Interpretation of diffusion gradients in thin films (DGT) measurements: a systematic approach
Josep Galceran A B and Jaume Puy AA Departament de Química, Universitat de Lleida and AGROTECNIO, Rovira Roure 191, E-25198 Lleida, Spain.
B Corresponding author. Email: galceran@quimica.udl.cat
Environmental Chemistry 12(2) 112-122 https://doi.org/10.1071/EN14068
Submitted: 1 April 2014 Accepted: 11 July 2014 Published: 5 December 2014
Environmental context. Dynamic speciation of an element in a natural medium is essential for understanding its availability. The technique of diffusion gradients in thin films (DGT) has become a widely used tool for in situ environmental studies, being applied to determine fluxes of metal cations, anions, organics and nanoparticles. The interpretation of the measurements with suitable physicochemical models gives valuable insights into the behaviour of the system.
Abstract. Gaining insight into the physicochemical processes integrated in a DGT (diffusion gradients in thin films) measurement and combining them in a model can assist in retrieving fundamental information, both qualitative and quantitative, on the probed system. New experiments (such as varying the thicknesses of the gel or the resin layer) and their mathematical treatment to extract meaningful parameters have been suggested from theoretical considerations. The concept of lability degree is useful in describing an interpretation of the DGT concentration as the summation of the free metal concentration plus the labile fraction of all complexes multiplied by a ratio of diffusion coefficients. In some cases, the lability degree can be directly estimated with specific measurements and a very simple expression. We review the current status of these interpretations, including numerical simulations, with special focus on analytical expressions, because they can be more accessible to the standard DGT practitioner. Present limitations and challenges for future work in DGT interpretation are also discussed.
References
[1] W. Davison, H. Zhang, In situ speciation measurements of trace components in natural-waters using thin-film gels. Nature 1994, 367, 546.| In situ speciation measurements of trace components in natural-waters using thin-film gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsVemtrc%3D&md5=7f01581ce764d20b25b9eae66999bfd7CAS |
[2] W. Davison, H. Zhang, Progress in understanding the use of diffusive gradients in thin films (DGT) – back to basics. Environ. Chem. 2012, 9, 1.
| Progress in understanding the use of diffusive gradients in thin films (DGT) – back to basics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1amtbs%3D&md5=1591450476b14275778c5135e50da0beCAS |
[3] L. N. M. Yabuki, C. D. Colaco, A. A. Menegario, R. N. Domingos, C. H. Kiang, D. Pascoaloto, Evaluation of diffusive gradients in thin films technique (DGT) for measuring Al, Cd, Co, Cu, Mn, Ni, and Zn in Amazonian rivers. Environ. Monit. Assess. 2014, 186, 961.
| Evaluation of diffusive gradients in thin films technique (DGT) for measuring Al, Cd, Co, Cu, Mn, Ni, and Zn in Amazonian rivers.Crossref | GoogleScholarGoogle Scholar |
[4] A. Caillat, P. Ciffroy, M. Grote, S. Rigaud, J. M. Garnier, Bioavailability of copper in contaminated sediments assessed by a DGT approach and the uptake of copper by the aquatic plant Myriophyllum aquaticum. Environ. Toxicol. Chem. 2014, 33, 278.
| Bioavailability of copper in contaminated sediments assessed by a DGT approach and the uptake of copper by the aquatic plant Myriophyllum aquaticum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmt1KgsQ%3D%3D&md5=a9ab9d9d96644e5201e00278d95f5549CAS | 24122927PubMed |
[5] D. M. Costello, G. A. Burton, C. R. Hammerschmidt, W. K. Taulbee, Evaluating the performance of diffusive gradients in thin films for predicting in sediment toxicity. Environ. Sci. Technol. 2012, 46, 10 239.
| 1:CAS:528:DC%2BC38XhtFOru7jP&md5=6e225a90897d21c171d2939c583b92c7CAS |
[6] F. Degryse, E. Smolders, Cadmium and nickel uptake by tomato and spinach seedlings: plant or transport control? Environ. Chem. 2012, 9, 48.
