Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Analysis of soil organic matter at the solid–water interface by nuclear magnetic resonance spectroscopy

Stephanie C. Genest A , Myrna J. Simpson A B , André J. Simpson A , Ronald Soong A and David J. McNally A
+ Author Affiliations
- Author Affiliations

A Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.

B Corresponding author. Email: myrna.simpson@utoronto.ca

Environmental Chemistry 11(4) 472-482 https://doi.org/10.1071/EN14060
Submitted: 19 March 2014  Accepted: 16 May 2014   Published: 30 July 2014

Environmental context. Structural and conformational information on organic matter–clay complexes and whole soils was obtained using different NMR methods. The results show that organic matter interactions with clay mineral surfaces determine the accessibility of specific organic matter components at the soil–water interface. This physical conformation may also play a role in soil biogeochemical processes and binding to pollutants in terrestrial environments.

Abstract. Organic matter (OM)–mineral interactions play an important role in OM preservation, global carbon cycling and contaminant transport. Studies have indicated that preferential sorption of OM is dependent on mineral type and solution conditions. In this study, 1H high resolution–magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy was employed to examine OM chemistry in organo-clay complexes. Dissolved OM from a forest soil, Leonardite humic acid and Peat humic acid were sorbed to Ca2+ enriched kaolinite and montmorillonite. As observed using 1H HR-MAS NMR spectroscopy, kaolinite sorbed mainly long-chain aliphatic compounds such as those from plant cuticles whereas montmorillonite sorbed a mixture of aliphatic components and proteins. These results show the preferential sorption of specific dissolved OM components on clay surfaces. This was tested further using solid-state 13C and 1H HR-MAS NMR analysis of whole soils containing kaolinite and montmorillonite as well as a Peat soil for contrast. The species present at the soil–water interface were mainly aliphatic components, carbohydrates and amino acids. Aromatic constituents were present in the soils (observed by solid-state 13C NMR and by 1H HR-MAS NMR spectroscopy when a more penetrating solvent was used) which signifies that these compounds likely exist in more hydrophobic domains that are buried and surface inaccessible. This study highlights the important role of OM interactions with clay minerals in the preservation of OM in soils and suggests that OM–OM associations may also play a role in the protection of specific OM components in soil.

Additional keywords: 1H high-resolution magic angle spinning nuclear magnetic resonance spectroscopy, humin, kaolinite, montmorillonite, organic matter preservation, organic matter sorption, solid-state 13C nuclear magnetic resonance spectroscopy, solution-state 1H nuclear magnetic resonance spectroscopy.


References

[1]  K. Kaiser, G. Guggenberger, The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org. Geochem. 2000, 31, 711.
The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsFSqu7o%3D&md5=0548c461c4dbe792e2590987b4397f84CAS |

[2]  R. G. Keil, D. B. Montlucon, F. G. Prahl, J. I. Hedges, Sorptive preservation of labile organic-matter in marine-sediments. Nature 1994, 370, 549.
Sorptive preservation of labile organic-matter in marine-sediments.Crossref | GoogleScholarGoogle Scholar |

[3]  E. I. Karavanova, Dissolved organic matter: fractional composition and sobability by the soil solid phase. Eurasian Soil Sci. 2013, 46, 833.
Dissolved organic matter: fractional composition and sobability by the soil solid phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Ons7jE&md5=7ea51593d4480403883c871788eacf3cCAS |

[4]  K. Kalbitz, D. Schwesig, J. Rethemeyer, E. Matzner, Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol. Biochem. 2005, 37, 1319.
Stabilization of dissolved organic matter by sorption to the mineral soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlWjtbY%3D&md5=7b38806dfd56164274648e2180004ee6CAS |

[5]  R. Mikutta, C. Mikutta, K. Kalbitz, T. Scheel, K. Kaiser, R. Jahn, Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochim. Cosmochim. Acta 2007, 71, 2569.
Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFahurg%3D&md5=48e4ebb980d53b9cda032ec29497ff72CAS |

[6]  H. Eswaran, E. Vandenberg, P. Reich, Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 1993, 57, 192.
Organic carbon in soils of the world.Crossref | GoogleScholarGoogle Scholar |

[7]  E. A. Davidson, I. A. Janssens, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165.
Temperature sensitivity of soil carbon decomposition and feedbacks to climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFGitLo%3D&md5=dc2146eedbc721c606956a58b35ab899CAS | 16525463PubMed |

