d3e4CAS |

[51]  B. R. T. Simoneit, M. Kobayashi, M. Mochida, K. Kawamura, M. Lee, H.-J. Lim, B. J. Turpin, Y. Komazaki, Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign. J. Geophys. Res. 2004, 109, D19S10.
Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign.Crossref | GoogleScholarGoogle Scholar |

[52]  K. Sato, H. Li, Y. Tanaka, S. Ogawa, Y. Iwasaki, A. Takami, S. Hatakeyama, Long-range transport of particulate polycyclic aromatic hydrocarbons at Cape Hedo remote island site in the East China Sea between 2005 and 2008. J. Atmos. Chem. 2008, 61, 243.
Long-range transport of particulate polycyclic aromatic hydrocarbons at Cape Hedo remote island site in the East China Sea between 2005 and 2008.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1agsL%2FP&md5=7bf148381959cd9cd045f13f888e40ffCAS |

[53]  G. Wang, K. Kawamura, M. Lee, Comparison of organic compositions in dust storm and normal aerosol samples collected at Gosan, Jeju Island, during spring. Atmos. Environ. 2009a, 43, 219.
Comparison of organic compositions in dust storm and normal aerosol samples collected at Gosan, Jeju Island, during spring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCitrbI&md5=26715dc1eb54fefeb3031ad8cc306627CAS |

[54]  G. Wang, K. Kawamura, M. Xie, S. Hu, S. Gao, J. Cao, Z. An, Z. Wang, Size-distributions of n-alkanes, PAHs and hopanes and their sources in the urban, mountain and marine atmospheres over East Asia. Atmos. Chem. Phys. 2009b, 9, 8869.
| 1:CAS:528:DC%2BC3cXhs1GjtLg%3D&md5=90643a9e0667e961942ceb1dd368dc4cCAS |

[55]  A. Takami, T. Miyoshi, A. Shimono, N. Kaneyasu, S. Kato, Y. Kajii, S. Hatakeyama, Transport of anthropogenic aerosols from Asia and subsequent chemical transformation. J. Geophys. Res. 2007, 112, D22S31.
Transport of anthropogenic aerosols from Asia and subsequent chemical transformation.Crossref | GoogleScholarGoogle Scholar |

[56]  D. Jaffe, E. Prestbo, P. Swartzendruber, P. W. Penzias, S. Kato, A. Takami, S. Hatakeyama, Y. Kajii, Export of atmospheric mercury from Asia. Atmos. Environ. 2005, 39, 3029.
Export of atmospheric mercury from Asia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFWqsrg%3D&md5=eb3949d6bcc4ba6edc617a7c4764e4f4CAS |

[57]  M. Zhang, I. Uno, G. R. Carmichael, H. Akimoto, Z. Wang, Y. Tang, J.-H. Woo, D. G. Streets, G. W. Sachse, M. A. Avery, R. J. Weber, R. W. Talbot, Large-scale structure of trace gas and aerosol distributions over the western Pacific Ocean during the transport and chemical evolution over the Pacific (TRACE-P) experiment. J. Geophys. Res. 2003, 108, 8820.
Large-scale structure of trace gas and aerosol distributions over the western Pacific Ocean during the transport and chemical evolution over the Pacific (TRACE-P) experiment.Crossref | GoogleScholarGoogle Scholar |

[58]  X. Lun, A. Takami, T. Miyoshi, S. Hatakeyama, Characteristic of organic aerosol in a remote area of Okinawa Island. J. Environ. Sci. (China) 2009, 21, 1371.
Characteristic of organic aerosol in a remote area of Okinawa Island.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSnsLfO&md5=67bd2f2bc8684799151fe4d9aa1be410CAS | 19999991PubMed |

[59]  S. Yamamoto, K. Kawamura, Stable hydrogen isotope ratios of n-alkanes in atmospheric aerosols from Okinawa, Japan. Res. Org. Geochem. 2011, 27, 81.