| Cadmium and nickel uptake by tomato and spinach seedlings: plant or transport control?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1amu7w%3D&md5=5c8f8feaeb504ef66e0f1f8cbc19db7eCAS |
[7] N. Roig, M. Nadal, J. Sierra, A. Ginebreda, M. Schuhmacher, J. L. Domingo, Novel approach for assessing heavy metal pollution and ecotoxicological status of rivers by means of passive sampling methods. Environ. Int. 2011, 37, 671.
| Novel approach for assessing heavy metal pollution and ecotoxicological status of rivers by means of passive sampling methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFensLs%3D&md5=a8b32a2d401cab595c8483f5e2c2a747CAS | 21310486PubMed |
[8] V. E. dos Anjos, G. Abate, M. T. Grassi, Comparison of the speciation of trace metals in freshwater employing voltammetry, diffusive gradients in thin films (DGT) and a chemical equilibrium model. Quim. Nova 2010, 33, 1307.
| 1:CAS:528:DC%2BC3cXhtFKntrjO&md5=3067eeafb2a202c8659c48d86140c388CAS |
[9] O. A. Garmo, N. J. Lehto, H. Zhang, W. Davison, O. Royset, E. Steinnes, Dynamic aspects of DGT as demonstrated by experiments with lanthanide complexes of a multidentate ligand. Environ. Sci. Technol. 2006, 40, 4754.
| Dynamic aspects of DGT as demonstrated by experiments with lanthanide complexes of a multidentate ligand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVaisrs%3D&md5=6b3297212d52ba08bf8828a3c59ad929CAS | 16913134PubMed |
[10] O. A. Garmo, O. Royset, E. Steinnes, T. P. Flaten, Performance study of diffusive gradients in thin films for 55 elements. Anal. Chem. 2003, 75, 3573.
| Performance study of diffusive gradients in thin films for 55 elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Krs7o%3D&md5=1fc52c89103b740c84a7ebe52a7c8a7cCAS | 14570212PubMed |
[11] S. Tandy, S. Mundus, H. Zhang, E. Lombi, J. Frydenvang, P. E. Holm, S. Husted, A new method for determination of potassium in soils using diffusive gradients in thin films (DGT). Environ. Chem. 2012, 9, 14.
| A new method for determination of potassium in soils using diffusive gradients in thin films (DGT).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1amurk%3D&md5=9d4b44d190e80b5abcf8c5f2308041e9CAS |
[12] J. G. Panther, P. R. Teasdale, W. W. Bennett, D. T. Welsh, H. J. Zhao, Titanium dioxide-based DGT technique for in situ measurement of dissolved reactive phosphorus in fresh and marine waters. Environ. Sci. Technol. 2010, 44, 9419.
| Titanium dioxide-based DGT technique for in situ measurement of dissolved reactive phosphorus in fresh and marine waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGkt7jP&md5=7e65958056c0afd2b432764744f1de2bCAS | 21090745PubMed |
[13] Y. L. Zhang, S. Mason, A. McNeill, M. J. McLaughlin, Optimization of the diffusive gradients in thin films (DGT) method for simultaneous assay of potassium and plant-available phosphorus in soils. Talanta 2013, 113, 123.
| Optimization of the diffusive gradients in thin films (DGT) method for simultaneous assay of potassium and plant-available phosphorus in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1altbs%3D&md5=427822078a18d190c54dac2978f0a1fcCAS |
[14] J. G. Panther, R. R. Stewart, P. R. Teasdale, W. W. Bennett, D. T. Welsh, H. J. Zhao, Titanium dioxide-based DGT for measuring dissolved As(V), V(V), Sb(V), Mo(VI) and W(VI) in water. Talanta 2013, 105, 80.
| Titanium dioxide-based DGT for measuring dissolved As(V), V(V), Sb(V), Mo(VI) and W(VI) in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Wjsb8%3D&md5=4957a25fd80d7cb8927cacf54f253513CAS | 23597992PubMed |
[15] W. W. Bennett, P. R. Teasdale, D. T. Welsh, J. G. Panther, R. R. Stewart, H. L. Price, D. F. Jolley, Inorganic arsenic and iron(II) distributions in sediment porewaters investigated by a combined DGT-colourimetric DET technique. Environ. Chem. 2012, 9, 31.