[8]  P. Smith, C. Fang, J. J. C. Dawson, J. B. Moncrieff, Impact of global warming on soil organic carbon. Adv. Agron. 2008, 97, 1.
Impact of global warming on soil organic carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVKqtr8%3D&md5=d49d771f880c5f7df3803fa7f5e6dfecCAS |

[9]  E. M. Murphy, J. M. Zachara, S. C. Smith, Influence of mineral-bound humic substances on the sorption of hydrophobic organic-compounds. Environ. Sci. Technol. 1990, 24, 1507.
Influence of mineral-bound humic substances on the sorption of hydrophobic organic-compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltlyitLk%3D&md5=582945f4465c8b6a086fbadcc89ea8fcCAS |

[10]  G. M. Day, B. T. Hart, I. D. McKelvie, R. Beckett, Adsorption of natural organic-matter onto goethite. Colloids Surf. A Physicochem. Eng. Asp. 1994, 89, 1.
Adsorption of natural organic-matter onto goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVKju7c%3D&md5=a08f4de8b87c4fc59fabac41b5a7c51fCAS |

[11]  X. J. Feng, A. J. Simpson, M. J. Simpson, Investigating the role of mineral-bound humic acid in phenanthrene sorption. Environ. Sci. Technol. 2006, 40, 3260.
Investigating the role of mineral-bound humic acid in phenanthrene sorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFWrs7k%3D&md5=9b85cd23219865d0b7cf013bd59587d6CAS |

[12]  K. Kalbitz, S. Solinger, J. H. Park, B. Michalzik, E. Matzner, Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci. 2000, 165, 277.
Controls on the dynamics of dissolved organic matter in soils: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVKrsLY%3D&md5=ccf18816b946dd20097d6ac6c002f4c9CAS |

[13]  J. Chorover, M. K. Amistadi, Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces. Geochim. Cosmochim. Acta 2001, 65, 95.
Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitVygtg%3D%3D&md5=9dc1f80b8c1c11d850320c9d6179a9c5CAS |

[14]  K. J. Wang, B. S. Xing, Structural and sorption characteristics of adsorbed humic acid on clay minerals. J. Environ. Qual. 2005, 34, 342.
Structural and sorption characteristics of adsorbed humic acid on clay minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotlSgsw%3D%3D&md5=8d5d1023e4e7bcc2d51b35be5a05b8fcCAS |

[15]  X. J. Feng, A. J. Simpson, M. J. Simpson, Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces. Org. Geochem. 2005, 36, 1553.
Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGhsbnL&md5=7610b5a36531a2a9932d22344a430aa5CAS |

[16]  S. Ghosh, Z. Y. Wang, S. Kang, P. C. Bhowmik, B. S. Xing, Sorption and fractionation of a peat derived humic acid by kaolinite, montmorillonite, and goethite. Pedosphere 2009, 19, 21.
Sorption and fractionation of a peat derived humic acid by kaolinite, montmorillonite, and goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslKrtLY%3D&md5=2f14bb6c27cef48e110e85f478551e5cCAS |

[17]  K. Namjesnik-Dejanovic, P. A. Maurice, G. R. Aiken, S. Cabaniss, Y. P. Chin, M. J. Pullin, Adsorption and fractionation of a muck fulvic acid on kaolinite and goethite at pH 3.7, 6, and 8. Soil Sci. 2000, 165, 545.
Adsorption and fractionation of a muck fulvic acid on kaolinite and goethite at pH 3.7, 6, and 8.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslyns7c%3D&md5=166f24e7ec2245cf26f382175651f35cCAS |

[18]  A. Majzik, E. Tombacz, Interaction between humic acid and montmorillonite in the presence of calcium ions I. Interfacial and aqueous phase equilibria: adsorption and complexation. Org. Geochem. 2007, 38, 1319.
Interaction between humic acid and montmorillonite in the presence of calcium ions I. Interfacial and aqueous phase equilibria: adsorption and complexation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1CrsLw%3D&md5=7f0a86902d67fd185b2de98b39d53f5dCAS |

[19]  T. Polubesova, Y. Chen, R. Navon, B. Chefetz, Interactions of hydrophobic fractions of dissolved organic matter with Fe3+- and Cu2+-montmorillonite. Environ. Sci. Technol. 2008, 42, 4797.
Interactions of hydrophobic fractions of dissolved organic matter with Fe3+- and Cu2+-montmorillonite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFWgsrs%3D&md5=18a3760e51d3c9784ee362c6b6b91442CAS | 18678008PubMed |

