Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Release of arsenite, arsenate and methyl-arsenic species from streambed sediment affected by acid mine drainage: a microcosm study

Marina Héry A D , Corinne Casiot A C D , Eléonore Resongles A , Zoe Gallice A , Odile Bruneel A B , Angélique Desoeuvre A and Sophie Delpoux A
+ Author Affiliations
- Author Affiliations

A Laboratoire HydroSciences Montpellier, HSM, UMR 5569 (IRD, CNRS, Universités Montpellier 1 et 2), Université Montpellier 2, Place E. Bataillon, CC MSE, F-34095 Montpellier, France.

B Laboratoire Mixte International Biotechnologie Microbienne et Végétale; Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des Sciences, Avenue Ibn Batouta BP1014, Université Mohammed V. Rabat, Morocco.

C Corresponding author: casiot@msem.univ-montp2.fr

D Both authors contributed equally to this work.

Environmental Chemistry 11(5) 514-524 https://doi.org/10.1071/EN13225
Submitted: 10 December 2013  Accepted: 5 May 2014   Published: 14 August 2014

Environmental context. Arsenic-rich waters generated from the oxidation of mining wastes are responsible for the severe contamination of river waters and sediments located downstream from mining sites. Under certain environmental conditions, the affected riverbed sediments may represent a reservoir for arsenic from which this toxic element may be released into water, mainly as a consequence of microbial activity.

Abstract. The (bio-)geochemical processes driving As mobilisation from streambed sediments affected by acid mine drainage (AMD) were investigated, and the structure of the bacterial community associated with the sediments was characterised. Microcosm experiments were set up to determine the effect of oxygen, temperature (4 and 20 °C) and microbial activity on As mobilisation from contrasting sediments collected during high- (November 2011) and low- (March 2012) flow conditions in the Amous River, that received AMD. Distinct bacterial communities thrived in the two sediments, dominated by Rhodobacter spp., Polaromonas spp. and Sphingomonads. These communities included only few bacteria known for their capacity to interact directly with As, whereas biogeochemical processes appeared to control As cycling. Major As mobilisation occurred in the AsIII form at 20 °C in anoxic conditions, from both November and March sediments, as the result of successive biotic reductive dissolution of Mn- and Fe-oxyhydroxides. The later process may be driven by Mn- and Fe-reducing bacteria such as Geobacter spp. and possibly occurred in combination with microbially mediated AsV reduction. The involvement of other bacteria in these redox processes is not excluded. Biomethylation occurred only with the sediments collected at low-flow during oxic and anoxic conditions, although no bacteria characterised so far for its ability to methylate As was identified. Finally, sorption equilibrium of AsV onto the sediment appeared to be the main process controlling AsV concentration in oxic conditions. Comparison with field data shows that the later process, besides biomethylation, may be of relevance to the As fate in AMD-affected streams.

Additional keywords: bacterial communities, biomethylation.


References

[1]  D. B. Johnson, K. B. Hallberg, Acid mine drainage remediation options: a review. Sci. Total Environ. 2005, 338, 3.
Acid mine drainage remediation options: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXoslegug%3D%3D&md5=c3f54bcd0eff022fc1dc7fd7ce43fe90CAS | 15680622PubMed |

[2]  B. A. Butler, Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments. Water Res. 2009, 43, 1392.
Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislKlsrY%3D&md5=cd416cb895e04198bb6a048594453d96CAS | 19110291PubMed |

[3]  B. A. Butler, Effect of imposed anaerobic conditions on metals release from acid-mine drainage contaminated streambed sediments. Water Res. 2011, 45, 328.
Effect of imposed anaerobic conditions on metals release from acid-mine drainage contaminated streambed sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSqur7F&md5=7b7be4587de5a6cc4d3404b04e19b2ffCAS | 20709348PubMed |

[4]  J. M. Park, J. S. Lee, J. U. Lee, H. T. Chon, M. C. Jung, Microbial effects on geochemical behavior of arsenic in As-contaminated sediments. J. Geochem. Explor. 2006, 88, 134.
Microbial effects on geochemical behavior of arsenic in As-contaminated sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVahtr4%3D&md5=a5f2695f3c343356dd2493689bdc6d5bCAS |

[5]  K. H. Nealson, Sediment bacteria: who’s there, what are they doing, and what's new? Annu. Rev. Earth Planet. Sci. 1997, 25, 403.
Sediment bacteria: who’s there, what are they doing, and what's new?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslekt7k%3D&md5=990ce201c46e392f69a3485291ba49b5CAS | 11540735PubMed |

