Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Aquatic toxicity of manufactured nanomaterials: challenges and recommendations for future toxicity testing

Aaron G. Schultz A E , David Boyle A , Danuta Chamot A , Kimberly J. Ong A , Kevin J. Wilkinson B , James C. McGeer C , Geoff Sunahara D and Greg G. Goss A
+ Author Affiliations
- Author Affiliations

A Department of Biological Sciences, University of Alberta, Edmonton, AB, T6E4W1, Canada.

B Department of Chemistry, University of Montreal, PO Box 6128, Succursale Centre-Ville Montreal, QC, H3C 3J7, Canada.

C Biology Department, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.

D Aquatic and Crop Resource Development, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada.

E Corresponding author. Email: ags2@ualberta.ca




Aaron Schultz is a Post-Doctoral Fellow in the laboratory of Prof. Greg Goss at the University of Alberta, Canada. He is a fish physiologist and aquatic toxicologist and received his B.Sc. (with 1st Class Honours) in 2006 and Ph.D. from Deakin University, Geelong, Australia, in 2010. His primary research interests focus on studying the adaptive mechanisms employed by fish and other aquatic organisms that allow them to survive in constantly changing environments and in response to anthropogenic contaminants such as nanomaterials.



David Boyle is a Post-Doctoral Fellow in the research group of Prof. Greg Goss at the University of Alberta, Canada. He received his B.Sc. from the University of Bath, UK, in Applied Biology in 2001 and his M.Sc. in 2003 and Ph.D. in 2008 both from King's College London, UK. After an appointment as a Research Scientist at the National Institute for Nutrition and Seafood Research, Bergen, Norway, he has worked as a Post-Doctoral Research Fellow in the field of aquatic nanotoxicology, firstly at Plymouth University, UK, and since 2012, at the University of Alberta, Canada.



Danuta Chamot is a Senior Research Associate in the laboratory of Prof. Greg Goss in the Department of Biological Sciences at the University of Alberta. She received her B.Sc. in 1988 and M.Sc. in 1990 from the University of Toronto and her Ph.D. in plant molecular biology from the University of Bern (Switzerland) in 1993. She has spent most of her career studying stress-regulated gene expression in aquatic microbes. Since joining the Goss lab, she has been closely involved in research on the physiological and toxicological effects of pollutants on fishes.



Kimberly J. Ong is a graduate of the Biological Sciences Ph.D. program at the University of Alberta in Edmonton, Canada in 2013. She earned her B.Sc. in Marine and Freshwater Biology at the University of Guelph in 2006. Her most recent work focussed on developing and validating appropriate biological testing techniques for nanotoxicity studies, and is also interested in the effects of nanoparticles on fish development, behaviour and physiology.



Kevin J. Wilkinson is Professor at the Université de Montréal. His research is aimed at gaining a molecular level understanding of contaminant bioavailability and mobility. Current projects are examining the nature of the physicochemical processes influencing trace metal bioaccumulation by microorganisms and determinations of the fate (dissolution, aggregation) and bioavailability (bioaccumulation, genomic and proteomic effects) of engineered nanomaterials. Wilkinson is currently an Associate Editor of Environmental Chemistry (2010–) and in the past has edited two volumes of Biophysicochemistry of Environmental Systems. He has over 100 publications, over 4000 citations to his work and an h-index of 40. He has recently established a world-class analytical laboratory specialising in the characterisation of nanomaterials: Center for the Analysis and Characterization of Engineered Nanomaterials (CACEN).



Jim McGeer is an Associate Professor in the Biology Department and Director of the Institute for Water Science at Wilfrid Laurier University. He completed B.Sc. Agr. and M.Sc. degrees at the University of British Columbia and then a Ph.D. at the University of Dundee in 1995. He joined Laurier in 2006 following postdoctoral studies at Ben-Gurion and McMaster Universities and then a period as a federal government scientist and research manager at Mining and Mineral Sciences division of Natural Resources Canada. The McGeer lab is focussed on solutions based research directed at integrating fundamental understandings of how inorganic contaminants impinge on physiological processes in aquatic organisms and the application of this understanding in prediction models that contribute to environmental protection by reducing uncertainty.



Geoffrey Sunahara is a Senior Research Officer at the National Resource Council of Canada (NRC). He received his B.Sc. in 1976 and M.Sc. in 1979, both from the University of Toronto, and his Ph.D. (Pharmaceutical Sciences) in 1984 from the University of British Columbia. He completed a 2-year Fogarty post-doctoral fellowship at the National Institute of Environmental Health Sciences (NIH). After working at the Nestec Research Centre (Switzerland) until 1994, he then joined NRC to develop the Applied Ecotoxicology group that focuses on the ecotoxicology of emerging contaminants including nanomaterials, biodiesel and other bioproducts. A major emphasis is made upon innovation, ecological relevance, risk assessment and modes of toxicity.



Prof. Greg Goss is appointed in the Department of Biological Science, Faculty of Science at the University of Alberta with a cross-appointment to the School of Public Health at the University of Alberta. He is a fellow of National Institute of Nanotechnology, the Scientific Director of University of Alberta Water Initiative and Director of the Office of Environmental Nanosafety at the University of Alberta. Dr Goss works jointly with industry, governments and academia to examine the environmental toxicology of micropollutants including nanomaterials, pharmaceuticals and personal care products, hydraulic fracturing fluid and hydrocarbon contaminated fluids.

Environmental Chemistry 11(3) 207-226 https://doi.org/10.1071/EN13221
Submitted: 9 December 2013  Accepted: 22 May 2014   Published: 20 June 2014

Environmental context. The increased use of nanomaterials in industrial and consumer products requires robust strategies to identify risks when they are released into the environment. Aquatic toxicologists are beginning to possess a clearer understanding of the chemical and physical properties of nanomaterials in solution, and which of the properties potentially affect the health of aquatic organisms. This review highlights the main challenges encountered in aquatic nanotoxicity testing, provides recommendations for overcoming these challenges, and discusses recent studies that have advanced our understanding of the toxicity of three important OECD nanomaterials, titanium dioxide, zinc oxide and silver nanomaterials.

Abstract. Aquatic nanotoxicologists and ecotoxicologists have begun to identify the unique properties of the nanomaterials (NMs) that potentially affect the health of wildlife. In this review the scientific aims are to discuss the main challenges nanotoxicologists currently face in aquatic toxicity testing, including the transformations of NMs in aquatic test media (dissolution, aggregation and small molecule interactions), and modes of NM interference (optical interference, adsorption to assay components and generation of reactive oxygen species) on common toxicity assays. Three of the major OECD (Organisation for Economic Co-operation and Development) priority materials, titanium dioxide (TiO2), zinc oxide (ZnO) and silver (Ag) NMs, studied recently by the Natural Sciences and Engineering Research Council of Canada (NSERC), National Research Council of Canada (NRC) and the Business Development Bank of Canada (BDC) Nanotechnology Initiative (NNBNI), a Canadian consortium, have been identified to cause both bulk effect, dissolution-based (i.e. free metal), or NM-specific toxicity in aquatic organisms. TiO2 NMs are most toxic to algae, with toxicity being NM size-dependent and principally associated with binding of the materials to the organism. Conversely, dissolution of Zn and Ag NMs and the subsequent release of their ionic metal counterparts appear to represent the primary mode of toxicity to aquatic organisms for these NMs. In recent years, our understanding of the toxicological properties of these specific OECD relevant materials has increased significantly. Specifically, researchers have begun to alter their experimental design to identify the different behaviour of these materials as colloids and, by introducing appropriate controls and NM characterisation, aquatic nanotoxicologists are now beginning to possess a clearer understanding of the chemical and physical properties of these materials in solution, and how these materials may interact with organisms. Arming nanotoxicologists with this understanding, combined with knowledge of the physics, chemistry and biology of these materials is essential for maintaining the accuracy of all future toxicological assessments.

Additional keywords: nanoparticles, nanotoxicology, silver, titanium dioxide, zinc oxide.