| Inorganic arsenic and iron(II) distributions in sediment porewaters investigated by a combined DGT-colourimetric DET technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1amtbc%3D&md5=dd0b0a00f7380472d26000ec8438e712CAS |
[16] H. P. van Leeuwen, Steady-state DGT fluxes of nanoparticulate metal complexes. Environ. Chem. 2011, 8, 525.
| Steady-state DGT fluxes of nanoparticulate metal complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlykt73F&md5=380c62cdc909d6e8631ccc457fa9cf8cCAS |
[17] E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, R. Behra, Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 2008, 42, 8959.
| Toxicity of silver nanoparticles to Chlamydomonas reinhardtii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOqt7nO&md5=a63fd345e6343085da39fe17c6c9ce7bCAS | 19192825PubMed |
[18] C. E. Chen, H. Zhang, G. G. Ying, K. C. Jones, Evidence and recommendations to support the use of a novel passive water sampler to quantify antibiotics in wastewaters. Environ. Sci. Technol. 2013, 47, 13 587.
| Evidence and recommendations to support the use of a novel passive water sampler to quantify antibiotics in wastewaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslOnur3P&md5=1b5e9a14688b943b8863e53611e47c6eCAS |
[19] W. Davison, G. Fones, M. Harper, P. Teasdale, H. Zhang, Dialysis, DET and DGT: in situ diffusional techniques for studying water, sediments and soils, in In Situ Monitoring of Aquatic Systems (Eds J. Buffle, G. Horvai) 2000, pp. 495–569 (Wiley: Chichester, UK).
[20] M. P. Harper, W. Davison, W. Tych, Temporal, spatial, and resolution constraints for in situ sampling devices using diffusional equilibration: dialysis and DET. Environ. Sci. Technol. 1997, 31, 3110.
| Temporal, spatial, and resolution constraints for in situ sampling devices using diffusional equilibration: dialysis and DET.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1emsL4%3D&md5=34aa30047fa731eb0960442af714978bCAS |
[21] H. Ernstberger, W. Davison, H. Zhang, A. Tye, S. Young, Measurement and dynamic modeling of trace metal mobilization in soils using DGT and DIFS. Environ. Sci. Technol. 2002, 36, 349.
| Measurement and dynamic modeling of trace metal mobilization in soils using DGT and DIFS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVWitA%3D%3D&md5=5835b5d35f22364a3a8a08928eaa85fdCAS | 11871548PubMed |
[22] M. H. Tusseau-Vuillemin, R. Gilbin, M. Taillefert, A dynamic numerical model to characterize labile metal complexes collected with diffusion gradient in thin films devices. Environ. Sci. Technol. 2003, 37, 1645.
| A dynamic numerical model to characterize labile metal complexes collected with diffusion gradient in thin films devices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFGnu7o%3D&md5=5c9486cd54933710dde6fc8808e4b5d3CAS | 12731849PubMed |
[23] F. Degryse, E. Smolders, R. Merckx, Labile Cd complexes increase Cd availability to plants. Environ. Sci. Technol. 2006, 40, 830.
| Labile Cd complexes increase Cd availability to plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlarsrfK&md5=d7c71a035af8d551d3eac288f2a566d6CAS | 16509325PubMed |
[24] N. J. Lehto, W. Davison, H. Zhang, W. Tych, An evaluation of DGT performance using a dynamic numerical model. Environ. Sci. Technol. 2006, 40, 6368.
| An evaluation of DGT performance using a dynamic numerical model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFahurg%3D&md5=f221c2f45a498520de11767b221027e1CAS | 17120567PubMed |
[25] J. L. Levy, H. Zhang, W. Davison, J. Galceran, J. Puy, Kinetic signatures of metals in the presence of Suwannee River fulvic acid. Environ. Sci. Technol. 2012, 46, 3335.
