Adsorption of novel insensitive munitions compounds at clay mineral and metal oxide surfaces
Billy R. Linker A , Raju Khatiwada A , Nico Perdrial A B , Leif Abrell A C , Reyes Sierra-Alvarez D , James A. Field D and Jon Chorover A C EA Department of Soil, Water and Environmental Science, University of Arizona, PO Box 210038, Tucson, AZ 85721-0038, USA.
B Department of Geology, University of Vermont, 213 Delehanty Hall, Burlington, VT, 05405, USA.
C Arizona Laboratory for Emerging Contaminants, Department of Soil, Water and Environmental Science, University of Arizona, PO Box 210038, Tucson, AZ 85721-0038, USA.
D Department of Chemical and Environmental Engineering, University of Arizona, PO Box 210020, Tucson, AZ 85721-0020, USA.
E Corresponding author. Email: chorover@email.arizona.edu
Environmental Chemistry 12(1) 74-84 https://doi.org/10.1071/EN14065
Submitted: 31 March 2014 Accepted: 22 September 2014 Published: 7 January 2015
Environmental context. Insensitive munitions compounds are increasingly used in the manufacture of military energetic materials because of their lower unintentional explosion risk during transport and handling. The current study was designed to better resolve the environmental chemistry of two of these insensitive munitions compounds. In particular, we investigated the solid–solution partitioning that occurs when aqueous solutions containing dissolved unexploded ordinances come into contact with soil mineral media.
Abstract. Insensitive munitions compounds (IMCs) are increasingly used for military energetic materials, yet their environmental fate is poorly understood. Prior work has shown that the nitroaromatic 2,4-dinitroanisole (DNAN) and the heterocyclic nitrogen compound 3-nitro-1,2,4-triazole-5-one (NTO), both newly introduced IMCs, can undergo microbially mediated reduction under anoxic conditions to form 2-methoxy-5-nitroaniline (MENA) and 3-amino-1,2,4,triazole-5-one (ATO) respectively. In the present work, DNAN, MENA, NTO and ATO were subjected to batch adsorption–desorption experiments with specimen soil mineral adsorbents that included montmorillonite, birnessite and goethite. DNAN and MENA exhibited high affinity, linear adsorption to montmorillonite, with enhanced surface excess at a given aqueous equilibrium concentration for K+-saturated relative to Na+-saturated forms, but negligible adsorption to the metal oxides. Powder X-ray diffraction data and surface occupancy calculations indicate interlayer intrusion by DNAN and MENA and adsorption at siloxane sites. Conversely, NTO and ATO exhibited low sorptive affinity and apparent anion exclusion upon reaction with the negatively charged layer silicate clays. However, both of the N-heterocycles showed positive adsorption affinities for goethite (Kd values of 11.1 and 3.1, and HI values of 1.8 and 0.50 respectively), consistent with anion adsorption to the positively charged goethite surface. Both ATO and MENA were subjected to apparent oxidative, abiotic chemical transformation during reaction with birnessite. The results indicate that the IMCs studied will exhibit adsorptive retardation – and their biodegradation products may undergo further abiotic transformation – upon reaction at soil mineral surfaces.
References
[1] M. Smith, M. Cliff, NTO-Based Explosives: A Technology Review 1999 (DTSO Aeronautical Maritime Research Laboratory: Melbourne).[2] S. B. Haderlein, K. W. Weissmahr, R. P. Schwarzenbach, Specific adsorption of nitroaromatic explosives and pesticides to clay minerals. Environ. Sci. Technol. 1996, 30, 612.
| Specific adsorption of nitroaromatic explosives and pesticides to clay minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtFWguw%3D%3D&md5=b1e881f8854b1abe43d03472e2a77004CAS |
[3] L. H. Keith, W. A. Telliard, Priority pollutants I – a perspective view. Environ. Sci. Technol. 1979, 13, 416.
| Priority pollutants I – a perspective view.Crossref | GoogleScholarGoogle Scholar |
[4] K. S. Ju, R. E. Parales, Nitroaromatic compounds, from synthesis to biodegradation. Microbiol. Mol. Biol. Rev. 2010, 74, 250.
| Nitroaromatic compounds, from synthesis to biodegradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslKgt7s%3D&md5=a4087eb297d68967cce43daca4bcef12CAS | 20508249PubMed |
[5] V. Purohit, A. Basu, Mutagenicity of nitroaromatic compounds. Chem. Res. Toxicol. 2000, 13, 673.