References

[1]  A. Baun, N. B. Hartmann, K. Grieger, K. O. Kusk, Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 2008, 17, 387.
Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVKrsbw%3D&md5=b1d730df43c335581f031cec34ef2334CAS | 18425578PubMed |

[2]  R. Handy, T. Henry, T. Scown, B. Johnston, C. Tyler, Manufactured nanoparticles: their uptake and effects on fish – a mechanistic analysis. Ecotoxicology 2008, 17, 396.
Manufactured nanoparticles: their uptake and effects on fish – a mechanistic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVKrsb0%3D&md5=41bcbae7e5e480c259adf68f58c83532CAS | 18408995PubMed |

[3]  S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, J. R. Lead, Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825.
Nanomaterials in the environment: behavior, fate, bioavailability, and effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVersLjJ&md5=66bb5f70ddef5f791cd00b10e5afac24CAS | 19086204PubMed |

[4]  M. N. Moore, Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int. 2006, 32, 967.
Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCqur3P&md5=7e1b6fe9c9a7d6d8c4a0cc5610a5294cCAS | 16859745PubMed |

[5]  T. M. Scown, R. van Aerle, C. R. Tyler, Review: Do engineered nanoparticles pose a significant threat to the aquatic environment? Crit. Rev. Toxicol. 2010, 40, 653.
Review: Do engineered nanoparticles pose a significant threat to the aquatic environment?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFGrsr4%3D&md5=b8d6ae80b92dcf7d903e2d9d38c21e02CAS | 20662713PubMed |

[6]  J. R. Peralta-Videa, L. Zhao, M. L. Lopez-Moreno, G. de la Rosa, J. Hong, J. L. Gardea-Torresdey, Nanomaterials and the environment: a review for the biennium 2008–2010. J. Hazard. Mater. 2011, 186, 1.
Nanomaterials and the environment: a review for the biennium 2008–2010.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFart7o%3D&md5=f82e97c5e83e6f815923d27a7b14f149CAS | 21134718PubMed |

[7]  S. J. Klaine, A. A. Koelmans, N. Horne, S. Carley, R. D. Handy, L. Kapustka, B. Nowack, F. von der Kammer, Paradigms to assess the environmental impact of manufactured nanomaterials. Environ. Toxicol. Chem. 2012, 31, 3.
Paradigms to assess the environmental impact of manufactured nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yksbfL&md5=d4cb74111fdb6a76fe2d7775f5fed067CAS | 22162122PubMed |

[8]  O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer, A. Kahru, Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013, 87, 1181.
Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFyqsbo%3D&md5=663a78dabe0ea4b19ac13b7de4c420faCAS | 23728526PubMed |

[9]  P. C. Ray, H. Yu, P. P. Fu, Toxicity and environmental risks of nanomaterials: challenges and future needs. J. Environ. Sci. Health – C. Environ. Carcinog. Ecotoxicol. Rev. 2009, 27, 1.
Toxicity and environmental risks of nanomaterials: challenges and future needs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslShtrc%3D&md5=4cf50c00be3da7090d288bed281ff3fcCAS | 19204862PubMed |

[10]  M. C. Roco, Nanotechnology: convergence with modern biology and medicine. Curr. Opin. Biotechnol. 2003, 14, 337.
Nanotechnology: convergence with modern biology and medicine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVSqs7c%3D&md5=0ec9abf4196ac0853548d807fec557b8CAS | 12849790PubMed |

[11]  S. K. Sahoo, S. Parveen, J. J. Panda, The present and future of nanotechnology in human health care. Nanomedicine 2007, 3, 20.
The present and future of nanotechnology in human health care.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFCmsrk%3D&md5=dc0d8bcb2b0899ffac3d88a2b003c771CAS | 17379166PubMed |

[12]  H. Rauscher, G. Roebben, V. Amenta, A.B. Sanfeliu, L. Calzolai, H. Emons, C. Gaillard, N. Gibson, T. Linsinger, A. Mech, L. Q. Pesudo, K. Rasmussen, J. Riego Sintes, B. Sokull-Klüttgen, H. Stamm, Towards a review of the EC Recommendation for a definition of the term ‘nanomaterial’ – Part 1. Compilation of information concerning the experience with the definition. European Commission, Joint Research Centre, Report. EUR 26567 EN (Eds H. Rauscher, G. Roebben) 2014 (Publications Office of the European Union: Luxembourg).

[13]  Nanomaterials state of the market Q3 2008: stealth success, broad impact. State of the market report 2008 (Research Lux Inc.: New York). Available at https://portal.luxresearchinc.com/research/document_excerpt/3735 [Verified 13 June 2014].

[14]  J. Farkas, P. Christian, J. A. Gallego-Urrea, N. Roos, M. Hassellov, K. E. Tollefsen, K. V. Thomas, Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquat. Toxicol. 2011, 101, 117.
Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGgsLjP&md5=1795c853bf9767108cf91df80c7363b6CAS | 20952077PubMed |

[15]  T. Benn, B. Cavanagh, K. Hristovski, J. D. Posner, P. Westerhoff, The release of nanosilver from consumer products used in the home. J. Environ. Qual. 2010, 39, 1875.
The release of nanosilver from consumer products used in the home.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKlu7zO&md5=665579b3e77d38985564355f31a44340CAS | 21284285PubMed |

[16]  T. M. Benn, P. Westerhoff, Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 2008, 42, 4133.
Nanoparticle silver released into water from commercially available sock fabrics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlKjsL4%3D&md5=16dae2000740ddd05f5125241df26259CAS | 18589977PubMed |

[17]  L. Geranio, M. Heuberger, B. Nowack, The behavior of silver nanotextiles during washing. Environ. Sci. Technol. 2009, 43, 8113.
The behavior of silver nanotextiles during washing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOiu7zL&md5=546294f39bba8ea9b99ec8ba01443058CAS | 19924931PubMed |

[18]  L. Windler, C. Lorenz, N. von Goetz, K. Hungerbuhler, M. Amberg, M. Heuberger, B. Nowack, Release of titanium dioxide from textiles during washing. Environ. Sci. Technol. 2012, 46, 8181.
Release of titanium dioxide from textiles during washing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVGlurc%3D&md5=bad54cb7ef18652fe2aec97eccea63a3CAS | 22746197PubMed |

[19]  C. Botta, J. Labille, M. Auffan, D. Borschneck, H. Miche, M. Cabie, A. Masion, J. Rose, J. Y. Bottero, TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities. Environ. Pollut. 2011, 159, 1543.
TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFOqtr4%3D&md5=d5ff3a5ff83d15269ef6bb915f563116CAS | 21481996PubMed |

[20]  T. Poiger, H. R. Buser, M. E. Balmer, P. A. Bergqvist, M. D. Muller, Occurrence of UV filter compounds from sunscreens in surface waters: regional mass balance in two Swiss lakes. Chemosphere 2004, 55, 951.
Occurrence of UV filter compounds from sunscreens in surface waters: regional mass balance in two Swiss lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFOntb4%3D&md5=03fa73aae518c4637f1a169d6d2346aeCAS | 15051365PubMed |

[21]  Important issues on risk assessment of manufactured nanomaterials – Series on the Safety of Manufactured Nanomaterials. OECD Environment, Health and Safety Publications. ENV/JM/MONO(2012)8 2012 (Organisation for Economic Co-operation and Development: Paris, France).

[22]  P. o. E. Nanotechnologies, Consumer Products Inventory, 2013. Available at http://www.nanotechproject.org/cpi [Verified 25 October 2013].

[23]  K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012, 112, 2739.
Gold nanoparticles in chemical and biological sensing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ehtL0%3D&md5=e15c695f83badd25e2629e7e57ac5a49CAS | 22295941PubMed |

[24]  Z. Liu, S. Tabakman, K. Welsher, H. Dai, Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Research. 2009, 2, 85.
Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFSjtr%2FP&md5=e9a8f9f48c7a36dc610568e942e0e0dbCAS | 20174481PubMed |

[25]  F. Zhou, D. Xing, B. Wu, S. Wu, Z. Ou, W. R. Chen, New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett. 2010, 10, 1677.
New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Gku7Y%3D&md5=2d5a6a53936872ccf7724ba69764cf08CAS | 20369892PubMed |

[26]  Y.-C. Chen, X.-C. Huang, Y.-L. Luo, Y.-C. Chang, Y.-Z. Hsieh, H.-Y. Hsu, Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems. Sci. Technol. Adv. Mater. 2013, 14, 044407.
Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems.Crossref | GoogleScholarGoogle Scholar |

[27]  P. Campbell, Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model, in Metal Speciation and Bioavailability in Aquatic Systems (Eds A Tessier, DR Turner) 1995, pp. 45–102 (Wiley: New York).