| Kinetic signatures of metals in the presence of Suwannee River fulvic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFSitrc%3D&md5=853725c5879aac51aa366c34f04037fcCAS | 22352943PubMed |
[26] S. Mongin, R. Uribe, C. Rey-Castro, J. Cecilia, J. Galceran, J. Puy, Limits of the linear accumulation regime of DGT sensors. Environ. Sci. Technol. 2013, 47, 10 438.
| 1:CAS:528:DC%2BC3sXht1KltLbF&md5=60d5fe1c5975e041dcf8510d1efad2f5CAS |
[27] J. Puy, R. Uribe, S. Mongin, J. Galceran, J. Cecilia, J. Levy, H. Zhang, W. Davison, Lability criteria in diffusive gradients in thin films. J. Phys. Chem. A 2012, 116, 6564.
| Lability criteria in diffusive gradients in thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFegsbc%3D&md5=c0a87724d53bd70a3a1e16e63dd4009bCAS | 22404162PubMed |
[28] J. Galceran, J. Puy, J. Salvador, J. Cecília, H. P. van Leeuwen, Voltammetric lability of metal complexes at spherical microelectrodes with various radii. J. Electroanal. Chem. 2001, 505, 85.
| Voltammetric lability of metal complexes at spherical microelectrodes with various radii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVGkt78%3D&md5=09ff0c65e9df992c8f42a7be3037ff8eCAS |
[29] D. Alemani, J. Buffle, Z. Zhang, J. Galceran, B. Chopard, Metal flux and dynamic speciation at (bio)interfaces. Part III: MHEDYN, a general code for metal flux computation; application to simple and fulvic complexants. Environ. Sci. Technol. 2008, 42, 2021.
| Metal flux and dynamic speciation at (bio)interfaces. Part III: MHEDYN, a general code for metal flux computation; application to simple and fulvic complexants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhslKns7s%3D&md5=4dddca41ba716db0956c08f7de684a2fCAS | 18409631PubMed |
[30] R. Uribe, J. Puy, J. Cecilia, J. Galceran, Kinetic mixture effects in diffusion gradients in thin films (DGT). Phys. Chem. Chem. Phys. 2013, 15, 11349.
| Kinetic mixture effects in diffusion gradients in thin films (DGT).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1yhtLk%3D&md5=6a08dd7c11c525bfea37d244acd30ce1CAS | 23733078PubMed |
[31] J. Galceran, J. Puy, J. Salvador, J. Cecília, F. Mas, J. L. Garcés, Lability and mobility effects on mixtures of ligands under steady-state conditions. Phys. Chem. Chem. Phys. 2003, 5, 5091.
| Lability and mobility effects on mixtures of ligands under steady-state conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFWjtbw%3D&md5=95698de4c4d329a5dde57e7eb9ce1f2cCAS |
[32] H. Zhang, W. Davison, Performance-characteristics of diffusion gradients in thin- films for the in-situ measurement of trace-metals in aqueous-solution. Anal. Chem. 1995, 67, 3391.
| Performance-characteristics of diffusion gradients in thin- films for the in-situ measurement of trace-metals in aqueous-solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnslKgtrc%3D&md5=e0fcb9e8e6a3c8266970f72de4a797a9CAS |
[33] K. W. Warnken, W. Davison, H. Zhang, J. Galceran, J. Puy, In situ measurements of metal complex exchange kinetics in freshwater. Environ. Sci. Technol. 2007, 41, 3179.
| In situ measurements of metal complex exchange kinetics in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsV2mur0%3D&md5=fe7a85fc4c60471d81fd15308885ffdcCAS | 17539523PubMed |
[34] P. L. R. van der Veeken, H. P. van Leeuwen, Gel-water partitioning of soil humics in diffusive gradient in thin film (DGT) analysis of their metal complexes. Environ. Chem. 2012, 9, 24.