[6]  C. Lors, C. Tiffreau, A. Laboudigue, Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments. Chemosphere 2004, 56, 619.
Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVKhsLk%3D&md5=6f80a1d1a82529d82fb5a60b27ef40c1CAS | 15212904PubMed |

[7]  P. L. Smedley, D. G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517.
A review of the source, behaviour and distribution of arsenic in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVSmur0%3D&md5=e91f95bcfc6b5336d0e64af1fca2a6c1CAS |

[8]  B. K. Mandal, K. T. Suzuki, Arsenic round the world: a review. Talanta 2002, 58, 201.
Arsenic round the world: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVGnsbg%3D&md5=af84d99c9b1453ef9681eac40e82a044CAS | 18968746PubMed |

[9]  C. Casiot, S. Lebrun, G. Morin, O. Bruneel, J. C. Personné, F. Elbaz-Poulichet, Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Sci. Total Environ. 2005, 347, 122.
Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVCqsL8%3D&md5=443d3d849b07ba0fd267a0e69339b5d1CAS | 16084973PubMed |

[10]  H. Cheng, Y. Hub, J. Luoc, B. Xua, J. Zhao, Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. J. Hazard. Mater. 2009, 165, 13.
Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks12muro%3D&md5=b5da1800374966fcb54c44f24ee91582CAS | 19070955PubMed |

[11]  T. Z. Guo, R. D. DeLaune, W. H. Patrick, The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environ. Int. 1997, 23, 305.
The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktFaltro%3D&md5=36b93c5cef34221224c941540bb7a1b5CAS |

[12]  H. W. Langner, W. P. Inskeep, Microbial reduction of arsenate in the presence of ferrihydrite. Environ. Sci. Technol. 2000, 34, 3131.
Microbial reduction of arsenate in the presence of ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVahsbg%3D&md5=165f675d3a2c1ba372837d7d71795c2dCAS |

[13]  Y. Takahashi, R. Minamikawa, K. H. Hattori, K. Kurishima, N. Kihou, K. Yuita, Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ. Sci. Technol. 2004, 38, 1038.
Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVelsw%3D%3D&md5=9090cd8a3a0fe540d51ee4d34b5f3ad6CAS | 14998016PubMed |

[14]  M. Herbel, S. Fendorf, Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chem. Geol. 2006, 228, 16.
Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFehs7k%3D&md5=ee669ab2543159ff7de89502666d4e91CAS |

[15]  J. Routh, A. Bhattacharya, A. Saraswathy, G. Jacks, P. Bhattacharya, Arsenic remobilization from sediments contaminated with mine tailings near the Adak mine in Vasterbotten district (northern Sweden). J. Geochem. Explor. 2007, 92, 43.
Arsenic remobilization from sediments contaminated with mine tailings near the Adak mine in Vasterbotten district (northern Sweden).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12jtb7N&md5=fa42c629cd9add94bb3636bed2085bd9CAS |

[16]  D. A. Rubinos, L. Iglesias, F. Diaz-Fierros, M. T. Barral, Interacting effect of pH, phosphate and time on the release of arsenic from polluted river sediments (Anllóns River, Spain). Aquat. Geochem. 2011, 17, 281.
Interacting effect of pH, phosphate and time on the release of arsenic from polluted river sediments (Anllóns River, Spain).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVams78%3D&md5=2b303528607afeb6bd3f2be766b7a6a0CAS |

[17]  S. Dixit, J. G. Hering, Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 2003, 37, 4182.
Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFOltr8%3D&md5=e95cefdfa6e7bd583150adbcd471263fCAS | 14524451PubMed |

[18]  K. J. Tufano, C. Reyes, C. W. Saltikov, S. Fendorf, Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environ. Sci. Technol. 2008, 42, 8283.
Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1CgsbfP&md5=3eb971791cc4dd832fa632dd68654eafCAS | 19068807PubMed |

[19]  S. Silver, K. Budd, K. M. Leahy, W. V. Shaw, D. Hammond, R. P. Novick, G. R. Willsky, M. H. Malamy, H. Rosenberg, Inducible plasmid determined resistance to arsenate, arsenite, and antimony(III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 1981, 146, 983.
| 1:CAS:528:DyaL3MXktlyqt7c%3D&md5=ed3d01693261e51424f217ecf934b300CAS | 7016838PubMed |