[28]  B. Jezierska, K. Ługowska, M. Witeska, The effects of heavy metals on embryonic development of fish (a review). Fish Physiol. Biochem. 2009, 35, 625.
The effects of heavy metals on embryonic development of fish (a review).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOiur7O&md5=4f99a81c61cb71150a96e0db5b50d639CAS | 19020985PubMed |

[29]  S. K. Misra, A. Dybowska, D. Berhanu, S. N. Luoma, E. Valsami-Jones, The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci. Total Environ. 2012, 438, 225.
The complexity of nanoparticle dissolution and its importance in nanotoxicological studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFyiu7rI&md5=87340f427883184849b7a18cf9e12102CAS | 23000548PubMed |

[30]  J. Fatisson, I. R. Quevedo, K. J. Wilkinson, N. Tufenkji, Physicochemical characterization of engineered nanoparticles under physiological conditions: effect of culture media components and particle surface coating. Colloids Surf. B Biointerfaces 2012, 91, 198.
Physicochemical characterization of engineered nanoparticles under physiological conditions: effect of culture media components and particle surface coating.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yrsbzO&md5=1841ce90344866156f1079f5c0245084CAS | 22119565PubMed |

[31]  B. Jezierska, K. Lugowska, M. Witeska, The effects of heavy metals on embryonic development of fish (a review). Fish Physiol. Biochem. 2009, 35, 625.
The effects of heavy metals on embryonic development of fish (a review).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOiur7O&md5=4f99a81c61cb71150a96e0db5b50d639CAS | 19020985PubMed |

[32]  M. Ç. Witeska, B. Jezierska, J. Chaber, The influence of cadmium on common carp embryos and larvae. Aquaculture 1995, 129, 129.
The influence of cadmium on common carp embryos and larvae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksFantLc%3D&md5=cf408129cd0dd2e00cf45a24d9bcfb4cCAS |

[33]  G. Klein-Macphee, J. A. Cardin, W. J. Berry, Effects of silver on eggs and larvae of the winter flounder. Trans. Am. Fish. Soc. 1984, 113, 247.
Effects of silver on eggs and larvae of the winter flounder.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktVWqu7Y%3D&md5=d32ef0400dca26730f7b263736ff1c76CAS |

[34]  C. M. Wood, C. Hogstrand, F. Galvez, R. S. Munger, The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag+. Aquat. Toxicol. 1996, 35, 93.
The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag+.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksF2htL4%3D&md5=727532a493095cd21f8ebe832df6a4a2CAS |

[35]  M. Hadioui, S. Leclerc, K. J. Wilkinson, Multimethod quantification of Ag+ release from nanosilver. Talanta 2013, 105, 15.
Multimethod quantification of Ag+ release from nanosilver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1WjurY%3D&md5=a2cd9d269a709af1c2d216816cd619e6CAS | 23597981PubMed |

[36]  S. W. Bian, I. A. Mudunkotuwa, T. Rupasinghe, V. H. Grassian, Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 2011, 27, 6059.
Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVSls7w%3D&md5=37d89ce7ec956cbd16cc3c2279c783b2CAS | 21500814PubMed |

[37]  R. F. Domingos, D. F. Simon, C. Hauser, K. J. Wilkinson, Bioaccumulation and effects of CdTe/CdS quantum dots on Chlamydomonas reinhardtii – nanoparticles or the free ions? Environ. Sci. Technol. 2011, 45, 7664.
Bioaccumulation and effects of CdTe/CdS quantum dots on Chlamydomonas reinhardtii – nanoparticles or the free ions?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVyhurfI&md5=9deb034004d86b3580b8d9531dbfaa36CAS | 21842898PubMed |

[38]  H. Zhang, B. Chen, J. F. Banfield, Particle size and pH effects on nanoparticle dissolution. J. Phys. Chem. C 2010, 114, 14876.
Particle size and pH effects on nanoparticle dissolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCksr3P&md5=f8d06b25bb32eee34840f087a5f138cbCAS |

[39]  L. Tang, B. Han, K. Persson, C. Friesen, T. He, K. Sieradzki, G. Ceder, Electrochemical stability of nanometer-scale Pt particles in acidic environments. J. Am. Chem. Soc. 2010, 132, 596.
Electrochemical stability of nanometer-scale Pt particles in acidic environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOrtrbM&md5=1b4ec5f1b2928ce2e846755401f6e43dCAS | 20017546PubMed |

[40]  V. Merdzan, R. F. Domingos, M. Monteiro, M. Hadioui, K. J. Wilkinson, The effects of different coatings on zinc oxide nanoparticles and their influence on dissolution and bioaccumulation by green alga, C. reinhardtii. Sci. Total Environ. 2014, 488–489, 316.
The effects of different coatings on zinc oxide nanoparticles and their influence on dissolution and bioaccumulation by green alga, C. reinhardtii.Crossref | GoogleScholarGoogle Scholar | 24836387PubMed |

[41]  J. Liu, R. H. Hurt, Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 2010, 44, 2169.
Ion release kinetics and particle persistence in aqueous nano-silver colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Wqsrc%3D&md5=eda8eefb62b5e038312ad7a39ce5d935CAS | 20175529PubMed |

[42]  M. Li, D. Lin, L. Zhu, Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ. Pollut. 2013, 173, 97.
Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVektrrI&md5=15b7f7bdc149ffb4c2f102fd7bd40442CAS | 23202638PubMed |

[43]  J. Liu, D. A. Sonshine, S. Shervani, R. H. Hurt, Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 2010, 4, 6903.
Controlled release of biologically active silver from nanosilver surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlaitb3L&md5=f74a2c9fb88e9b8a96314791af98dfb3CAS | 20968290PubMed |

[44]  A. M. Studer, L. K. Limbach, L. Van Duc, F. Krumeich, E. K. Athanassiou, L. C. Gerber, H. Moch, W. J. Stark, Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol. Lett. 2010, 197, 169.
Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVagu7o%3D&md5=a8491c019fc5252427d8f811ab64d75dCAS | 20621582PubMed |

[45]  A. Shiohara, S. Prabakar, A. Faramus, C.-Y. Hsu, P.-S. Lai, P. T. Northcote, R. D. Tilley, Sized controlled synthesis, purification, and cell studies with silicon quantum dots. Nanoscale. 2011, 3, 3364.

[46]  A. G. Schultz, K. J. Ong, T. MacCormack, G. Ma, J. G. C. Veinot, G. G. Goss, Silver nanoparticles inhibit sodium uptake in juvenile rainbow trout (Oncorhynchus mykiss). Environ. Sci. Technol. 2012, 46, 10295.
| 1:CAS:528:DC%2BC38XhtF2ku77P&md5=b87e5f3c65e198a7062a02838efcb6e4CAS | 22891970PubMed |

[47]  K. J. Ong, X. Zhao, M. E. Thistle, T. J. Maccormack, R. J. Clark, G. Ma, Y. Martinez-Rubi, B. Simard, J. S. Loo, J. G. Veinot, G. G. Goss, Mechanistic insights into the effect of nanoparticles on zebrafish hatch. Nanotoxicology 2014, 8, 295.
Mechanistic insights into the effect of nanoparticles on zebrafish hatch.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFemur3L&md5=06a7978833540837ae933d7d04ce8bedCAS | 23421642PubMed |

[48]  J. N. Meyer, C. A. Lord, X. Y. Yang, E. A. Turner, A. R. Badireddy, S. M. Marinakos, A. Chilkoti, M. R. Wiesner, M. Auffan, Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat. Toxicol. 2010, 100, 140.
Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGjs7bI&md5=40459a41abbeb56b27471610585121bdCAS | 20708279PubMed |

[49]  R. J. Griffitt, K. Hyndman, N. D. Denslow, D. S. Barber, Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol. Sci. 2009, 107, 404.[Published online early 10 December 2008].
Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVehtrY%3D&md5=1f5b6fce37074ccf84178dcaed08cce3CAS | 19073994PubMed |

[50]  J. E. Ward, D. J. Kach, Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar. Environ. Res. 2009, 68, 137.
Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotl2ksL8%3D&md5=98c25a841cc93e087356fc06b3d9f7bbCAS | 19525006PubMed |

[51]  B. Derjaguin, L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog. Surf. Sci. 1993, 43, 30.
Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes.Crossref | GoogleScholarGoogle Scholar |

[52]  E. J. W. Verwey, J. Th. G. Overbeek, Long distance forces acting between colloidal particles. Trans. Faraday Soc. 1946, 42, B117.
Long distance forces acting between colloidal particles.Crossref | GoogleScholarGoogle Scholar |

[53]  J. Buffle, K. J. Wilkinson, S. Stoll, M. Filella, J. Zhang, A generalized description of aquatic colloidal interactions: the three-colloidal component approach. Environ. Sci. Technol. 1998, 32, 2887.
A generalized description of aquatic colloidal interactions: the three-colloidal component approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVyqt7w%3D&md5=35469604d23585c4800c0dd1924ca4fbCAS |

[54]  A. M. E. Badawy, T. P. Luxton, R. G. Silva, K. G. Scheckel, M. T. Suidan, T. M. Tolaymat, Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ. Sci. Technol. 2010, 44, 1260.
Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions.Crossref | GoogleScholarGoogle Scholar |

[55]  J. Jiang, G. Oberdörster, P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res. 2009, 11, 77.
Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSksA%3D%3D&md5=1d7b8bd47a1175239c0853647affa86bCAS |

[56]  R. F. Domingos, N. Tufenkji, K. J. Wilkinson, Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ. Sci. Technol. 2009, 43, 1282.
Aggregation of titanium dioxide nanoparticles: role of a fulvic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlKktA%3D%3D&md5=bb858a0eeb0445fe92775dcda539c1f6CAS | 19350891PubMed |

[57]  K. L. Chen, M. Elimelech, Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J. Colloid Interface Sci. 2007, 309, 126.
Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtl2jt78%3D&md5=1e0c214b2bc39b8d345de94e91379958CAS | 17331529PubMed |

[58]  Y. Zhang, Y. Chen, P. Westerhoff, J. Crittenden, Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res. 2009, 43, 4249.
Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWks73O&md5=65df838c58ebce11743c0085be26fa1cCAS | 19577783PubMed |