| Gel-water partitioning of soil humics in diffusive gradient in thin film (DGT) analysis of their metal complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1amtb8%3D&md5=0f2cb3ceeffdcd86daf31457b1be39b8CAS |
[35] E. R. Unsworth, K. W. Warnken, H. Zhang, W. Davison, F. Black, J. Buffle, J. Cao, R. Cleven, J. Galceran, P. Gunkel, E. Kalis, D. Kistler, H. P. van Leeuwen, M. Martin, S. Noel, Y. Nur, N. Odzak, J. Puy, W. H. van Riemsdijk, L. Sigg, E. Temminghoff, M. L. Tercier-Waeber, S. Toepperwien, R. M. Town, L. P. Weng, H. B. Xue, Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques. Environ. Sci. Technol. 2006, 40, 1942.
| Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSku7o%3D&md5=775685f59d744e3a821378834de141a1CAS | 16570619PubMed |
[36] N. Serrano, J. M. Díaz-Cruz, C. Ariño, M. Esteban, J. Puy, E. Companys, J. Galceran, J. Cecilia, Full-wave analysis of stripping chronopotentiograms at scanned deposition potential (SSCP) as a tool for heavy metal speciation: theoretical development and application to Cd(II)-phthalate and Cd(II)-iodide systems. J. Electroanal. Chem. 2007, 600, 275.
| Full-wave analysis of stripping chronopotentiograms at scanned deposition potential (SSCP) as a tool for heavy metal speciation: theoretical development and application to Cd(II)-phthalate and Cd(II)-iodide systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslGgsg%3D%3D&md5=dc02f6fd9418e01287ba99443ceae289CAS |
[37] L. Six, E. Smolders, R. Merckx, The performance of DGT versus conventional soil phosphorus tests in tropical soils-maize and rice responses to P application. Plant Soil 2013, 366, 49.
| The performance of DGT versus conventional soil phosphorus tests in tropical soils-maize and rice responses to P application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtlCms78%3D&md5=18cb1ebce915043ecc49ba13a994f37bCAS |
[38] S. C. Apte, G. E. Batley, K. C. Bowles, P. L. Brown, N. Creighton, L. T. Hales, R. V. Hyne, M. Julli, S. I. Markich, F. Pablo, N. J. Rogers, J. L. Stauber, K. Wilde, A comparison of copper speciation measurements with the toxic responses of three sensitive freshwater organisms. Environ. Chem. 2005, 2, 320.
| A comparison of copper speciation measurements with the toxic responses of three sensitive freshwater organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12gt7%2FE&md5=d6d53ad78aa4829438f9eab65e473f83CAS |
[39] J. Salvador, J. Puy, J. Cecilia, J. Galceran, Lability of complexes in steady state finite planar diffusion. J. Electroanal. Chem. 2006, 588, 303.
| Lability of complexes in steady state finite planar diffusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVSmuro%3D&md5=0257ea3660528394db7c5b00cee44f2cCAS |
[40] S. Mongin, R. Uribe, J. Puy, J. Cecilia, J. Galceran, H. Zhang, W. Davison, Key role of the resin layer thickness in the lability of complexes measured by DGT. Environ. Sci. Technol. 2011, 45, 4869.
| Key role of the resin layer thickness in the lability of complexes measured by DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVCmsL0%3D&md5=7b783d1bedab3fc2f7a9a0eeac8a1a9aCAS | 21561131PubMed |
[41] R. Uribe, S. Mongin, J. Puy, J. Cecilia, J. Galceran, H. Zhang, W. Davison, Contribution of partially labile complexes to the DGT metal flux. Environ. Sci. Technol. 2011, 45, 5317.
| Contribution of partially labile complexes to the DGT metal flux.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVWlsLs%3D&md5=60f1fe858385e914c6a4aeaeb2d767e0CAS | 21608530PubMed |
[42] J. L. Levy, H. Zhang, W. Davison, J. Puy, J. Galceran, Assessment of trace metal binding kinetics in the resin phase of diffusive gradients in thin films. Anal. Chim. Acta 2012, 717, 143.