[20]  R. S. Oremland, J. F. Stolz, The ecology of arsenic. Science 2003, 300, 939.
The ecology of arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVyjsLs%3D&md5=840e38f53bf5d9201af72c47691ceb50CAS | 12738852PubMed |

[21]  M. Azizur Rahman, H. Hasegawa, Arsenic in freshwater systems: Influence of eutrophication on occurrence, distribution, speciation, and bioaccumulation. Appl. Geochem. 2012, 27, 304.
Arsenic in freshwater systems: Influence of eutrophication on occurrence, distribution, speciation, and bioaccumulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkslOktQ%3D%3D&md5=75d18ef3ba6a5f2d01ce4026ba977ebfCAS |

[22]  X. X. Yin, J. Chen, J. Qin, G.-X. Sun, B. P. Rosen, Y.-G. Zhu, Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol. 2011, 156, 1631.
Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFWksbY%3D&md5=b9d56d4891a5579c82ab3d5e6c8cc3c1CAS | 21562336PubMed |

[23]  C. Casiot, M. Egal, O. Bruneel, C. Bancon-Montigny, M. A. Cordier, E. Gomez, C. Aliaume, F. Elbaz-Poulichet, Hydrological and geochemical controls on metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amous river, France); preliminary assessment of impacts on fish (Leuciscus cephalus). Appl. Geochem. 2009, 24, 787.
Hydrological and geochemical controls on metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amous river, France); preliminary assessment of impacts on fish (Leuciscus cephalus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVWgu7k%3D&md5=baff103330bbaefaa459200b8788dcc4CAS |

[24]  M. Leblanc, B. Achard, D. Ben Othman, J. M. Luck, Accumulation of arsenic from acidic mine waters by ferruginous bacterial accretions (stromatolites). Appl. Geochem. 1996, 11, 541.
Accumulation of arsenic from acidic mine waters by ferruginous bacterial accretions (stromatolites).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVSgtb0%3D&md5=b4a04afe601d96d7c6a04f1b8fff6620CAS |

[25]  C. Casiot, G. Morin, F. Juillot, O. Bruneel, J. C. Personné, M. Leblanc, K. Duquesne, V. Bonnefoy, F. Elbaz-Poulichet, Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès Creek, France). Water Res. 2003, 37, 2929.
Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès Creek, France).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVeisbg%3D&md5=a4f6adeb0d9c89b322f5e5f8c9aff71fCAS | 12767295PubMed |

[26]  W. G. Weisburg, S. M. Barns, D. A. Pelletier, D. J. Lane, 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697.
| 1:CAS:528:DyaK3MXhsl2lurY%3D&md5=bf96337d68466ac0cd09bfbe9ad37cadCAS | 1987160PubMed |

[27]  S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403.
Basic local alignment search tool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVGmsA%3D%3D&md5=6096f6fa6531627bd8bb5cad4d185365CAS | 2231712PubMed |

[28]  R. C. Edgar, B. J. Haas, J. C. Clemente, C. Quince, R. Knight, UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194.
UCHIME improves sensitivity and speed of chimera detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSiurvL&md5=c587be8adffb8af6ca8ca3acaaf732f1CAS | 21700674PubMed |

[29]  P. D. Schloss, S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks, C. J. Robinson, J. W. Sahl, B. Stres, G. G. Thallinger, D. J. Van Horn, C. F. Weber, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537.
Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1yltw%3D%3D&md5=94878970b55203288dd2e12eda015ce6CAS | 19801464PubMed |

[30]  M. Cardinale, L. Brusetti, P. Quatrini, S. Borin, A. M. Puglia, A. Rizzi, A. Zanardini, C. Sorlini, C. Corselli, D. Daffonchio, Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl. Environ. Microbiol. 2004, 70, 6147.
Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosl2hs7o%3D&md5=a3fb0066372a734986b3edbf2957952fCAS | 15466561PubMed |

[31]  D. K. Nordstrom, Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Appl. Geochem. 2011, 26, 1777.
Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVamu7nF&md5=f13881c98e70866a0f5961368850c1b8CAS |

[32]  A. Adra, G. Morin, G. Ona-Nguema, N. Menguy, F. Maillot, C. Casiot, O. Bruneel, S. Lebrun, F. Juillot, J. Brest, Arsenic scavenging by aluminum-substituted ferrihydrites in a circumneutral pH river impacted by acid mine drainage. Environ. Sci. Technol. 2013, 47, 12 784.
Arsenic scavenging by aluminum-substituted ferrihydrites in a circumneutral pH river impacted by acid mine drainage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOks7zL&md5=8da48ec7586b6e21271e5223c156bb7bCAS |

[33]  G. L. Rupp, V. D. Adams, Calcium Carbonate Precipitation as Influenced by Stream Primary Production. Paper 116 1981 (Utah State University, Utah Water Research Laboratory: Logan, UT). Available at http://digitalcommons.usu.edu/water_rep/116 [Verified 20 June 2014].