[59]  T. Cedervall, I. Lynch, S. lindman, T. Berggård, E. Thulin, H. Nilsson, K. Dawson, S. Linse, Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050.
S. lindman, T. Berggård, E. Thulin, H. Nilsson, K. Dawson, S. Linse, Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVWrsro%3D&md5=c875dac5258f37232c25b0c73d6df947CAS | 17267609PubMed |

[60]  I. Lynch, A. Salvati, K. A. Dawson, Protein-nanoparticle interactions: what does the cell see? Nat. Nanotechnol. 2009, 4, 546.
Protein-nanoparticle interactions: what does the cell see?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2ltbrP&md5=1e903930fa54405ee42996cb6567bb00CAS | 19734922PubMed |

[61]  M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K. A. Dawson, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 2008, 105, 14265.
Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SgtrvJ&md5=34a46219acd1941ab50c194a6a721abeCAS | 18809927PubMed |

[62]  E. Casals, T. Pfaller, A. Duschl, G. J. Oostingh, V. Puntes, Time evolution of the nanoparticle protein corona. ACS Nano 2010, 4, 3623.
Time evolution of the nanoparticle protein corona.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGhtbc%3D&md5=96c1714ded8ee4c756325b0ced841f9eCAS | 20553005PubMed |

[63]  S. Deguchi, T. Yamazaki, S.-a. Mukai, R. Usami, K. Horikoshi, Stabilization of C60 nanoparticles by protein adsorption and its implications for toxicity studies. Chem. Res. Toxicol. 2007, 20, 854.
Stabilization of C60 nanoparticles by protein adsorption and its implications for toxicity studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Ogtbg%3D&md5=3e72fb337c825e70c9adb9b3fc04a31aCAS | 17503852PubMed |

[64]  B. Nowack, J. F. Ranville, S. Diamond, J. A. Gallego-Urrea, C. Metcalfe, J. Rose, N. Horne, A. A. Koelmans, S. J. Klaine, Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem. 2012, 31, 50. [Published online early 9 December 2011].

[65]  M. Baalousha, A. Manciulea, S. Cumberland, K. Kendall, J. R. Lead, Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ. Toxicol. Chem. 2008, 27, 1875.
Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVersLjF&md5=7498511e79e4766c4437605b0d56535eCAS | 19086206PubMed |

[66]  B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662.
Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVCjsLk%3D&md5=cc0479ae85e5b160362e877e6c545d91CAS | 16608261PubMed |

[67]  L. K. Limbach, Y. Li, R. N. Grass, T. J. Brunner, M. A. Hintermann, M. Muller, D. Gunther, W. J. Stark, Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ. Sci. Technol. 2005, 39, 9370.
Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2jsLjM&md5=cad96dfd3988931910df09db7067b25fCAS | 16382966PubMed |

[68]  D. M. Rawson, T. Zhang, D. Kolicharan, W. L. Jonbloed, Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasma membrane and syncytial layers of the gastrula-stage embryo of the zebrafish Brachydanio rerio: a consideration of the structural and functional relationships with respect to cryoprotectant penetration. Aquacult. Res. 2000, 31, 325.
Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasma membrane and syncytial layers of the gastrula-stage embryo of the zebrafish Brachydanio rerio: a consideration of the structural and functional relationships with respect to cryoprotectant penetration.Crossref | GoogleScholarGoogle Scholar |

[69]  D. Kühnel, W. Busch, T. Meißner, A. Springer, A. Potthoff, V. Richter, M. Gelinsky, S. Scholz, K. Schirmer, Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line. Aquat. Toxicol. 2009, 93, 91.
Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line.Crossref | GoogleScholarGoogle Scholar | 19439373PubMed |

[70]  S. Laurent, C. Burtea, C. Thirifays, U. O. Häfeli, M. Mahmoudi, Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and ‘cell vision’. PLoS ONE 2012, 7, e29997.
Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and ‘cell vision’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12mu74%3D&md5=ebd6af170ca4315b9fd0c211bc6c9232CAS | 22253854PubMed |

[71]  W. Bai, Z. Zhang, W. Tian, X. He, Y. Ma, Y. Zhao, Z. Chai, Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J. Nanopart. Res. 2010, 12, 1645. [Published online early 29 August 2009].

[72]  X. Zhu, J. Wang, X. Zhang, Y. Chang, Y. Chen, The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 2009, 20, 195103.
The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio).Crossref | GoogleScholarGoogle Scholar | 19420631PubMed |

[73]  D. Brunner, J. Frank, H. Appl, H. Schöffl, W. Pfaller, Serum-free cell culture: the serum-free media interactive online database. ALTEX 2010, 27, 53.
| 20390239PubMed |

[74]  A. Casey, E. Herzog, F. M. Lyng, H. J. Byrne, G. Chambers, M. Davoren, Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicol. Lett. 2008, 179, 78.
Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFKrtr4%3D&md5=d73efd1d6064f0a46665bba8c2f8b4d8CAS | 18502058PubMed |

[75]  M. Horie, K. Nishio, K. Fujita, S. Endoh, A. Miyauchi, Y. Saito, H. Iwahashi, K. Yamamoto, H. Murayama, H. Nakano, N. Nanashima, E. Niki, Y. Yoshida, Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem. Res. Toxicol. 2009, 22, 543.
Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFGms7w%3D&md5=2edb3372dad626b9d4ea35566ae345d1CAS | 19216582PubMed |

[76]  L. Guo, A. Von Dem Bussche, M. Buechner, A. Yan, A. B. Kane, R. H. Hurt, Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small 2008, 4, 721.
Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFynt7k%3D&md5=ed88389761e9751648a755588b071affCAS | 18504717PubMed |

[77]  X. Zhao, B. C. Heng, S. Xiong, J. Guo, T. T.-Y. Tan, F. Y. C. Boey, K. W. Ng, J. S. C. Loo, In vitro assessment of cellular responses to rod-shaped hydroxyapatite nanoparticles of varying lengths and surface areas. Nanotoxicology 2011, 5, 182.
In vitro assessment of cellular responses to rod-shaped hydroxyapatite nanoparticles of varying lengths and surface areas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCqur3K&md5=f866e507a6615fb42cb5c1684228b8e7CAS | 21609137PubMed |

[78]  B. D. Johnston, T. M. Scown, J. Moger, S. A. Cumberland, M. Baalousha, K. Linge, R. van Aerle, K. Jarvis, J. R. Lead, C. R. Tyler, Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environ. Sci. Technol. 2010, 44, 1144.
Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12lsA%3D%3D&md5=fec7191171ecb259ad7b0b2321864a70CAS | 20050652PubMed |

[79]  A. E. Ellis, Innate host defense mechanisms of fish against viruses and bacteria. Dev. Comp. Immunol. 2001, 25, 827.
Innate host defense mechanisms of fish against viruses and bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFWkt7g%3D&md5=aaa3465b0c1538bf549a8c5b45ec75d3CAS | 11602198PubMed |

[80]  A. Casey, E. Herzog, M. Davoren, F. M. Lyng, H. J. Byrne, G. Chambers, Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon 2007, 45, 1425.
Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVGktrY%3D&md5=6134fbd56a2ffb4096073b524196d8f5CAS |

[81]  N. A. Monteiro-Riviere, A. O. Inman, L. W. Zhang, Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol. Appl. Pharmacol. 2009, 234, 222.
Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVentg%3D%3D&md5=0d41a187daf720ac4f7c15480b87aa35CAS | 18983864PubMed |

[82]  K. J. Ong, T. J. MacCormack, R. J. Clark, J. D. Ede, V. A. Ortega, L. C. Felix, M. K. Dang, G. Ma, H. Fenniri, J. G. Veinot, G. G. Goss, Widespread nanoparticle-assay interference: implications for nanotoxicity testing. PLoS ONE 2014, 9, e90650.
Widespread nanoparticle-assay interference: implications for nanotoxicity testing.Crossref | GoogleScholarGoogle Scholar | 24618833PubMed |

[83]  R. Guadagnini, B. Halamoda Kenzaoui, L. Cartwright, G. Pojana, Z. Magdolenova, D. Bilanicova, M. Saunders, L. Juillerat, A. Marcomini, A. Huk, M. Dusinska, L. M. Fjellsbø, F. Marano, S. Boland, Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology 2013, in press. [Published online early 27 July 2013].
Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests.Crossref | GoogleScholarGoogle Scholar | 24286383PubMed |

[84]  G. Wang, J. Zhang, A. H. Dewilde, A. K. Pal, D. Bello, J. M. Therrien, S. J. Braunhut, K. A. Marx, Understanding and correcting for carbon nanotube interferences with a commercial LDH cytotoxicity assay. Toxicology 2012, 299, 99.
Understanding and correcting for carbon nanotube interferences with a commercial LDH cytotoxicity assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosVaks7g%3D&md5=e19e1c887285fdccd759550ad432ea47CAS | 22634321PubMed |