| Assessment of trace metal binding kinetics in the resin phase of diffusive gradients in thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCitLc%3D&md5=95765b8aa054949f79a37429c4742082CAS | 22304826PubMed |
[43] J. Puy, J. Galceran, S. Cruz-Gonzalez, C. A. David, R. Uribe, C. Lin, H. Zhang, W. Davison, Metal accumulation in DGT: impact of ionic strength and kinetics of dissociation of complexes in the resin domain. Anal. Chem. 2014, 86, 7740.
| Metal accumulation in DGT: impact of ionic strength and kinetics of dissociation of complexes in the resin domain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFChur3O&md5=4b5bc2bcfbc46a902b10393e76af594fCAS | 25012951PubMed |
[44] R. M. Town, P. Chakraborty, H. P. van Leeuwen, Dynamic DGT speciation analysis and applicability to natural heterogeneous complexes. Environ. Chem. 2009, 6, 170.
| Dynamic DGT speciation analysis and applicability to natural heterogeneous complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyqtrY%3D&md5=fb0f1300ac11426e7eb511d15674ef45CAS |
[45] M. R. Shafaei Arvajeh, N. Lehto, O. A. Garmo, H. Zhang, Kinetic studies of Ni organic complexes using diffusive gradients in thin films (DGT) with double binding layers and a dynamic numerical model. Environ. Sci. Technol. 2013, 47, 463.
| Kinetic studies of Ni organic complexes using diffusive gradients in thin films (DGT) with double binding layers and a dynamic numerical model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1OnsrzN&md5=b5b74f5ff70aa9761ad93d552e4b6366CAS | 23153338PubMed |
[46] N. J. Lehto, W. Davison, H. Zhang, The use of ultra-thin diffusive gradients in thin-films (DGT) devices for the analysis of trace metal dynamics in soils and sediments: a measurement and modelling approach. Environ. Chem. 2012, 9, 415.
| The use of ultra-thin diffusive gradients in thin-films (DGT) devices for the analysis of trace metal dynamics in soils and sediments: a measurement and modelling approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ajsb7O&md5=1adae95d454488c9495b39180a42f330CAS |
[47] J. Salvador, J. L. Garcés, E. Companys, J. Cecilia, J. Galceran, J. Puy, R. M. Town, Ligand mixture effects in metal complex lability. J. Phys. Chem. A 2007, 111, 4304.
| Ligand mixture effects in metal complex lability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslejs70%3D&md5=b36f30f5618747ca6601c499666b63e4CAS | 17469809PubMed |
[48] Z. S. Zhang, J. Buffle, R. M. Town, J. Puy, H. P. van Leeuwen, Metal flux in ligand mixtures. 2. Flux enhancement due to kinetic interplay: comparison of the reaction layer approximation with a rigorous approach. J. Phys. Chem. A 2009, 113, 6572.
| Metal flux in ligand mixtures. 2. Flux enhancement due to kinetic interplay: comparison of the reaction layer approximation with a rigorous approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtF2ksL4%3D&md5=461728145ca5aad344e6dc0ae3d55fd5CAS |
[49] H. P. van Leeuwen, J. Galceran, Biointerfaces and mass transfer, in Physicochemical Kinetics and Transport at Chemical–Biological Surfaces (Eds H. P. van Leeuwen, W. Koester) 2004, pp. 113–146 (Wiley: Chichester, UK).
[50] O. A. Garmo, K. R. Naqvi, O. Royset, E. Steinnes, Estimation of diffusive boundary layer thickness in studies involving diffusive gradients in thin films (DGT). Anal. Bioanal. Chem. 2006, 386, 2233.
| Estimation of diffusive boundary layer thickness in studies involving diffusive gradients in thin films (DGT).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cmsb3J&md5=6f67dc04a725b619ae2cd541b2925cdeCAS | 17086387PubMed |
[51] E. Uher, M. H. Tusseau-Vuillemin, C. Gourlay-France, DGT measurement in low flow conditions: diffusive boundary layer and lability considerations. Environmental Science-Processes & Impacts 2013, 15, 1351.