[34]  G. Lee, J. M. Bigham, G. Faure, Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Appl. Geochem. 2002, 17, 569.
Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVSmuro%3D&md5=076421d7643335d45c4c17934bdd31a7CAS |

[35]  K. Koffi, M. Leblanc, H. Jourde, C. Casiot, S. Pistre, P. Gouze, F. Elbaz-Poulichet, Reverse oxidation zoning at a mine tailings stock generating arsenic-rich acid waters (Carnoulès, France). Mine Water Environ. 2003, 22, 7.
Reverse oxidation zoning at a mine tailings stock generating arsenic-rich acid waters (Carnoulès, France).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFGrs7o%3D&md5=73c3193f01811cc6d6a451d6afe4adc8CAS |

[36]  M. P. Asta, C. Ayora, G. Román-Ross, J. Cama, P. Acero, A. G. Gault, J. M. Charnock, F. Bardelli, Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): the role of iron precipitates. Chem. Geol. 2010, 271, 1.
Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): the role of iron precipitates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Ojt7s%3D&md5=e000ba481af3f86c9d427ee80151e787CAS |

[37]  J. Majzlan, B. Lalinská, M. Chovan, L. Jurkovič, S. Milovská, J. Gőttlicher, The formation, structure, and ageing of As-rich hydrous ferric oxide at the abandoned Sb deposit Pezinok (Slovakia). Geochim. Cosmochim. Acta 2007, 71, 4206.
The formation, structure, and ageing of As-rich hydrous ferric oxide at the abandoned Sb deposit Pezinok (Slovakia).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslymtbo%3D&md5=20231b2864bdc6172a177a1167105bb2CAS |

[38]  P. Byrne, P. J. Wood, I. Reid, The impairment of river systems by metal mine contamination: a review including remediation options. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2017.
The impairment of river systems by metal mine contamination: a review including remediation options.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOqsLfF&md5=679c957116785abec98877a8d1cca1d3CAS |

[39]  L. Giotta, A. Agostiano, F. Italiano, F. Milano, M. Trotta, Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere 2006, 62, 1490.
Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVeiuro%3D&md5=52a2c35511c8f217cd2cbaecfe857dbfCAS | 16081134PubMed |

[40]  B. B. Nepple, J. Kessi, R. Bachofen, Chromate reduction by Rhodobacter sphaeroides. J. Ind. Microbiol. Biotechnol. 2000, 25, 198.
Chromate reduction by Rhodobacter sphaeroides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvF2nsw%3D%3D&md5=810e71e32aa8dafef38b9969dea3f5bcCAS |

[41]  J. M. Yagi, D. Sims, T. Brettin, D. Bruce, E. L. Madsen, The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environ. Microbiol. 2009, 11, 2253.
The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GntrfP&md5=1e5afe32f3275e4e0746f92ad24aba65CAS | 19453698PubMed |

[42]  L. Haller, M. Tonoll, J. Zopfi, R. Peduzzi, W. Wildi, J. Poté, Composition of bacterial and archaeal communities in freshwater sediments with different contamination levels (Lake Geneva, Switzerland). Water Res. 2011, 45, 1213.
Composition of bacterial and archaeal communities in freshwater sediments with different contamination levels (Lake Geneva, Switzerland).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVan&md5=bd044409cda4c6ee15234dda6468fb82CAS | 21145090PubMed |

[43]  T. R. Miller, A. L. Delcher, S. L. Salzberg, E. Saunders, J. C. Detter, R. U. Halden, Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1. J. Bacteriol. 2010, 192, 6101.
Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1Klsg%3D%3D&md5=0649c52a15418c18dcd90ae3bb2c95feCAS | 20833805PubMed |

[44]  V. A. Jackson, A. N. Paulse, J. P. Odendaal, S. Khan, W. Khan, Identification of metal tolerant organisms isolated from the Plankenburg River, Western Cape, South Africa. Water S.A. 2012, 38, 29.
Identification of metal tolerant organisms isolated from the Plankenburg River, Western Cape, South Africa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFars7w%3D&md5=4724fd346e6b050cbccfaa2514cfcf76CAS |