[85]  S. Bancos, D. H. Tsai, V. Hackley, J. L. Weaver, K. M. Tyner, Evaluation of viability and proliferation profiles on macrophages treated with silica nanoparticles in vitro via plate-based, flow cytometry, and coulter counter assays. ISRN Nanotechnology. 2012, 2012, 1.
Evaluation of viability and proliferation profiles on macrophages treated with silica nanoparticles in vitro via plate-based, flow cytometry, and coulter counter assays.Crossref | GoogleScholarGoogle Scholar |

[86]  X. Han, R. Gelein, N. Corson, P. Wade-Mercer, J. Jiang, P. Biswas, J. N. Finkelstein, A. Elder, G. Oberdörster, Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology 2011, 287, 99.
Validation of an LDH assay for assessing nanoparticle toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFGns78%3D&md5=c9081455e9f01a9564e3c9fb04ef7a3fCAS | 21722700PubMed |

[87]  C. Darolles, N. Sage, J. Armengaud, V. Malard, In vitro assessment of cobalt oxide particle toxicity: identifying and circumventing interference. Toxicol. In Vitro 2013, 27, 1699.
In vitro assessment of cobalt oxide particle toxicity: identifying and circumventing interference.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht12gtb3E&md5=3c5612f009cc729f7bbad51a4b8495faCAS | 23624240PubMed |

[88]  S. Wang, H. Yu, J. K. Wickliffe, Limitation of the MTT and XTT assays for measuring cell viability due to superoxide formation induced by nano-scale TiO2. Toxicol. In Vitro 2011, 25, 2147.
Limitation of the MTT and XTT assays for measuring cell viability due to superoxide formation induced by nano-scale TiO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKmt7vM&md5=800b84700151229a49e4eacb46c22713CAS | 21798338PubMed |

[89]  J. M. Wörle-Knirsch, K. Pulskamp, H. F. Krug, Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 2006, 6, 1261.
Oops they did it again! Carbon nanotubes hoax scientists in viability assays.Crossref | GoogleScholarGoogle Scholar | 16771591PubMed |

[90]  G. Ciofani, S. Danti, D. D’Alessandro, S. Moscato, A. Menciassi, Assessing cytotoxicity of boron nitride nanotubes: interference with the MTT assay. Biochem. Biophys. Res. Commun. 2010, 394, 405.
Assessing cytotoxicity of boron nitride nanotubes: interference with the MTT assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVentrk%3D&md5=df21ff5da546ce8216fdbaada2ee5530CAS | 20226164PubMed |

[91]  T. Laaksonen, H. Santos, H. Vihola, J. Salonen, J. Riikonen, T. Heikkilä, L. Peltonen, N. Kumar, D. Y. Murzin, V.-P. Lehto, J. Hirvonen, Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles. Chem. Res. Toxicol. 2007, 20, 1913.
Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1OqtLjJ&md5=f21cbc8919ecaf1aa222fec6e308b7d1CAS | 17990852PubMed |

[92]  L. Belyanskaya, P. Manser, P. Spohn, A. Bruinink, P. Wick, The reliability and limits of the MTT reduction assay for carbon nanotubes–cell interaction. Carbon 2007, 45, 2643.
The reliability and limits of the MTT reduction assay for carbon nanotubes–cell interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ShtL7K&md5=d3398351c30b16b2852de1084c61f319CAS |

[93]  V. Amendola, M. Meneghetti, Size evaluation of gold nanoparticles by UV-Vis spectroscopy. J. Phys. Chem. C 2009, 113, 4277.
Size evaluation of gold nanoparticles by UV-Vis spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Klsbg%3D&md5=d026c326c4044113cc013446bb3f8386CAS |

[94]  W. Haiss, N. T. K. Thanh, J. Aveyard, D. G. Fernig, Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 2007, 79, 4215.
Determination of size and concentration of gold nanoparticles from UV-Vis spectra.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFCit7s%3D&md5=36025be26592be256fdbc16dc5e36db0CAS | 17458937PubMed |

[95]  P. K. Jain, X. Huang, I. H. El Sayed, M. A. El-Sayed, Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2007, 2, 107.
Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yitr3L&md5=d03ba8c3c8683d95d10a5f1afd8e3232CAS |

[96]  S. Mazumder, R. Dey, M. K. Mitra, S. Mukherjee, G. C. Das, Review: biofunctionalized quantum dots in biology and medicine. J. Nanomater. 2009, 2009, 1.
Review: biofunctionalized quantum dots in biology and medicine.Crossref | GoogleScholarGoogle Scholar |

[97]  V. Wilhelmi, U. Fischer, D. van Berlo, K. Schulze-Osthoff, R. P. F. Schins, C. Albrecht, Evaluation of apoptosis induced by nanoparticles and fine particles in RAW 264.7 macrophages: facts and artefacts. Toxicol. In Vitro 2012, 26, 323.
Evaluation of apoptosis induced by nanoparticles and fine particles in RAW 264.7 macrophages: facts and artefacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOlsL8%3D&md5=a7e6b65d930203bfeae7af3eda0719e9CAS | 22198050PubMed |

[98]  M. A. Dobrovolskaia, J. D. Clogston, B. W. Neun, J. B. Hall, A. K. Patri, S. E. McNeil, Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett. 2008, 8, 2180.
Method for analysis of nanoparticle hemolytic properties in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1aiu7s%3D&md5=2786ecb8d771d780af833484b3e68f25CAS | 18605701PubMed |

[99]  A. Kroll, M. H. Pillukat, D. Hahn, J. Schnekenburger, Interference of engineered nanoparticles with in vitro toxicity assays. Arch. Toxicol. 2012, 86, 1123.
Interference of engineered nanoparticles with in vitro toxicity assays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFGhsbo%3D&md5=cb41010cd0c40f97437596497c29a7f8CAS | 22407301PubMed |

[100]  S. H. Doak, S. M. Griffiths, B. Manshian, N. Singh, P. M. Williams, A. P. Brown, G. J. S. Jenkins, Confounding experimental considerations in nanogenotoxicology. Mutagenesis 2009, 24, 285.
Confounding experimental considerations in nanogenotoxicology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVOnu7o%3D&md5=eab8fd6445432c4aa71a50d81f2b591dCAS | 19351890PubMed |

[101]  A. Panas, C. Marquardt, O. Nalcaci, H. Bockhorn, W. Baumann, H. R. Paur, S. Mülhopt, S. Diabaté, C. Weiss, Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages. Nanotoxicology 2013, 7, 259.
Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsF2nsrY%3D&md5=ba87fa8fdcfd9f2e5a7a403632770c98CAS | 22276741PubMed |

[102]  C. A. Sabatini, R. V. Pereira, M. H. Gehlen, Fluorescence modulation of acridine and coumarin dyes by silver nanoparticles. J. Fluoresc. 2007, 17, 377.
Fluorescence modulation of acridine and coumarin dyes by silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1Kjtr0%3D&md5=97737c08428de6ebadfe408e99fb88faCAS | 17549612PubMed |

[103]  J. Tournebize, A. Sapin-Minet, G. Bartosz, P. Leroy, A. Boudier, Pitfalls of assays devoted to evaluation of oxidative stress induced by inorganic nanoparticles. Talanta 2013, 116, 753.
Pitfalls of assays devoted to evaluation of oxidative stress induced by inorganic nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1KrurbM&md5=01839119092c4540e8fe9a765f8d2a24CAS | 24148470PubMed |

[104]  A. M. Keene, R. J. Allaway, N. Sadrieh, K. M. Tyner, Gold nanoparticle trafficking of typically excluded compounds across the cell membrane in JB6 Cl 41–5a cells causes assay interference. Nanotoxicology 2011, 5, 469.
Gold nanoparticle trafficking of typically excluded compounds across the cell membrane in JB6 Cl 41–5a cells causes assay interference.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1egurw%3D&md5=4a2179bfebc2b1feb32facba6057b5b5CAS | 21090919PubMed |

[105]  S. Shukla, A. Priscilla, M. Banerjee, R. R. Bhonde, J. Ghatak, P. V. Satyam, M. Sastry, Porous gold nanospheres by controlled transmetalation reaction: a novel material for application in cell imaging. Chem. Mater. 2005, 17, 5000.
Porous gold nanospheres by controlled transmetalation reaction: a novel material for application in cell imaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps1eqsr8%3D&md5=1c0d5ae05d1de881911d7f4bf1cae91aCAS |

[106]  I. Lynch, K. A. Dawson, Protein–nanoparticle interactions. Nano Today 2008, 3, 40.
Protein–nanoparticle interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFemsb3P&md5=8ce8d64beed66e5288d1112317716149CAS |

[107]  M. P. Monopoli, D. Walczyk, A. Campbell, G. Elia, I. Lynch, F. Baldelli Bombelli, K. A. Dawson, Physical–chemical aspects of protein corona: relevance to in vitroand in vivobiological impacts of nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525.
Physical–chemical aspects of protein corona: relevance to in vitroand in vivobiological impacts of nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOnt7w%3D&md5=84d9baed4322c44b74ebe097e665d3afCAS | 21288025PubMed |