[60]  M. Mochida, C. Nishita-Hara, H. Furutani, Y. Miyazaki, J. Jung, K. Kawamura, M. Uematsu, Hygroscopicity and cloud condensation nucleus activity of marine aerosol particles over the western North Pacific. J. Geophys. Res. 2010, 116, D06204.
Hygroscopicity and cloud condensation nucleus activity of marine aerosol particles over the western North Pacific.Crossref | GoogleScholarGoogle Scholar |

[61]  S. Kundu, K. Kawamura, M. Lee, Seasonal variations of diacids, ketoacids and α-dicarbonyls in marine aerosols at Gosan, Jeju Island: implications for their formation and degradation during long-range transport. J. Geophys. Res. 2010b, 115, D19307.
Seasonal variations of diacids, ketoacids and α-dicarbonyls in marine aerosols at Gosan, Jeju Island: implications for their formation and degradation during long-range transport.Crossref | GoogleScholarGoogle Scholar |

[62]  B. Kunwar, K. Kawamura, One-year observations of carbonaceous and nitrogenous components and major ions in the aerosols from subtropical Okinawa Island, an outflow region of Asian dusts. Atmos. Chem. Phys. 2014, 14, 1819.
| 1:CAS:528:DC%2BC2cXjtFagtbw%3D&md5=7e30cf2375f235f99e50b1db49156cecCAS |

[63]  R. R. Draxler, G. D. Hess, Description of the HYSPLIT_4 Modeling System. NOAA Technical Memorandum ERL ARL-224 1997 (NOAA Air Resource Laboratory: Silver Spring, MD).

[64]  R. R. Draxler, G. D. Hess, An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition. Aust. Meteorol. Mag. 1998, 47, 295.

[65]  Y. Yokouchi, Y. Ambe, Characterization of polar organics in airborne particulate matter. Atmos. Environ. 1986, 20, 1727.
Characterization of polar organics in airborne particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtFenu7Y%3D&md5=1be711ea871cbd2217dc90cef16b7af1CAS |

[66]  E. G. Stephanou, N. Stratigakis, Oxocarboxylic and α, ω-dicarboxylic acids: photooxidation products of biogenic unsaturated fatty acids present in urban aerosols. Environ. Sci. Technol. 1993, 27, 1403.
Oxocarboxylic and α, ω-dicarboxylic acids: photooxidation products of biogenic unsaturated fatty acids present in urban aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktFCgt7g%3D&md5=2032db8195bf3097f66fa0f90be411b4CAS |

[67]  K. Kawamura, Y. Ishimura, K. Yamazaki, Four years’ observations of terrestrial lipid class compounds in marine aerosols from the western North Pacific. Global Biogeochem. Cycles 2003, 17, 3-1.
Four years’ observations of terrestrial lipid class compounds in marine aerosols from the western North Pacific.Crossref | GoogleScholarGoogle Scholar |

[68]  M. Zheng, M. Fang, F. Wang, K. L. To, Characterization of the solvent extractable organic compounds in PM2.5 aerosols in Hong Kong. Atmos. Environ. 2000, 34, 2691.
Characterization of the solvent extractable organic compounds in PM2.5 aerosols in Hong Kong.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFSjtrk%3D&md5=027acc22633b3d8ab0504c63f541d6e2CAS |

[69]  K. F. Ho, S. S. H. Ho, S. C. Lee, K. Kawamura, S. C. Zou, J. J. Cao, H. M. Xu, Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in PM2.5 in Pearl Delta River Region, China. Atmos. Chem. Phys. 2011, 11, 2197.
| 1:CAS:528:DC%2BC3MXpslyltrw%3D&md5=26ce39faca656d82a6c90c89b7e8b833CAS |

[70]  M. Nishikawa, Q. Hao, M. Morita, Preparation and evaluation of certified reference materials for Asian mineral dust. Global Environ. Res. 2000, 4, 103.
| 1:CAS:528:DC%2BD3cXovF2qu7k%3D&md5=7ae4e1a14c75a0e76be737aee6e9f1e5CAS |

[71]  I. Mori, M. Nishikawa, H. Quan, M. Morita, Estimation of the concentration and chemical composition of kosa aerosols at their origin. Atmos. Environ. 2002, 36, 4569.
Estimation of the concentration and chemical composition of kosa aerosols at their origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1GqsLk%3D&md5=567aa9c8cc6e44873bd6e62c5a2c223cCAS |