| Mutagenicity of nitroaromatic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFSitLg%3D&md5=034b1b6b4add55793a8ccfb10a68a116CAS | 10956054PubMed |
[6] E. L. Rylott, A. Lorenz, N. C. Bruce, Biodegradation and biotransformation of explosives. Curr. Opin. Biotechnol. 2011, 22, 434.
| Biodegradation and biotransformation of explosives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFWjsr4%3D&md5=1062cd6d3b4beaf797d9a6c9b359df33CAS | 21094036PubMed |
[7] V. M. Boddu, K. Abburi, S. W. Maloney, R. Damavarapu, Thermophysical properties of an insensitive munitions compound, 2,4-dinitroanisole. J. Chem. Eng. Data 2008, 53, 1120.
| Thermophysical properties of an insensitive munitions compound, 2,4-dinitroanisole.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVyhu7Y%3D&md5=3dc1052abfde08ef2f5de4435e1279d2CAS |
[8] C. Olivares, J. D. Liang, L. Abrell, R. Sierra-Alvarez, J. A. Field, Pathways of reductive 2,4-dinitroanisole (DNAN) biotransformation in sludge. Biotechnol. Bioeng. 2013, 110, 1595.
| Pathways of reductive 2,4-dinitroanisole (DNAN) biotransformation in sludge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOkt78%3D&md5=f91fb5df971e58ff3d7645d61d2aff05CAS | 23280483PubMed |
[9] L. Le Campion, A. Vandais, J. Ouazzani, Microbial remediation of NTO in aqueous industrial wastes. FEMS Microbiol. Lett. 1999, 176, 197.
| Microbial remediation of NTO in aqueous industrial wastes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVKhtrk%3D&md5=df0ace6504fff61a706d6b35eee69813CAS | 10418147PubMed |
[10] S. A. Boyd, G. Y. Sheng, B. J. Teppen, C. J. Johnston, Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays. Environ. Sci. Technol. 2001, 35, 4227.
| Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvFGlu7c%3D&md5=dc5ab97c5cb567a04a2404b0edf07505CAS | 11718335PubMed |
[11] C. T. Johnston, B. Khan, E. F. Barth, S. Chattopadhyay, S. A. Boyd, Nature of the interlayer environment in an organoclay optimized for the sequestration of dibenzo-p-dioxin. Environ. Sci. Technol. 2012, 46, 9584.
| Nature of the interlayer environment in an organoclay optimized for the sequestration of dibenzo-p-dioxin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFalur7N&md5=8abe3288802e2f68fbe121da157acdeeCAS | 22856528PubMed |
[12] K. W. Weissmahr, S. B. Haderlein, R. P. Schwarzenbach, R. Hany, R. Nuesch, In situ spectroscopic investigations of adsorption mechanisms of nitroaromatic compounds at clay minerals. Environ. Sci. Technol. 1997, 31, 240.
| In situ spectroscopic investigations of adsorption mechanisms of nitroaromatic compounds at clay minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVyjsro%3D&md5=3eb23cebb8a9f5af45464a9c2356e52bCAS |
[13] S. Chattopadhyay, S. J. Traina, Spectroscopic study of sorption of nitrogen heterocyclic compounds on phyllosilicates. Langmuir 1999, 15, 1634.
| Spectroscopic study of sorption of nitrogen heterocyclic compounds on phyllosilicates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1Shtw%3D%3D&md5=75a1351f2edf3fa5649d21d153325180CAS |
[14] J. Chorover, M. K. Amistadi, W. D. Burgos, P. G. Hatcher, Quinoline sorption on kaolinite-humic acid complexes. Soil Sci. Soc. Am. J. 1999, 63, 850.
| Quinoline sorption on kaolinite-humic acid complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFCnsro%3D&md5=d04350ad03da89a89558087c5cb86cd8CAS |
[15] K. Hanna, Sorption of two aromatic acids onto iron oxides: Experimental study and modeling. J. Colloid Interface Sci. 2007, 309, 419.
| Sorption of two aromatic acids onto iron oxides: Experimental study and modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFOks7g%3D&md5=08c018acc00c772daab2c66ababbb545CAS | 17303153PubMed |
[16] N. Nilsson, P. Persson, L. Lovgren, S. Sjoberg, Competitive surface complexation of o-phthalate and phosphate on goethite (α-FeOOH) particles. Geochim. Cosmochim. Acta 1996, 60, 4385.