[108]  T. J. MacCormack, R. J. Clark, M. K. M. Dang, G. Ma, J. A. Kelly, J. G. C. Veinot, G. G. Goss, Inhibition of enzyme activity by nanomaterials: potential mechanisms and implications for nanotoxicity testing. Nanotoxicology 2012, 6, 514.
Inhibition of enzyme activity by nanomaterials: potential mechanisms and implications for nanotoxicity testing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVagu7zJ&md5=b6bd5194f139c754568fa0c87bcdaf20CAS | 21639725PubMed |

[109]  K. B. Male, E. Lam, J. Montes, J. H. T. Luong, Noninvasive cell-based impedance spectroscopy for real-time probing inhibitory effects of graphene derivatives. Applied Materials and Interfaces. 2012, 4, 3643.
Noninvasive cell-based impedance spectroscopy for real-time probing inhibitory effects of graphene derivatives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1GisLw%3D&md5=5a94dd58db5315ece07a7eeb58e0981dCAS | 22746697PubMed |

[110]  E. Herzog, A. Casey, F. Lyng, G. Chambers, H. Byrne, M. Davoren, A new approach to the toxicity testing of carbon-based nanomaterials – the clonogenic assay. Toxicol. Lett. 2007, 174, 49.
A new approach to the toxicity testing of carbon-based nanomaterials – the clonogenic assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1anurbJ&md5=35e30a5deda373199d9c5271b6d262ecCAS | 17920791PubMed |

[111]  J. Fabrega, S. N. Luoma, C. R. Tyler, T. S. Galloway, J. R. Lead, Silver nanoparticles: behaviour and effects in the aquatic environment. Environ. Int. 2011, 37, 517.
Silver nanoparticles: behaviour and effects in the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCjtr8%3D&md5=cc52ad7aa25a0f0a1db386f09879334dCAS | 21159383PubMed |

[112]  B. J. Shaw, R. D. Handy, Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ. Int. 2011, 37, 1083.
Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVWnurg%3D&md5=697f42e64a24a5f553af154192176b10CAS | 21474182PubMed |

[113]  S. Ma, D. Lin, The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization. J. Environ. Monitor. 2013, 15, 145.
| 1:CAS:528:DC%2BC38XhvFWgt7vN&md5=b37f110710511832cab750b3659f4c43CAS |

[114]  R. Behra, L. Sigg, M. J. Clift, F. Herzog, M. Minghetti, B. Johnston, A. Petri-Fink, B. Rothen-Rutishauser, Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J. R. Soc. Interface 2013, 10, 20130396.
Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective.Crossref | GoogleScholarGoogle Scholar | 23883950PubMed |

[115]  State of the science literature review: nano titanium dioxide environmental matters. scientific, technical, research, engineering and modeling support (STREAMS) final report, EPA-600-R-10-089 2010 (United States Environmental Protection Agency: Washington, DC).

[116]  Nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical sunscreen. EPA-600-R-09-057 2010 (United States Environmental Protection Agency: Washington, DC).

[117]  Nanomaterial case studies workshop: developing a comprehensive environmental assessment research strategy for nanoscale titanium dioxide. EPA-600-R‐10-042 2010 (United States Environmental Protection Agency: Washington, DC).

[118]  C. O. Robichaud, A. E. Uyar, M. R. Darby, L. G. Zucker, M. R. Wiesner, Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ. Sci. Technol. 2009, 43, 4227.
Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFOnu7s%3D&md5=1821f69605de3f4390228613ef5549eeCAS | 19603627PubMed |

[119]  F. Gottschalk, T. Sun, B. Nowack, Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ. Pollut. 2013, 181, 287.
Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSlsrfP&md5=7be267556cba6b63f2cffd78eb64df51CAS | 23856352PubMed |

[120]  F. Gottschalk, T. Sonderer, R. W. Scholz, B. Nowack, Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ. Toxicol. Chem. 2010, 29, 1036.
| 1:CAS:528:DC%2BC3cXpslyktb0%3D&md5=03eaa77bd1800357bcdb16cc222d4c55CAS | 20821538PubMed |

[121]  F. Gottschalk, T. Sonderer, R. W. Scholz, B. Nowack, Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 2009, 43, 9216.
Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, fullerenes) for different regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyhtL%2FP&md5=a8a5454d70978de5af6ee6d145a26961CAS | 20000512PubMed |

[122]  M. Farré, K. Gajda-Schrantz, L. Kantiani, D. Barcelo, Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal. Bioanal. Chem. 2009, 393, 81.
Ecotoxicity and analysis of nanomaterials in the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 18987850PubMed |

[123]  K. Fent, Ecotoxicology of engineered nanoparticles, in Nanoparticles in the Water Cycle (Eds F. H. Frimmel, R. Niessner) 2010, pp. 183–205 (Springer: Heidelberg).

[124]  A. Menard, D. Drobne, A. Jemec, Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ. Pollut. 2011, 159, 677.
Ecotoxicity of nanosized TiO2. Review of in vivo data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFWksA%3D%3D&md5=e0a07dad982fba9223bd32778e65018cCAS | 21186069PubMed |

[125]  E. Navarro, A. Baun, R. Behra, N. Hartmann, J. Filser, A.-J. Miao, A. Quigg, P. Santschi, L. Sigg, Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 2008, 17, 372.
Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVKrsLc%3D&md5=a1cc58f914bb667a567bab9f9a54fbd5CAS | 18461442PubMed |

[126]  M. Heinlaan, A. Ivask, I. Blinova, H. C. Dubourguier, A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 2008, 71, 1308.
Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFCmtro%3D&md5=50d90e637fdb1ab19a28fcdcd2488e74CAS | 18194809PubMed |

[127]  N. B. Hartmann, F. Von der Kammer, T. Hofmann, M. Baalousha, S. Ottofuelling, A. Baun, Algal testing of titanium dioxide nanoparticles – testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 2010, 269, 190.
Algal testing of titanium dioxide nanoparticles – testing considerations, inhibitory effects and modification of cadmium bioavailability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslSitbc%3D&md5=4ec6ef866a731c308edda51a0183d6d8CAS | 19686796PubMed |

[128]  W. M. Lee, Y. J. An, Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere 2013, 91, 536.
Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCktr8%3D&md5=a3a866f97836a9fef84a3a8f7a63b58eCAS | 23357865PubMed |

[129]  J. Wang, X. Zhang, Y. Chen, M. Sommerfeld, Q. Hu, Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 2008, 73, 1121.
Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SntL3F&md5=5bd9fb48ba76da1a32221e8bf6e058c9CAS | 18768203PubMed |

[130]  D. M. Metzler, M. Li, A. Erdem, C. P. Huang, Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chem. Eng. J. 2011, 170, 538.
Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslahtr0%3D&md5=428c977305430f0c73d95360b628cdeaCAS |

[131]  R. D. Handy, N. van den Brink, M. Chappell, M. Muhling, R. Behra, M. Dusinska, P. Simpson, J. Ahtiainen, A. N. Jha, J. Seiter, A. Bednar, A. Kennedy, T. F. Fernandes, M. Riediker, Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology 2012, 21, 933.
Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFCjur4%3D&md5=7094b1115904429d04628a9edb95e3b2CAS | 22422174PubMed |

[132]  A. Kahru, H.-C. Dubourguier, I. Blinova, A. Ivask, K. Kasemets, Biotests and biosensors for ecotoxicology of metal oxide nanoparticles. Sensors 2008, 8, 5153.
Biotests and biosensors for ecotoxicology of metal oxide nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVekt7zI&md5=1dbab9c119fea2dce31654b0eb5ea034CAS |

[133]  V. Aruoja, H. C. Dubourguier, K. Kasemets, A. Kahru, Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci. Total Environ. 2009, 407, 1461.
Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOmsrvP&md5=d2d6eadc811ff07b228e1fc0e9a2e1ebCAS | 19038417PubMed |

[134]  R. F. Domingos, C. Peyrot, K. J. Wilkinson, Aggregation of titanium dioxide nanoparticles: role of calcium and phosphate. Environ. Chem. 2010, 7, 61.
Aggregation of titanium dioxide nanoparticles: role of calcium and phosphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt12jtLg%3D&md5=04eb7f231336203ef7d3953f2fb5e6e8CAS |

[135]  D. Lin, J. Ji, Z. Long, K. Yang, F. Wu, The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp. Water Res. 2012, 46, 4477.
The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1GisLw%3D&md5=71abaaf52f6aada4f759d50e3a500a07CAS | 22704133PubMed |

[136]  OECD Working Party on Manufactured Nanomaterials 2012 (Government of Canada). Available at http://www.ic.gc.ca/eic/site/aimb-dgami.nsf/eng/h_03496.html [Verified 19 November 2013].

[137]  K. Hund-Rinke, D. Hennecke, An evaluation of studies on nano TiO2 fate and ecotoxicity for risk assessment – experiences from the OECD Sponsorship Programme, in 23rd SETAC Europe Annual Meeting, 12–16 May 2013, Glasgow, Scotland 2013, p. 515 (Society of Environmental Toxicology and Chemistry).