[72]  I. Mori, M. Nishikawa, T. Tanimura, H. Quan, Change in size distribution and chemical composition of kosa (Asian dust) aerosol during long-range transport. Atmos. Environ. 2003, 37, 4253.
Change in size distribution and chemical composition of kosa (Asian dust) aerosol during long-range transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Snu7Y%3D&md5=26e8182f369ca5ff62e64eec6fbd5ac6CAS |

[73]  T. D. Fairlie, D. J. Jacob, R. J. Park, The impact of transpacific transport of mineral dust in the united states. Atmos. Environ. 2007, 41, 1251.
The impact of transpacific transport of mineral dust in the united states.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitV2ltw%3D%3D&md5=5e1261df92748ac8f5e7e275fbc62b5dCAS |

[74]  T. Charbouillot, S. Gorini, G. Voyard, M. Parazols, M. Brigante, L. Deguillaume, A. M. Delort, G. Mailhot, Mechanism of carboxylic acid photooxidation in atmospheric aqueous phase: formation, fate and reactivity. Atmos. Environ. 2012, 56, 1.
Mechanism of carboxylic acid photooxidation in atmospheric aqueous phase: formation, fate and reactivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFymsLk%3D&md5=08c135db35fd5c64b7c778f6c254becbCAS |

[75]  X. Yao, M. Fang, C. K. Chanb, K. F. Ho, S. C. Lee, Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmos. Environ. 2004, 38, 963.
Characterization of dicarboxylic acids in PM2.5 in Hong Kong.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlSqtQ%3D%3D&md5=4cd5aa98df89c8c2492b17031b203886CAS |

[76]  Y. Miyazaki, Y. Kondo, S. Han, M. Koike, D. Kodama, Y. Komazaki, H. Tanimoto, H. Matsueda, Chemical characteristics of water-soluble organic carbon in the Asian outflow. J. Geophys. Res. 2007, 112, D22S30.
Chemical characteristics of water-soluble organic carbon in the Asian outflow.Crossref | GoogleScholarGoogle Scholar |

[77]  C. M. Pavuluri, K. Kawamura, T. Swaminathan, Water-soluble organic carbon, dicarboxylic acids, ketoacids, and α-dicarbonyls in the tropical Indian aerosols. J. Geophys. Res. 2010, 115, D11302.
Water-soluble organic carbon, dicarboxylic acids, ketoacids, and α-dicarbonyls in the tropical Indian aerosols.Crossref | GoogleScholarGoogle Scholar |

[78]  S. L. Mkoma, K. Kawamura, Molecular composition of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons. Atmos. Chem. Phys. 2013, 13, 2235.

[79]  K. Kawamura, K. Yokoyama, Y. Fujii, O. Watanabe, A Greenland ice core record of low molecular weight dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls: a trend from little ice age to the present (1540 to 1989 A.D.). J. Geophys. Res. 2001, 106, 1331.
A Greenland ice core record of low molecular weight dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls: a trend from little ice age to the present (1540 to 1989 A.D.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVKqug%3D%3D&md5=609a720a651fa575e4971f2a86c341adCAS |

[80]  J. Jung, B. Tsatsral, Y. J. Kim, K. Kawamura, Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls. J. Geophys. Res. 2010, 115, D22203.
Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls.Crossref | GoogleScholarGoogle Scholar |

[81]  P. Fu, K. Kawamura, J. Chen, L. A. Barrie, Isoprene, monoterpene, and sesquiterpene oxidation products in the High Arctic aerosols during late winter to early summer. Environ. Sci. Technol. 2009, 43, 4022.
Isoprene, monoterpene, and sesquiterpene oxidation products in the High Arctic aerosols during late winter to early summer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlKltbo%3D&md5=403facb917c4305f8d417d21a1d7f8f0CAS | 19569325PubMed |

[82]  J. Kesselmeier, M. Staudt, Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J. Atmos. Chem. 1999, 33, 23.
Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis12nsbY%3D&md5=56ed168c7ac32edee44a4e9b477672a0CAS |