[20]  T. V. Alekseeva, B. N. Zolotareva, Y. G. Kolyagin, Fractionation of humic acids by clay minerals assayed by 13C-NMR spectroscopy. Dokl. Biol. Sci. 2010, 434, 341.
Fractionation of humic acids by clay minerals assayed by 13C-NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWiu73O&md5=adcdd3328ba59ed42bdddf61f6b8f88aCAS | 20963660PubMed |

[21]  A. J. Simpson, M. J. Simpson, W. L. Kingery, B. A. Lefebvre, A. Moser, A. J. Williams, M. Kvasha, B. P. Kelleher, The application of H-1 high-resolution magic-angle spinning NMR for the study of clay-organic associations in natural and synthetic complexes. Langmuir 2006, 22, 4498.
The application of H-1 high-resolution magic-angle spinning NMR for the study of clay-organic associations in natural and synthetic complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFWrtLo%3D&md5=11d104bdd3b40638233567117ba03e2eCAS | 16649755PubMed |

[22]  J. A. Baldock, J. M. Oades, A. G. Waters, X. Peng, A. M. Vassallo, M. A. Wilson, Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy. Biogeochemistry 1992, 16, 1.
Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsFSmsbs%3D&md5=1ff9c2ab2445ac736fdce6af2793901cCAS |

[23]  G. Guggenberger, W. Zech, Dissolved organic-carbon in forest floor leachates – simple degradation products or humic substances. Sci. Total Environ. 1994, 152, 37.
Dissolved organic-carbon in forest floor leachates – simple degradation products or humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFKnuro%3D&md5=80f9c1e1de8b44fd1165ba664a62f334CAS |

[24]  I. Kögel-Knabner, The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 2002, 34, 139.
The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter.Crossref | GoogleScholarGoogle Scholar |

[25]  T. Ohno, J. Chorover, A. Omoike, J., Hunt, Molecular weight and humification index as predictors of adsorption for plant- and manure-derived dissolved organic matter to goethite. Eur. J. Soil Sci. 2007, 58, 125.
Molecular weight and humification index as predictors of adsorption for plant- and manure-derived dissolved organic matter to goethite.Crossref | GoogleScholarGoogle Scholar |

[26]  S. A. Quideau, O. A. Chadwick, A. Benesi, R. C. Graham, M. A. Anderson, A direct link between forest vegetation type and soil organic matter composition. Geoderma 2001, 104, 41.
A direct link between forest vegetation type and soil organic matter composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsFGht78%3D&md5=c39482b1c72063a3381d13cae7cff672CAS |

[27]  W. Zech, N. Senesi, G. Guggenberger, K. Kaiser, J. Lehmann, T. M. Miano, A. Miltner, G. Schroth, Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 1997, 79, 117.
Factors controlling humification and mineralization of soil organic matter in the tropics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1Cmu7Y%3D&md5=11e60a4edd205f2818ee565d10d49b13CAS |

[28]  A. J. Simpson, W. L. Kingery, D. R. Shaw, M. Spraul, E. Humpfer, P. Dvortsak, The application of 1H HR-MAS NMR spectroscopy for the study of structures and associations of organic components at the solid – Aqueous interface of a whole soil. Environ. Sci. Technol. 2001, 35, 3321.
The application of 1H HR-MAS NMR spectroscopy for the study of structures and associations of organic components at the solid – Aqueous interface of a whole soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFKqsLc%3D&md5=2a77ec2ba90eb73aaf03222b34fca171CAS | 11529571PubMed |

[29]  J. Zhong, R. L. Sleighter, E. Salmon, G. A. McKee, P. G. Hatcher, Combining advanced NMR techniques with ultrahigh resolution mass spectrometry: a new strategy for molecular scale characterization of macromolecular components of soil and sedimentary organic matter. Org. Geochem. 2011, 42, 903.
Combining advanced NMR techniques with ultrahigh resolution mass spectrometry: a new strategy for molecular scale characterization of macromolecular components of soil and sedimentary organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWjtbzO&md5=67f7195f93ce7d0241f390fb6d137d91CAS |

[30]  A. J. Simpson, D. J. McNally, M. J. Simpson, NMR spectroscopy in environmental research: From molecular interactions to global processes. Prog. Nucl. Mag. Res. Sp 2011, 58, 97.
NMR spectroscopy in environmental research: From molecular interactions to global processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVKruro%3D&md5=884071bbcb8b6965c3890e13e0579e1aCAS |

[31]  H. Van Olphen, J. J. Fripiat, Data Handbook for Clay Minerals and other Non-metallic Materials 1979 (Pergamon Press: Oxford, UK).