[45]  M. E. Farias, S. Revale, E. Mancini, O. Ordonez, A. Turjanski, N. Cortez, M. P. Vazquez, Genome sequence of Sphingomonas sp. S17, isolated from an alkaline, hyperarsenic, and hypersaline volcano-associated lake at high altitude in the Argentinean puna. J. Bacteriol. 2011, 193, 3686.
Genome sequence of Sphingomonas sp. S17, isolated from an alkaline, hyperarsenic, and hypersaline volcano-associated lake at high altitude in the Argentinean puna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFWktbY%3D&md5=f55a4745980472f93f6251028dac5ff3CAS | 21602338PubMed |

[46]  G. Lear, B. Song, A. G. Gault, D. A. Polya, J. R. Lloyd, Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl. Environ. Microbiol. 2007, 73, 1041.
Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlyqsrg%3D&md5=ad2324dfc0f226db2f4a3d7a899583f4CAS | 17114326PubMed |

[47]  D. C. White, S. D. Suttont, D. B. Ringelberg, The genus Sphingomonas: physiology and ecology. Curr. Opin. Biotechnol. 1996, 7, 301.
The genus Sphingomonas: physiology and ecology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjvVKnu7w%3D&md5=98e562c3f3b06b679385184f2dc7337bCAS | 8785434PubMed |

[48]  Z. J. Zhou, H. Q. Yin, Y. Liu, M. Xie, G. Z. Qiu, X. D. Liu, Diversity of microbial community at acid mine drainages from Dachang metals-rich mine, China. Trans. Nonferrous Met. Soc. China 2010, 20, 1097.
Diversity of microbial community at acid mine drainages from Dachang metals-rich mine, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFahsL4%3D&md5=46387e8cb18f6277f3aae10c24ee2f22CAS |

[49]  D. R. Nicholas, S. Ramamoorthy, V. Palace, S. Spring, J. N. Moore, R. F. Rosenzweig, Biogeochemical transformations of arsenic in circumneutral freshwater sediments. Biodegradation 2003, 14, 123.
Biogeochemical transformations of arsenic in circumneutral freshwater sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlWgtLw%3D&md5=118dd36ef4b358bffb6aad2b4c0451f1CAS | 12877467PubMed |

[50]  W. M. Mok, C. M. Wai, Distribution and mobilization of arsenic and antimony species in the Coeur d’Alene river, Idaho. Environ. Sci. Technol. 1990, 24, 102.
Distribution and mobilization of arsenic and antimony species in the Coeur d’Alene river, Idaho.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXisFagsA%3D%3D&md5=867ed2a96837254b5667f8392bac1c7dCAS |

[51]  F. S. Islam, A. G. Gault, C. Boothman, D. A. Polya, J. M. Charnock, D. Chatterjee, J. R. Lloyd, Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 2004, 430, 68.
Role of metal-reducing bacteria in arsenic release from Bengal delta sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Cqt7c%3D&md5=07a3ade80cca1d42f0e375dd9a62d0aaCAS | 15229598PubMed |

[52]  H. A. L. Rowland, R. L. Pederick, D. A. Polya, R. D. Pancost, B. E. Van Dongen, A. G. Gault, D. J. Vaughan, C. Bryant, B. Anderson, J. R. Lloyd, The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers, Cambodia. Geobiology 2007, 5, 281.
The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers, Cambodia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFCgurfN&md5=42d0f2ef51b32b8f089e7d50d1435518CAS |

[53]  M. Héry, B. E. van Dongen, F. Gill, D. Mondal, D. J. Vaughan, R. D. Pancost, D. A. Polya, J. R. Lloyd, Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology 2010, 8, 155.
Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal.Crossref | GoogleScholarGoogle Scholar | 20156294PubMed |

[54]  L. Giloteaux, D. E. Holmes, K. H. Williams, K. C. Wrighton, M. J. Wilkins, A. P. Montgomery, J. A. Smith, R. Orellana, C. A. Thompson, T. J. Roper, P. E. Long, D. R. Lovley, Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation. ISME J. 2013, 7, 370.
Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVans7k%3D&md5=7b270c5b0b030f11b405388fe8d86357CAS | 23038171PubMed |