[83]  K. F. Ho, J. J. Cao, S. C. Lee, K. Kawamura, R. J. Zhang, J. C. Chow, J. G. Watson, Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China. J. Geophys. Res. 2007, 112, D22S27.
Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China.Crossref | GoogleScholarGoogle Scholar |

[84]  M. Koebel, M. Elsener, Oxidation of diesel-generated volatile organic compounds in the selective catalytic reduction process. Ind. Eng. Chem. Res. 1998, 37, 3864.
Oxidation of diesel-generated volatile organic compounds in the selective catalytic reduction process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls1Cls7k%3D&md5=a10c2aec29b3bfba52a2c992cb6839adCAS |

[85]  P. Tambunan, S. Baba, A. Kuniyoshi, H. Iwasaki, T. Nakamura, H. Yamasaki, H. Oku, Isoprene emission from tropical trees in Okinawa Island, Japan. Chemosphere 2006, 65, 2138.
Isoprene emission from tropical trees in Okinawa Island, Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cqsb3O&md5=ae81df90118d6bc3228b1d470606f141CAS | 16860371PubMed |

[86]  A. W. Birdsall, M. J. Elrod, Comprehensive NO-dependent study of the products of the oxidation of atmospherically relevant aromatic compounds. J. Phys. Chem. 2011, 115, 5397.
| 1:CAS:528:DC%2BC3MXlslKhu74%3D&md5=7dcbd978fea0c020fa5adb85fd0935d4CAS |

[87]  H. Bandow, N. Washida, H. Akimoto, Ring cleavage reactions of aromatic hydrocarbons studied by FT-IR spectroscopy: I. Photooxidation of toluene and benzene in the NOx-air system. Bull. Chem. Soc. Jpn. 1985, 58, 2531.
Ring cleavage reactions of aromatic hydrocarbons studied by FT-IR spectroscopy: I. Photooxidation of toluene and benzene in the NOx-air system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xkt1eku74%3D&md5=574338960e00650ccb41bd726c9182f8CAS |

[88]  R. Volkamer, U. Platt, K. Wirtz, Primary and secondary glyoxal formation from aromatics: experimental evidence for the bicycloalkyl-radical pathway from benzene, toluene, and p-xylene. J. Phys. Chem. A 2001, 105, 7865.
Primary and secondary glyoxal formation from aromatics: experimental evidence for the bicycloalkyl-radical pathway from benzene, toluene, and p-xylene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFWisb8%3D&md5=644768bb076d5b97713e48d78b961e76CAS |

[89]  R. Volkamer, J. L. Jimenez, F. S. Martini, K. Dzepina, Q. Zhang, D. Salcedo, L. T. Molina, D. R. Worsnop, M. J. Molina, Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected. Geophys. Res. Lett. 2006, 33, L17811.
Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected.Crossref | GoogleScholarGoogle Scholar |

[90]  J. Zimmermann, D. A. Poppe, A supplement for the RADM2 chemical mechanism: the photooxidation of isoprene. Atmos. Environ. 1996, 30, 1255.
A supplement for the RADM2 chemical mechanism: the photooxidation of isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVaku70%3D&md5=eb1c5c0065e8d1e79470d5c186502916CAS |

[91]  J. Fick, C. Nilsson, B. Andersson, Formation of oxidation products in a ventilation system. Atmos. Environ. 2004, 38, 5895.
Formation of oxidation products in a ventilation system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVyqu78%3D&md5=d624953b5dc8f6a6a58abac02b413c85CAS |

[92]  L. Wang, R. Atkinson, J. Arey, Dicarbonyl products of the OH radical-initiated reactions of naphthalene and the C1- and C2-alkylnaphthalenes. Environ. Sci. Technol. 2007, 41, 2803.
Dicarbonyl products of the OH radical-initiated reactions of naphthalene and the C1- and C2-alkylnaphthalenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtF2ms74%3D&md5=d3ef3fc2a0c160fb2a1dc6c5c524f9a4CAS | 17533842PubMed |

[93]  A. W. H. Chan, K. E. Kautzman, P. S. Chhabra, J. D. Surratt, M. N. Chan, J. D. Crounse, A. Kurten, P. O. Wennberg, R. C. Flagan, J. H. Seinfeld, Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs). Atmos. Chem. Phys. 2009, 9, 3049.
| 1:CAS:528:DC%2BD1MXosFKrsr8%3D&md5=b4ca1cc49d034993d4d51745779b19a7CAS |