[138]  L. Chen, L. Zhou, Y. Liu, S. Deng, H. Wu, G. Wang, Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. Ecotoxicol. Environ. Saf. 2012, 84, 155.
Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSgsbrP&md5=61267384f8876869359bc318288a7181CAS | 22883605PubMed |

[139]  S. Dalai, S. Pakrashi, N. Chandrasekaran, A. Mukherjee, Acute toxicity of TiO2 nanoparticles to Ceriodaphnia dubia under visible light and dark conditions in a freshwater system. PLoS ONE 2013, 8, e62970.
Acute toxicity of TiO2 nanoparticles to Ceriodaphnia dubia under visible light and dark conditions in a freshwater system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntlCrtLs%3D&md5=af8243a96b2855fbf27a92167cb6a52aCAS | 23658658PubMed |

[140]  D. B. Warheit, R. A. Hoke, C. Finlay, E. M. Donner, K. L. Reed, C. M. Sayes, Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol. Lett. 2007, 171, 99.
Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVahu7o%3D&md5=20f32c7861394285833f68b843888e9aCAS | 17566673PubMed |

[141]  K. Hund-Rinke, M. Simon, Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ. Sci. Pollut. Res. Int. 2006, 13, 225.
Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1eksbc%3D&md5=eb37510095d7b9e8dfb6c0f021827c3eCAS | 16910119PubMed |

[142]  I. M. Sadiq, S. Dalai, N. Chandrasekaran, A. Mukherjee, Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol. Environ. Saf. 2011, 74, 1180.
Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVCltro%3D&md5=5d1d62b0bf79f9b15a0865bff7574b22CAS | 21481931PubMed |

[143]  B. Campos, C. Rivetti, P. Rosenkranz, J. M. Navas, C. Barata, Effects of nanoparticles of TiO2 on food depletion and life-history responses of Daphnia magna. Aquat. Toxicol. 2013, 130–131, 174.
Effects of nanoparticles of TiO2 on food depletion and life-history responses of Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 23416410PubMed |

[144]  X. Zhu, Y. Chang, Y. Chen, Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 2010, 78, 209.
Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGgs77K&md5=e829dcc2d10cec5f1ae9406e9fa98303CAS | 19963236PubMed |

[145]  D. Boyle, G. A. Al-Bairuty, C. S. Ramsden, K. A. Sloman, T. B. Henry, R. D. Handy, Subtle alterations in swimming speed distributions of rainbow trout exposed to titanium dioxide nanoparticles are associated with gill rather than brain injury. Aquat. Toxicol. 2013, 126, 116.
Subtle alterations in swimming speed distributions of rainbow trout exposed to titanium dioxide nanoparticles are associated with gill rather than brain injury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2rsrrN&md5=4df4e651820cd3327118d54331ae32dfCAS | 23178178PubMed |

[146]  D. Boyle, G. A. Al-Bairuty, T. B. Henry, R. D. Handy, Critical comparison of intravenous injection of TiO2 nanoparticles with waterborne and dietary exposures concludes minimal environmentally relevant toxicity in juvenile rainbow trout Oncorhynchus mykiss. Environ. Pollut. 2013, 182, 70.
Critical comparison of intravenous injection of TiO2 nanoparticles with waterborne and dietary exposures concludes minimal environmentally relevant toxicity in juvenile rainbow trout Oncorhynchus mykiss.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFemsr3L&md5=8e36e9518e5235e70e6e784a57bffa2aCAS | 23896679PubMed |

[147]  T. M. Scown, R. van Aerle, B. D. Johnston, S. Cumberland, J. R. Lead, R. Owen, C. R. Tyler, High doses of intravenously administered titanium dioxide nanoparticles accumulate in the kidneys of rainbow trout but with no observable impairment of renal function. Toxicol. Sci. 2009, 109, 372.
High doses of intravenously administered titanium dioxide nanoparticles accumulate in the kidneys of rainbow trout but with no observable impairment of renal function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlOktL4%3D&md5=5e21682afabf7b843d84b011e4d94174CAS | 19332650PubMed |

[148]  C. S. Ramsden, T. B. Henry, R. D. Handy, Sub-lethal effects of titanium dioxide nanoparticles on the physiology and reproduction of zebrafish. Aquat. Toxicol. 2013, 126, 404.
Sub-lethal effects of titanium dioxide nanoparticles on the physiology and reproduction of zebrafish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFClt7nE&md5=fef1247b2d249517a55eada247de6c74CAS | 23084046PubMed |

[149]  O. Bar-Ilan, C. C. Chuang, D. J. Schwahn, S. Yang, S. Joshi, J. A. Pedersen, R. J. Hamers, R. E. Peterson, W. Heideman, TiO2 nanoparticle exposure and illumination during zebrafish development: mortality at parts per billion concentrations. Environ. Sci. Technol. 2013, 47, 4726.
TiO2 nanoparticle exposure and illumination during zebrafish development: mortality at parts per billion concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkt12mu7g%3D&md5=1ff6e1b4504cc3efcf2d977866727148CAS | 23510150PubMed |

[150]  H. Ma, A. Brennan, S. A. Diamond, Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environ. Toxicol. Chem. 2012, 31, 2099.
Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GrtL%2FK&md5=6cbe95befb1f6a69a8c108a490c3e86cCAS | 22707245PubMed |

[151]  H. Ma, A. Brennan, S. A. Diamond, Phototoxicity of TiO2 nanoparticles under solar radiation to two aquatic species: Daphnia magna and Japanese medaka. Environ. Toxicol. Chem. 2012, 31, 1621.
Phototoxicity of TiO2 nanoparticles under solar radiation to two aquatic species: Daphnia magna and Japanese medaka.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVOltLw%3D&md5=a8ebbeafe0290126cdd1e162fefbb2d7CAS | 22544710PubMed |

[152]  A. Keller, S. McFerran, A. Lazareva, S. Suh, Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 2013, 15, 1692.
Global life cycle releases of engineered nanomaterials.Crossref | GoogleScholarGoogle Scholar |

[153]  S. Xu, Z. L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Research. 2011, 4, 1013.
One-dimensional ZnO nanostructures: solution growth and functional properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGnsbfM&md5=0eac7912e06d9593daefd56a6452f0c6CAS |

[154]  B. Wei, K. Zheng, Y. Ji, Y. Zhang, Z. Zhang, X. Han, Size-dependent bandgap modulation of ZnO nanowires by tensile strain. Nano Lett. 2012, 12, 4595.
Size-dependent bandgap modulation of ZnO nanowires by tensile strain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFyqtrnI&md5=dacf9fb0b77420eb80cd06a3cec460e0CAS | 22889268PubMed |

[155]  S. Ameen, M. S. Akhtar, H. S. Shin, Highly sensitive hydrazine chemical sensor fabricated by modified electrode of vertically aligned zinc oxide nanorods. Talanta 2012, 100, 377.
Highly sensitive hydrazine chemical sensor fabricated by modified electrode of vertically aligned zinc oxide nanorods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GqurfM&md5=ca388a9487222efc44bfd524400ae8f3CAS | 23141352PubMed |

[156]  R. Barnes, R. Molina, J. Xu, P. Dobson, I. Thompson, Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria. J. Nanopart. Res. 2013, 15, 1432.
Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria.Crossref | GoogleScholarGoogle Scholar |

[157]  M. J. Osmond, M. J. McCall, Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 2010, 4, 15.
Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFOmu7k%3D&md5=5733003eec28adfd03961304c9bb59c7CAS | 20795900PubMed |

[158]  R. F. Domingos, Z. Rafiei, C. E. Monteiro, M. A. K. Khan, K. J. Wilkinson, Agglomeration and dissolution of zinc oxide nanoparticles: role of pH, ionic strength and fulvic acid. Environ. Chem. 2013, 10, 306.
Agglomeration and dissolution of zinc oxide nanoparticles: role of pH, ionic strength and fulvic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlakt7vL&md5=33a65a13816158031d29506e78a0e078CAS |

[159]  C. A. David, J. Galceran, C. Rey-Castro, J. Puy, E. Companys, J. Salvador, J. Monné, R. Wallace, A. Vakourov, Dissolution kinetics and solubility of ZnO nanoparticles followed by AGNES. J. Phys. Chem. C 2012, 116, 11758.
Dissolution kinetics and solubility of ZnO nanoparticles followed by AGNES.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1ersr0%3D&md5=59346db849bb044cebc98ce9778da75cCAS |

[160]  M. B. Zimmermann, F. M. Hilty, Nanocompounds of iron and zinc: their potential in nutrition. Nanoscale. 2011, 3, 2390.
Nanocompounds of iron and zinc: their potential in nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOlsb8%3D&md5=687c284d61d6e9a742552b0da4e9081aCAS | 21483965PubMed |

[161]  C. Hogstrand, Zinc, in Homeostasis and Toxicology of Essential Metals (Eds C. M. Wood, A. P. Farrell, C. J. Brauner) 2012, pp. 135–200 (Academic Press: London).

[162]  Canadian Council of Resource and Environment Ministers Canadian water quality guidelines. Prepared by the task force on water quality guideline 1987, (Government of Canada: Winnipeg).