| DGT measurement in low flow conditions: diffusive boundary layer and lability considerations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVWmtbnI&md5=c58af046f79e1ee2a91b61110dbec4b7CAS |
[52] H. Zhang, W. Davison, R. Gadi, T. Kobayashi, In situ measurement of dissolved phosphorus in natural waters using DGT. Anal. Chim. Acta 1998, 370, 29.
| In situ measurement of dissolved phosphorus in natural waters using DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvFeqs78%3D&md5=1ac7504d32482ec6517f82080a0e3b49CAS |
[53] G. S. C. Turner, G. A. Mills, M. J. Bowes, J. L. Burnett, S. Amos, G. R. Fones, Evaluation of DGT as a long-term water quality monitoring tool in natural waters; uranium as a case study. Environmental Science-Processes & Impacts 2014, 16, 393.
| Evaluation of DGT as a long-term water quality monitoring tool in natural waters; uranium as a case study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt1amurs%3D&md5=5124a8c201957cf7ee1c2071376f3acdCAS |
[54] M. C. Alfaro-De la Torre, P.-Y. Beaulieu, A. Tessier, In situ measurement of trace metals in lakewater using the dialysis and DGT techniques. Anal. Chim. Acta 2000, 418, 53.
| In situ measurement of trace metals in lakewater using the dialysis and DGT techniques.Crossref | GoogleScholarGoogle Scholar |
[55] K. W. Warnken, H. Zhang, W. Davison, Accuracy of the diffusive gradients in thin-films technique: diffusive boundary layer and effective sampling area considerations. Anal. Chem. 2006, 78, 3780.
| Accuracy of the diffusive gradients in thin-films technique: diffusive boundary layer and effective sampling area considerations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVSktrg%3D&md5=9ba4fc4b132cbc2a0114ea9ce3b8a6a2CAS | 16737237PubMed |
[56] N. Fatin-Rouge, A. Milon, J. Buffle, R. R. Goulet, A. Tessier, Diffusion and partitioning of solutes in agarose hydrogels: the relative influence of electrostatic and specific interactions. J. Phys. Chem. B 2003, 107, 12 126.
| Diffusion and partitioning of solutes in agarose hydrogels: the relative influence of electrostatic and specific interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFWkt74%3D&md5=bc4c29078124f9669f96d33fc0c12b89CAS |
[57] L. P. Yezek, P. L. R. van der Veeken, H. P. van Leeuwen, Donnan effects in metal speciation analysis by DET/DGT. Environ. Sci. Technol. 2008, 42, 9250.
| Donnan effects in metal speciation analysis by DET/DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKlsrjN&md5=c76f61a5c6d0b37e834fb59285d809f0CAS | 19174900PubMed |
[58] E. Uher, H. Zhang, S. Santos, M. H. Tusseau-Vuillemin, C. Gourlay-France, Impact of biofouling on diffusive gradient in thin film measurements in water. Anal. Chem. 2012, 84, 3111.
| Impact of biofouling on diffusive gradient in thin film measurements in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt12lt7o%3D&md5=41836c3ba16fe50a91594b192bb71535CAS | 22397635PubMed |
[59] E. J. M. Temminghoff, A. C. C. Plette, R. van Eck, W. H. van Riemsdijk, Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane Technique. Anal. Chim. Acta 2000, 417, 149.
| Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane Technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslWlsb8%3D&md5=f4b47de4f37b02a07fb64b8588027be8CAS |
[60] N. Fatin-Rouge, K. Starchev, J. Buffle, Size effects on diffusion processes within agarose gels. Biophys. J. 2004, 86, 2710.
| Size effects on diffusion processes within agarose gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVyjtLs%3D&md5=3b39bb2480ca405458ee1401dbebf15cCAS | 15111390PubMed |
[61] P. L. R. van der Veeken, J. P. Pinheiro, H. P. van Leeuwen, Metal speciation by DGT/DET in colloidal complex systems. Environ. Sci. Technol. 2008, 42, 8835.