| Competitive surface complexation of o-phthalate and phosphate on goethite (α-FeOOH) particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks1SqsQ%3D%3D&md5=a78fe4493b6c063d779064c746a85a3fCAS |
[17] S. Laha, R. G. Luthy, Oxidation of aniline and other primary aromatic-amines by manganese-dioxide. Environ. Sci. Technol. 1990, 24, 363.
| Oxidation of aniline and other primary aromatic-amines by manganese-dioxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXotlKnuw%3D%3D&md5=ec428e9ce0c51795eb63f8f8935703fbCAS |
[18] H. Li, L. S. Lee, D. G. Schulze, C. A. Guest, Role of soil manganese in the oxidation of aromatic amines. Environ. Sci. Technol. 2003, 37, 2686.
| Role of soil manganese in the oxidation of aromatic amines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsleisLc%3D&md5=851adc501b9f14f0dcd00b89745d2829CAS | 12854706PubMed |
[19] E. H. Majcher, J. Chorover, J. M. Bollag, P. M. Huang, Evolution of CO2 during birnessite-induced oxidation of 14C-labeled catechol. Soil Sci. Soc. Am. J. 2000, 64, 157.
| Evolution of CO2 during birnessite-induced oxidation of 14C-labeled catechol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmslyhtro%3D&md5=fa576815fd7888179be29178ec26ef41CAS |
[20] G. Sposito, The Surface Chemistry of Natural Particles 2004 (Oxford University Press: New York).
[21] R. J. Atkinson, A. M. Posner, J. P. Quirk, Adsorption of potential-determining ions at ferric oxide-aqueous electrolyte interface. J. Phys. Chem. 1967, 71, 550.
| Adsorption of potential-determining ions at ferric oxide-aqueous electrolyte interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXmvFansw%3D%3D&md5=659873d35540998d0b8add190154c404CAS |
[22] R. M. McKenzie, Synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineral. Mag. 1971, 38, 493.
| Synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XitVOmsQ%3D%3D&md5=56bb5463ae97bec504c01f310d7d8a26CAS |
[23] J. Chorover, M. K. Amistadi, Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces. Geochim. Cosmochim. Acta 2001, 65, 95.
| Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitVygtg%3D%3D&md5=9d6c956ff95590db004bfb497c248587CAS |
[24] L. Le Campion, J. Ouazzani, Synthesis of 5-amino-1,2,4-triazole-3-one through the nitroreduction of 5-nitro-1,2,4-triazole-3-one. Comparison between chemical and microbiological catalysis. Biocatalysis Biotransform. 1999, 17, 37.
| Synthesis of 5-amino-1,2,4-triazole-3-one through the nitroreduction of 5-nitro-1,2,4-triazole-3-one. Comparison between chemical and microbiological catalysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvFehu7w%3D&md5=ecfb1ac657e4fd917c11b7463f4a2a81CAS |
[25] L. Le Campion, C. Giannotti, J. Ouazzani, Photocatalytic degradation of 5-nitro-1,2,4-triazol-3-one NTO in aqueous suspension of TiO2. Comparison with Fenton oxidation. Chemosphere 1999, 38, 1561.
| Photocatalytic degradation of 5-nitro-1,2,4-triazol-3-one NTO in aqueous suspension of TiO2. Comparison with Fenton oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFSktLc%3D&md5=baaa2f27885d812729f8668f501bdfc8CAS | 10070736PubMed |
[26] B. Rao, W. Wang, Q. S. Cai, T. Anderson, B. H. Gu, Photochemical transformation of the insensitive munitions compound 2,4-dinitroanisole. Sci. Total Environ. 2013, 443, 692.
| Photochemical transformation of the insensitive munitions compound 2,4-dinitroanisole.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFKmurw%3D&md5=f63fb2f23ffdc2d3276d0b6989663e93CAS | 23228715PubMed |
[27] W. L. Huang, H. Yu, W. J. Weber, Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments – 1. A comparative analysis of experimental protocols. J. Contam. Hydrol. 1998, 31, 129.
| Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments – 1. A comparative analysis of experimental protocols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlSrtb8%3D&md5=c4fb08ae3c5e3c4687825bdc256bd3deCAS |
[28] J. Jerez, M. Flury, Humic acid-, ferrihydrite-, and aluminosilicate-coated sands for column transport experiments. Colloid Surf. A 2006, 273, 90.