[94]  H. E. Krizner, D. O. De Haan, J. Kua, Thermodynamics and kinetics of methylglyoxal dimer formation: a computational study. J. Phys. Chem. A 2009, 113, 6994.
Thermodynamics and kinetics of methylglyoxal dimer formation: a computational study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1ens7o%3D&md5=2d07bc24759b48a7f35dff554abb6c88CAS | 19480424PubMed |

[95]  W. Hastings, C. Koehler, E. Bailey, D. Dehaan, Secondary organic aerosol formation by glyoxal hydration and oligomer formation: humidity effects and equilibrium shifts during analysis. Environ. Sci. Technol. 2005, 39, 8728.
Secondary organic aerosol formation by glyoxal hydration and oligomer formation: humidity effects and equilibrium shifts during analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2jsLvF&md5=281bd201fe72365a41862513219d13c5CAS | 16323769PubMed |

[96]  K. Loeffler, C. Koehler, N. Paul, D. Dehaan, Oligomer formation in evaporating aqueous glyoxal and methyl glyoxal solutions. Environ. Sci. Technol. 2006, 40, 6318.
Oligomer formation in evaporating aqueous glyoxal and methyl glyoxal solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xptlelu7k%3D&md5=7a808554c2b0480a34946ce2aa1e86e1CAS | 17120559PubMed |

[97]  R. Zhang, A. F. Khalizov, L. Wang, M. Hu, X. Wen, Nucleation and growth of nanoparticles in the atmosphere. Chem. Rev. 2012, 112, 1957.
Nucleation and growth of nanoparticles in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2itrnN&md5=881a7ece1813a80a913d37385e9e8af5CAS | 22044487PubMed |

[98]  J. H. Kroll, N. L. Ng, S. M. Murphy, V. Varutbangkul, R. C. Flagan, J. H. Seinfeld, Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. J. Geophys. Res. 2005, 110, D23207.
Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds.Crossref | GoogleScholarGoogle Scholar |

[99]  J. Liggio, S. M. Li, R. McLaren, Reactive uptake of glyoxal by particulate matter. J. Geophys. Res. 2005, 110, D10304.
Reactive uptake of glyoxal by particulate matter.Crossref | GoogleScholarGoogle Scholar |

[100]  M. Tedetti, K. Kawamura, B. Charriere, N. Chevalier, R. Sempéré, Determination of low molecular weight dicarboxylic acids in seawater samples. Anal. Chem. 2006, 78, 6012.
Determination of low molecular weight dicarboxylic acids in seawater samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFentbo%3D&md5=97adc5a3dc64b7cb7efd924ce3a375b8CAS | 16944878PubMed |

[101]  H. Wang, K. Kawamura, K. Yamazaki, Water soluble dicarboxylic acids, ketoacids and dicarbonyls in the atmospheric aerosols over the Southern Ocean and Western North Pacific. J. Atmos. Chem. 2006a, 53, 43.
Water soluble dicarboxylic acids, ketoacids and dicarbonyls in the atmospheric aerosols over the Southern Ocean and Western North Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslKjsbg%3D&md5=edd0833438f5eac06a504b3009bca91aCAS |

[102]  R. Sempéré, K. Kawamura, Trans-hemispheric contribution of C2-C10 α, ω-dicarboxylic acids, and related polar compounds to water-soluble organic carbon in the western Pacific aerosols in relation to photochemical oxidation reactions. Global Biogeochem. Cycles 2003, 17, 1069.
Trans-hemispheric contribution of C2-C10 α, ω-dicarboxylic acids, and related polar compounds to water-soluble organic carbon in the western Pacific aerosols in relation to photochemical oxidation reactions.Crossref | GoogleScholarGoogle Scholar |

[103]  S. G. Aggarwal, K. Kawamura, Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: implications for photochemical aging during long-range atmospheric transport. J. Geophys. Res. 2008, 113, D14301.
Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: implications for photochemical aging during long-range atmospheric transport.Crossref | GoogleScholarGoogle Scholar |