[32]  M. J. Salloum, M. J. Dudas, W. B. McGill, Variation of 1-naphthol sorption with organic matter fractionation: the role of physical conformation. Org. Geochem. 2001, 32, 709.
Variation of 1-naphthol sorption with organic matter fractionation: the role of physical conformation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlKltb8%3D&md5=dbccd13d4f858625ffe35800d11a62caCAS |

[33]  J. S. Clemente, A. J. Simpson, M. J. Simpson, Association of specific organic matter compounds in size fractions of soils under different environmental controls. Org. Geochem. 2011, 42, 1169.
Association of specific organic matter compounds in size fractions of soils under different environmental controls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Clu7nJ&md5=d426abafa65001790a4b10614be96aa1CAS |

[34]  X. Feng, M. J. Simpson, The distribution and degradation of biomarkers in Alberta grassland soil profiles. Org. Geochem. 2007, 38, 1558.
The distribution and degradation of biomarkers in Alberta grassland soil profiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFWiu7w%3D&md5=dbcbd3c82d6dd3db884a37ca0d2c3a9eCAS |

[35]  A. Otto, C. Shunthirasingham, M. J. Simpson, A comparison of plant and microbial biomarkers in grassland soils from the Prairie Ecozone of Canada. Org. Geochem. 2005, 36, 425.
A comparison of plant and microbial biomarkers in grassland soils from the Prairie Ecozone of Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFejurs%3D&md5=a6a080308d3c8adf0217a9747a944147CAS |

[36]  A. Otto, M. J. Simpson, Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil. Biogeochemistry 2006, 80, 121.
Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWhsr%2FI&md5=179437488269faa57bfe7fae7c012983CAS |

[37]  A. Otto, M. J. Simpson, Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada. Org. Geochem. 2006, 37, 385.
Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1ajtLY%3D&md5=6ff68c704deecf62417605c1f6021cddCAS |

[38]  C. Shunthirasingham, M. J. Simpson, Investigation of bacterial hopanoid inputs to soils from Western Canada. Appl. Geochem. 2006, 21, 964.
Investigation of bacterial hopanoid inputs to soils from Western Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltV2gsb8%3D&md5=a1c7c5d2daafe421e6f94913b47cb72cCAS |

[39]  A. Otto, M. J. Simpson, Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from Western Canada. Biogeochemistry 2005, 74, 377.
Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from Western Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGlt7vL&md5=df63542fba8827f9104ba8d33cb40ce2CAS |

[40]  M. J. Simpson, P. C. E. Johnson, Identification of mobile aliphatic sorptive domains in soil humin by solid-state 13C nuclear magnetic resonance. Environ. Toxicol. Chem. 2006, 25, 52.
Identification of mobile aliphatic sorptive domains in soil humin by solid-state 13C nuclear magnetic resonance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xptl2j&md5=57c077533a8cdc9ce883907bdf5589deCAS | 16494224PubMed |

[41]  C. Rumpel, N. Rabia, S. Derenne, K. Quenea, K. Eusterhues, I. Koegel-Knabner, A. Mariotti, Alteration of soil organic matter following treatment with hydrofluoric acid (HF). Org. Geochem. 2006, 37, 1437.
Alteration of soil organic matter following treatment with hydrofluoric acid (HF).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFylurnK&md5=7911617a47a8467c861128b9b1dfa530CAS |

[42]  M. J. Simpson, A. Otto, X. J. Feng, Comparison of solid-state carbon-13 nuclear magnetic resonance and organic matter biomarkers for assessing soil organic matter degradation. Soil Sci. Soc. Am. J. 2008, 72, 268.
Comparison of solid-state carbon-13 nuclear magnetic resonance and organic matter biomarkers for assessing soil organic matter degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ogu7s%3D&md5=679f47fe20fc9bcfbdf276fea013a7c9CAS |

[43]  A. J. Simpson, S. A. Brown, Purge NMR: effective and easy solvent suppression. J. Magn. Reson. 2005, 175, 340.
Purge NMR: effective and easy solvent suppression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1ygsrY%3D&md5=c0620827de1cbb5fc9e40f2ae897e5a0CAS | 15964227PubMed |