| Humic acid-, ferrihydrite-, and aluminosilicate-coated sands for column transport experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjtl2l&md5=d62b7ad76900685482596ec3b4a4e8a4CAS |
[29] C. Tournassat, C. A. J. Appelo, Modelling approaches for anion-exclusion in compacted Na-bentonite. Geochim. Cosmochim. Acta 2011, 75, 3698.
| Modelling approaches for anion-exclusion in compacted Na-bentonite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFyru7k%3D&md5=9b9135328b087c19800bb9616542e96fCAS |
[30] A. L. Gimsing, J. C. Sorensen, B. W. Strobel, H. C. B. Hansen, Adsorption of glucosinolates to metal oxides, clay minerals and humic acid. Appl. Clay Sci. 2007, 35, 212.
| Adsorption of glucosinolates to metal oxides, clay minerals and humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFKmsr0%3D&md5=aa6bbea8190bbdfbf1aa6319e20d592bCAS |
[31] L. C. Zhang, L. Luo, S. Z. Zhang, Adsorption of phenanthrene and 1,3-dinitrobenzene on cation-modified clay minerals. Colloids Surf. A Physicochem. Eng. Asp. 2011, 377, 278.
| Adsorption of phenanthrene and 1,3-dinitrobenzene on cation-modified clay minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVKqtrw%3D&md5=24ffd648b4fcfcee8525e8062d8a4716CAS |
[32] T. Polubesova, M. Borisover, Two components of chloride anion exclusion volume in montmorillonitic soils. Colloids Surf. A Physicochem. Eng. Asp. 2009, 347, 175.
| Two components of chloride anion exclusion volume in montmorillonitic soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGqs7fL&md5=158b473eaba30cb0592343a8c2d1d4daCAS |
[33] J. Chorover, Zero-charge points, in Encyclopedia of Soils in the Environment (Ed. D. L. Sparks) 2005, pp. 367–373 (Elsevier: Oxford, UK).
[34] J. Chorover, M. L. Brusseau, Kinetics of sorption–desorption, in Kinetics of Water–Rock Interaction (Ed S. L. Brantley, J. D. Kubicki, A. F. White). 2008, pp. 109–149 (Springer: New York).
[35] B. M. Tebo, J. R. Bargar, B. G. Clement, G. J. Dick, K. J. Murray, D. Parker, R. Verity, S. M. Webb, Biogenic manganese oxides: properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 2004, 32, 287.
| Biogenic manganese oxides: properties and mechanisms of formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVyisro%3D&md5=b11e93824f5867cf2aea394f956e90ccCAS |
[36] Y. He, J. Xu, Y. Zhang, C. S. Guo, L. Li, Y. Q. Wang, Oxidative transformation of carbamazepine by manganese oxides. Environ. Sci. Pollut. Res. Int. 2012, 19, 4206.
| Oxidative transformation of carbamazepine by manganese oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCqurvF&md5=e0ac8415d5b12167b3deca4e9411f315CAS | 22565984PubMed |
[37] C. O. Ijagbemi, M. Baek, D. Kim, Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. J. Hazard. Mater. 2009, 166, 538.
| Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt12qsr0%3D&md5=16b8c5c8fddac842f3cf645eef77d446CAS | 19131158PubMed |
[38] 5-Nitro-o-anisidine (CAS 99-59-2) 2007. Available at http://toxnet.nlm.nih.gov/cpdb/chempages/5-NITRO-o-ANISIDINE.html [Verified 8 December 2014].
[39] N. Bhatnagar, G. Kamath, J. J. Potoff, Prediction of 1-octanol-water and air-water partition coefficients for nitro-aromatic compounds from molecular dynamics simulations. Phys. Chem. Chem. Phys. 2013, 15, 6467.
| Prediction of 1-octanol-water and air-water partition coefficients for nitro-aromatic compounds from molecular dynamics simulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1ais7c%3D&md5=85e4e1e04adbb7cfb37aed10acbfdfeeCAS | 23529577PubMed |
[40] K.-Y. Lee, L. B. Chapman, M. D. Cobura, 3-Nitro-1,2,4-triazol-5-one, a less sensitive explosive. J. Energ. Mater. 1987, 5, 27.
| 3-Nitro-1,2,4-triazol-5-one, a less sensitive explosive.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlsl2mtr4%3D&md5=c4aa44dc8faebeb10357858341544745CAS |