[55]  Y. Masue-Slowey, R. H. Loeppert, S. Fendorf, Alteration of ferrihydrite reductive dissolution and transformation by adsorbed As and structural Al: implications for As retention. Geochim. Cosmochim. Acta 2011, 75, 870.
Alteration of ferrihydrite reductive dissolution and transformation by adsorbed As and structural Al: implications for As retention.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVarsg%3D%3D&md5=a4d733d97cabba0497153fd5be376dd0CAS |

[56]  J. R. Lloyd, A. G. Gault, M. Héry, J. D. MacRae, Microbial transformations of arsenic in the subsurface. In Environmental Microbe-Metal Interactions II (Eds J. F. Stolz, R. S, Oremland), 2011, pp. 77–90 (ASM Press: Washington, DC).

[57]  S. C. Ying, Y. Masue-Slowey, B. D. Kocar, S. D. Griffis, S. Webb, M. A. Marcus, C. A. Francis, S. Fendorf, Distributed microbially and chemically mediated redox processes controlling arsenic dynamics within Mn-/Fe-oxide constructed aggregates. Geochim. Cosmochim. Acta 2013, 104, 29.
Distributed microbially and chemically mediated redox processes controlling arsenic dynamics within Mn-/Fe-oxide constructed aggregates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVOnurY%3D&md5=15112e5f6ee4aeab13e8807b6beb9f2eCAS |

[58]  K. Bosecker, Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev. 1997, 20, 591.
Bioleaching: metal solubilization by microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltl2msbc%3D&md5=4dbe1b493082f0d324726884fbf1231cCAS |

[59]  R. N. vanden Hoven, J. M. Santini, Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. Biochim. Biophys. Acta 2004, 1656, 148.
Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1Cjsr0%3D&md5=464b1cb5efc3683efb8b19519781c992CAS | 15178476PubMed |

[60]  R. Bentley, T. G. Chasteen, Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol. Mol. Biol. Rev. 2002, 66, 250.
Microbial methylation of metalloids: arsenic, antimony, and bismuth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFSltrs%3D&md5=48186e246fd2c12054bdda68c760d523CAS | 12040126PubMed |

[61]  J. Meyer, K. Michalke, T. Kouril, R. Hensel, Volatilisation of metals and metalloids: an inherent feature of methanoarchaea? Syst. Appl. Microbiol. 2008, 31, 81.
Volatilisation of metals and metalloids: an inherent feature of methanoarchaea?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWmsbjJ&md5=d5048e7cd4996a4e0808c618a134c79dCAS | 18396004PubMed |

[62]  J. Ye, C. Rensing, B. P. Rosen, Y.-G. Zhu, Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci. 2012, 17, 155.
Arsenic biomethylation by photosynthetic organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Wis7c%3D&md5=d51112ff8cacbc204d55e261fd2eb7b5CAS | 22257759PubMed |

[63]  A. Mestrot, J. Feldmann, E. M. Krupp, M. S. Hossain, G. Roman-Ross, A. A. Meharg, Field fluxes and speciation of arsines emanating from soils. Environ. Sci. Technol. 2011, 45, 1798.
Field fluxes and speciation of arsines emanating from soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlajtLY%3D&md5=b1bdca0e44f612c6e5ae024831cf352dCAS | 21284382PubMed |

[64]  Y. Jia, H. Huang, M. Zhong, F.-H. Wang, L.-M. Zhang, Y.-G. Zhu, Microbial arsenic methylation in soil and rice rhizosphere. Environ. Sci. Technol. 2013, 47, 3141.
| 1:CAS:528:DC%2BC3sXjsFGjtL4%3D&md5=57836a7be4c35050c555c548d5f0189dCAS | 23469919PubMed |

[65]  S. A. Nagorski, J. N. Moore, Arsenic mobilization in the hyporheic zone of a contaminated stream. Water Resour. Res. 1999, 35, 3441.
Arsenic mobilization in the hyporheic zone of a contaminated stream.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsVWhs7s%3D&md5=3f1d2604b4941bf17292e624658e7e6eCAS |

[66]  L. Duester, J. P. M. Vink, A. V. Hirner, Methylantimony and –arsenic Species in sediment pore water tested with the sediment or fauna incubation experiment. Environ. Sci. Technol. 2008, 42, 5866.
Methylantimony and –arsenic Species in sediment pore water tested with the sediment or fauna incubation experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1ahu7w%3D&md5=165e56f739450021a476cabe6ebcb1feCAS | 18767637PubMed |