[44]  A. P. Deshmukh, A. J. Simpson, C. M. Hadad, P. G. Hatcher, Insights into the structure of cutin and cutan from Agave americana leaf cuticle using HRMAS NMR spectroscopy. Org. Geochem. 2005, 36, 1072.
Insights into the structure of cutin and cutan from Agave americana leaf cuticle using HRMAS NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1Wgs7k%3D&md5=b0861287630042b4c77e1f73df6e8134CAS |

[45]  A. J. Simpson, M. J. Simpson, E. Smith, B. P. Kelleher, Microbially derived inputs to soil organic matter: are current estimates too low? Environ. Sci. Technol. 2007, 41, 8070.
Microbially derived inputs to soil organic matter: are current estimates too low?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGnsLvP&md5=0ea9ff0d38f3e83e4a29c7c14150cc8bCAS | 18186339PubMed |

[46]  C. A. Fewson, Microbial metabolism of mandelate: a microcosm of diversity. FEMS Microbiol. Rev. 1988, 54, 85.
Microbial metabolism of mandelate: a microcosm of diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktVenu78%3D&md5=58d8c370a312a134f759b3eea4ed566bCAS |

[47]  P. J. Mitchell, A. J. Simpson, R. Soong, A. Oren, B. Chefetz, M. J. Simpson, Solution-state NMR investigation of the sorptive fractionation of dissolved organic matter by alkaline mineral soils. Environ. Chem. 2013, 10, 333.
Solution-state NMR investigation of the sorptive fractionation of dissolved organic matter by alkaline mineral soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlakt7vN&md5=ad5eedc9512437b9631804858a36d990CAS |

[48]  S. Chang, R. A. Berner, Humic substance formation via the oxidative weathering of coal. Environ. Sci. Technol. 1998, 32, 2883.
Humic substance formation via the oxidative weathering of coal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsV2jsrw%3D&md5=f4b3fd7776feab0ad9c91df63dfeeb72CAS |

[49]  D. T. Gardiner, R. W. Miller, Soils in our Environment 2004 (Prentice Hall: Upper Saddle River, NJ).

[50]  I. D. Ruhl, E. Salmon, P. G. Hatcher, Early diagenesis of Botryococcus braunii race A as determined by high resolution magic angle spinning (HRMAS) NMR. Org. Geochem. 2011, 42, 1.
Early diagenesis of Botryococcus braunii race A as determined by high resolution magic angle spinning (HRMAS) NMR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivF2guw%3D%3D&md5=dca94b2b428e6fe06383eedf0933a6eeCAS |

[51]  A. J. Simpson, G. Song, E. Smith, B. Lam, E. H. Novotny, M. H. B. Hayes, Unraveling the structural components of soil humin by use of solution-state nuclear magnetic resonance spectroscopy. Environ. Sci. Technol. 2007, 41, 876.
Unraveling the structural components of soil humin by use of solution-state nuclear magnetic resonance spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWmu7%2FE&md5=37d54e603c1ef324dea6771660670f1eCAS | 17328197PubMed |

[52]  E. J. W. Wattel-Koekkoek, P. P. L. van Genuchten, P. Buurman, B. van Lagen, Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils. Geoderma 2001, 99, 27.
Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1eru7s%3D&md5=4dae8dfc12b8065656d2b9f5ad66ca17CAS |

[53]  J. S. Clemente, E. G. Gregorich, A. J. Simpson, R. Kumar, D. Courtier-Murias, M. J. Simpson, Comparison of nuclear magnetic resonance methods for the analysis of organic matter composition from soil density and particle fractions. Environ. Chem. 2012, 9, 97.
Comparison of nuclear magnetic resonance methods for the analysis of organic matter composition from soil density and particle fractions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1amtbk%3D&md5=e6dd1bdadd4979db146ed88d64d1ac51CAS |

[54]  D. Courtier-Murias, H. Farooq, H. Masoom, A. Botana, R. Soong, J. G. Longstaffe, M. J. Simpson, W. E. Maas, M. Fey, B. Andrew, J. Struppe, H. Hutchins, S. Krishnamurthy, R. Kumar, M. Monette, H. J. Stronks, A. Hume, A. J. Simpson, Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples. J. Magn. Reson. 2012, 217, 61.
Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFyls7s%3D&md5=00c38b738b1bc68e341f957e3059f57fCAS | 22425441PubMed |

[55]  B. P. Kelleher, M. J. Simpson, A. J. Simpson, Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy. Geochim. Cosmochim. Acta 2006, 70, 4080.
Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotVejsro%3D&md5=d4b9ee6a2b0531871680b1022946e9d8CAS |