| Metal speciation by DGT/DET in colloidal complex systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSnu7zE&md5=c3eb8eff43ff46cd87865867743ae0a5CAS |
[62] O. A. Garmo, W. Davison, H. Zhang, Effects of binding of metals to the hydrogel and filter membrane on the accuracy of the diffusive gradients in thin films technique. Anal. Chem. 2008, 80, 9220.
| Effects of binding of metals to the hydrogel and filter membrane on the accuracy of the diffusive gradients in thin films technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWqu73E&md5=3899edf2c1f1d4267667c87d58310a58CAS | 19551987PubMed |
[63] O. A. Garmo, Using a dynamic numerical model to simulate the effects of lateral diffusion and diffusive boundary layer on uptake in different types of DGT devices. In Conference on DGT and the Environment, 8–11 July 2013, Lancaster, UK (Eds H. Zhang, H. Pouran, N. Lehto, Y. Gao and C. Chen) 2013, p. 67.
[64] G. Alberti, R. Biesuz, Empore (TM) membrane vs. Chelex 100: thermodynamic and kinetic studies on metals sorption. React. Funct. Polym. 2011, 71, 588.
| Empore (TM) membrane vs. Chelex 100: thermodynamic and kinetic studies on metals sorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1eitLs%3D&md5=d1ba350b9c016c35a5d314279d4cdce1CAS |
[65] M. Pesavento, R. Biesuz, M. Gallorini, A. Profumo, Sorption mechanism of trace amounts of divalent metal-ions on a chelating resin containing iminodiacetate groups. Anal. Chem. 1993, 65, 2522.
| Sorption mechanism of trace amounts of divalent metal-ions on a chelating resin containing iminodiacetate groups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlt1Gqsbo%3D&md5=ca1bcabd2f0cd56a5c8df3bc518085b4CAS |
[66] F. M. M. Morel, J. G. Hering, Complexation, in Principles and Applications of Aquatic Chemistry 1993, pp. 319–420 (Wiley: New York).
[67] J. Gimpel, H. Zhang, W. Hutchinson, W. Davison, Effect of solution composition, flow and deployment time on the measurement of trace metals by the diffusive gradient in thin films technique. Anal. Chim. Acta 2001, 448, 93.
| Effect of solution composition, flow and deployment time on the measurement of trace metals by the diffusive gradient in thin films technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptVKq&md5=64ce7f63742dccbe477aa05dbe8c1cceCAS |
[68] F. Degryse, E. Smolders, I. Oliver, H. Zhang, Relating soil solution Zn concentration to diffusive gradients in thin films measurements in contaminated soils. Environ. Sci. Technol. 2003, 37, 3958.
| Relating soil solution Zn concentration to diffusive gradients in thin films measurements in contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVyqtLc%3D&md5=3abb3a3e783f2f2d6abbecc02d19bc33CAS | 12967119PubMed |
[69] M. P. Harper, W. Davison, W. Tych, DIFS – a modelling and simulation tool for DGT induced trace metal remobilisation in sediments and soils. Environ. Model. Softw. 2000, 15, 55.
| DIFS – a modelling and simulation tool for DGT induced trace metal remobilisation in sediments and soils.Crossref | GoogleScholarGoogle Scholar |
[70] F. Degryse, E. Smolders, H. Zhang, W. Davison, Predicting availability of mineral elements to plants with the DGT technique: a review of experimental data and interpretation by modelling. Environ. Chem. 2009, 6, 198.
| Predicting availability of mineral elements to plants with the DGT technique: a review of experimental data and interpretation by modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CjurfI&md5=cafd8c0632f34b93501644322053cd5cCAS |
[71] D. Ferreira, P. Ciffroy, M. H. Tusseau-Vuillemin, A. Bourgeault, J. M. Gamier, DGT as surrogate of biomonitors for predicting the bioavailability of copper in freshwaters: an ex situ validation study. Chemosphere 2013, 91, 241.
| DGT as surrogate of biomonitors for predicting the bioavailability of copper in freshwaters: an ex situ validation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ekur4%3D&md5=64c83d965c7eda4260bce615fa6e549dCAS | 23374294PubMed |