[56]  X. Fang, F. Qiu, B. Yan, H. Wang, A. J. Mort, R. E. Stark, NMR studies of molecular structure in fruit cuticle polyesters. Phytochemistry 2001, 57, 1035.
NMR studies of molecular structure in fruit cuticle polyesters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVygsbc%3D&md5=87cd1a73e6a02dd72f6fd91d6ac1e445CAS | 11423150PubMed |

[57]  P. A. Keifer, L. Baltusis, D. M. Rice, A. A. Tymiak, J. N. Shoolery, A comparison of NMR spectra obtained for solid-phase-synthesis resins using conventional high-resolution, magic-angle-spinning, and high-resolution magic-angle-spinning probes. J. Magn. Reson. 1996, 119, 65.
A comparison of NMR spectra obtained for solid-phase-synthesis resins using conventional high-resolution, magic-angle-spinning, and high-resolution magic-angle-spinning probes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhs1Gntbk%3D&md5=8d874b36e3d4a6f1bfc109d0b9a33bf4CAS |

[58]  K. K. Millis, W. E. Maas, D. G. Cory, S. Singer, Gradient, high-resolution, magic-angle spinning nuclear magnetic resonance spectroscopy of human adipocyte tissue. Magn. Reson. Med. 1997, 38, 399.
Gradient, high-resolution, magic-angle spinning nuclear magnetic resonance spectroscopy of human adipocyte tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXms1Sjtrg%3D&md5=bfd7251067bc8b0546b806d0540bc356CAS | 9339440PubMed |

[59]  R. E. Stark, B. Yan, A. K. Ray, Z. Chen, X. Fang, J. R. Garbow, NMR studies of structure and dynamics in fruit cuticle polyesters. Solid State Nucl. Mag. 2000, 16, 37.
NMR studies of structure and dynamics in fruit cuticle polyesters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivVGnsbw%3D&md5=4127a79d50c0a9baeb673b60895d68adCAS |

[60]  M. H. B. Hayes, R. S. Swift, The Chemistry of Soil Constituents 1978 (Wiley: New York).

[61]  A. Piccolo, S. Nardi, G. Concheri, Macromolecular changes of humic substances induced by interaction with organic acids. Eur. J. Soil Sci. 1996, 47, 319.
Macromolecular changes of humic substances induced by interaction with organic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVemtLY%3D&md5=57e06ff11805ce1a905db2ba82a8e0e0CAS |

[62]  W. F. Jaynes, G. F. Vance, Sorption of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds by hectorite clays exchanged with aromatic organic cations. Clays Clay Miner. 1999, 47, 358.
Sorption of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds by hectorite clays exchanged with aromatic organic cations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFOitb0%3D&md5=5d526bf4c9aa09a7a07accc672ecffcbCAS |

[63]  J. L. Bonin, M. J. Simpson, Variation in phenanthrene sorption coefficients with soil organic matter fractionation: the result of structure or conformation? Environ. Sci. Technol. 2007, 41, 153.
Variation in phenanthrene sorption coefficients with soil organic matter fractionation: the result of structure or conformation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCit7nL&md5=e64b518803ea0dddc9cd0d50bd3bec34CAS | 17265941PubMed |

[64]  A. R. Saidy, R. J. Smernik, J. A. Baldock, K. Kaiser, J. Sanderman, L. M. Macdonald, Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma 2012, 173–174, 104.
Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation.Crossref | GoogleScholarGoogle Scholar |

[65]  P. Conte, C. Abbate, A. Baglieri, M. Negre, C. De Pasquale, G. Alonzo, M. Gennari, Adsorption of dissolved organic matter on clay minerals as assessed by infra-red, CPMAS 13C NMR spectroscopy and low field T1 NMR relaxometry. Org. Geochem. 2011, 42, 972.
Adsorption of dissolved organic matter on clay minerals as assessed by infra-red, CPMAS 13C NMR spectroscopy and low field T1 NMR relaxometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWjtbzF&md5=cbdb8dc0dbd153babb32e406401cc72eCAS |

[66]  P. J. Mitchell, M. J. Simpson, High affinity sorption domains in soil are blocked by polar soil organic matter components. Environ. Sci. Technol. 2013, 47, 412.
High affinity sorption domains in soil are blocked by polar soil organic matter components.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKhsL3F&md5=2365a776e304ac6b4ae08b9da9077e33CAS | 23206246PubMed |