[163]  H. Ma, P. L. Williams, S. A. Diamond, Ecotoxicity of manufactured ZnO nanoparticles – a review. Environ. Pollut. 2013, 172, 76.
Ecotoxicity of manufactured ZnO nanoparticles – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12iu7fK&md5=d45acff53df837b938e7ee900f66e866CAS | 22995930PubMed |

[164]  A. J. Miao, X. Y. Zhang, Z. Luo, C. S. Chen, W. C. Chin, P. H. Santschi, A. Quigg, Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ. Toxicol. Chem. 2010, 29, 2814.
Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFags7rM&md5=9b2cbf3ea7524af2b6c865bab2bb5cedCAS | 20931607PubMed |

[165]  N. M. Franklin, N. J. Rogers, S. C. Apte, G. E. Batley, G. E. Gadd, P. S. Casey, Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 2007, 41, 8484.
Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWqs7fF&md5=e1d09d97f81f4af57461dee3fda4397cCAS | 18200883PubMed |

[166]  I. Blinova, A. Ivask, M. Heinlaan, M. Mortimer, A. Kahru, Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ. Pollut. 2010, 158, 41.
Ecotoxicity of nanoparticles of CuO and ZnO in natural water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2ksrzI&md5=aa120ddc17203508cb77847d9999184fCAS | 19800155PubMed |

[167]  S. Manzo, M. L. Miglietta, G. Rametta, S. Buono, G. Di Francia, Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci. Total Environ. 2013, 445–446, 371.
Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta.Crossref | GoogleScholarGoogle Scholar | 23361041PubMed |

[168]  S. Lin, Y. Zhao, T. Xia, H. Meng, Z. Ji, R. Liu, S. George, S. Xiong, X. Wang, H. Zhang, S. Pokhrel, L. Madler, R. Damoiseaux, A. E. Nel, High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. ACS Nano 2011, 5, 7284.
High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVylsb3L&md5=60caf6434e665d057af7b0de0e51f7f6CAS | 21851096PubMed |

[169]  R. Liu, S. Lin, R. Rallo, Y. Zhao, R. Damoiseaux, T. Xia, S. Lin, A. Nel, Y. Cohen, Automated phenotype recognition for zebrafish embryo based in vivo high throughput toxicity screening of engineered nano-materials. PLoS ONE 2012, 7, e35014.
Automated phenotype recognition for zebrafish embryo based in vivo high throughput toxicity screening of engineered nano-materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvF2gtLw%3D&md5=2493643fca99aa329617b76d3e5bac79CAS | 22506062PubMed |

[170]  T. Xia, Y. Zhao, T. Sager, S. George, S. Pokhrel, N. Li, D. Schoenfeld, H. Meng, S. Lin, X. Wang, M. Wang, Z. Ji, J. I. Zink, L. Madler, V. Castranova, A. E. Nel, Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 2011, 5, 1223.
Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosl2isw%3D%3D&md5=cc7e67811a2c078efc2888b911874df3CAS | 21250651PubMed |

[171]  K. Sano, K. Inohaya, M. Kawaguchi, N. Yoshizaki, I. Iuchi, S. Yasumasu, Purification and characterization of zebrafish hatching enzyme – an evolutionary aspect of the mechanism of egg envelope digestion. FASEB J. 2008, 275, 5934.
| 1:CAS:528:DC%2BD1cXhsV2murrE&md5=28057b437605cadf48711811a1d591a2CAS |

[172]  S. Lin, Y. Zhao, Z. Ji, J. Ear, C. H. Chang, H. Zhang, C. Low-Kam, K. Yamada, H. Meng, X. Wang, R. Liu, S. Pokhrel, L. Mädler, R. Damoiseaux, T. Xia, H. A. Godwin, S. Lin, A. E. Nel, Zebrafish high-throughput screening to study the impact of dissolvable metal oxide nanoparticles on the hatching enzyme, ZHE1. Small 2013, 9, 1776.
Zebrafish high-throughput screening to study the impact of dissolvable metal oxide nanoparticles on the hatching enzyme, ZHE1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslejtLzJ&md5=91365857036ca21096de510132c6c7d9CAS | 23180726PubMed |

[173]  L. C. Felix, V. A. Ortega, J. D. Ede, G. G. Goss, Physicochemical characteristics of polymer-coated metal-oxide nanoparticles and their toxicological effects on zebrafish (Danio rerio) development. Environ. Sci. Technol. 2013, 47, 6589.
| 1:CAS:528:DC%2BC3sXnsFShtbw%3D&md5=df02f8a9fc3a78cbe5def9c19d4475a7CAS | 23668311PubMed |

[174]  F. Larner, Y. Dogra, A. Dybowska, J. Fabrega, B. Stolpe, L. J. Bridgestock, R. Goodhead, D. J. Weiss, J. Moger, J. R. Lead, E. Valsami-Jones, C. R. Tyler, T. S. Galloway, M. Rehkamper, Tracing bioavailability of ZnO nanoparticles using stable isotope labeling. Environ. Sci. Technol. 2012, 46, 12137.
Tracing bioavailability of ZnO nanoparticles using stable isotope labeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyltb7F&md5=a3d8653c7725588a2074147f2d1c7197CAS | 23050854PubMed |

[175]  F. R. Khan, A. Laycock, A. Dybowska, F. Larner, B. D. Smith, P. S. Rainbow, S. N. Luoma, M. Rehkämper, E. Valsami-Jones, Stable isotope tracer to determine uptake and efflux dynamics of ZnO Nano- and bulk particles and dissolved Zn to an estuarine snail. Environ. Sci. Technol. 2013, 47, 8532.
Stable isotope tracer to determine uptake and efflux dynamics of ZnO Nano- and bulk particles and dissolved Zn to an estuarine snail.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVWhurzJ&md5=b8362b5b25c17114c1fea03b3e1f5cf4CAS | 23802799PubMed |

[176]  X. Peng, S. Palma, N. S. Fisher, S. S. Wong, Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat. Toxicol. 2011, 102, 186.
Effect of morphology of ZnO nanostructures on their toxicity to marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFert74%3D&md5=8f9958cf916b48eb25324a9649a2efffCAS | 21356181PubMed |

[177]  E. A. Fairbairn, A. A. Keller, L. Madler, D. Zhou, S. Pokhrel, G. N. Cherr, Metal oxide nanomaterials in seawater: linking physicochemical characteristics with biological response in sea urchin development. J. Hazard. Mater. 2011, 192, 1565.
Metal oxide nanomaterials in seawater: linking physicochemical characteristics with biological response in sea urchin development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVygtbzL&md5=307ccb74436d7c08406e95d068831475CAS | 21775060PubMed |

[178]  B. Ç. Reidy, A. Haase, A. Luch, K. Dawson, I. Lynch, Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 2013, 6, 2295.
Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVSrsrrO&md5=b4358ee1e498c144a56cb5224edee27bCAS |

[179]  A. Bianchini, M. Grosell, S. M. Gregory, C. M. Wood, Acute silver toxicity in aquatic animals is a function of sodium uptake rate. Environ. Sci. Technol. 2002, 36, 1763.
Acute silver toxicity in aquatic animals is a function of sodium uptake rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhs1Cnsbo%3D&md5=e41ca0a276f9f405caf0f5ae4dcc25bfCAS | 11993875PubMed |

[180]  C. M. Wood, R. C. Playle, C. Hogstrand, Physiology and modeling of mechanisms of silver uptake and toxicity in fish. Environ. Toxicol. Chem. 1999, 18, 71.
Physiology and modeling of mechanisms of silver uptake and toxicity in fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1Kl&md5=14ce774fc94ef81afd6aa8da14c551c4CAS |

[181]  C. M. Wood, Silver, in Homeostasis and Toxicology of Non-Essential Metals (Eds C. M. Wood, A. P. Farrell, C. J. Brauner) 2012, pp. 1–65 (Elsevier: London).

[182]  A. J. Kennedy, M. A. Chappell, A. J. Bednar, A. C. Ryan, J. G. Laird, J. K. Stanley, J. A. Steevens, Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles. Environ. Sci. Technol. 2012, 46, 10772.
Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12ru7jF&md5=9f10630f2b1028032a8ac1652e972137CAS | 22950762PubMed |

[183]  R. I. MacCuspie, K. Rogers, M. Patra, Z. Suo, A. J. Allen, M. N. Martin, V. A. Hackley, Challenges for physical characterization of silver nanoparticles under pristine and environmentally relevant conditions. J. Environ. Monit. 2011, 13, 1212.
Challenges for physical characterization of silver nanoparticles under pristine and environmentally relevant conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFSgsL8%3D&md5=aa1b3e82f4a79b7bb008bd9a429727f3CAS | 21416095PubMed |

[184]  C. Levard, E. M. Hotze, G. V. Lowry, G. E. Brown, Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900.
Environmental transformations of silver nanoparticles: impact on stability and toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlGjt7o%3D&md5=4dae6e02caa0d9ab4a861e91882a1b9dCAS | 22339502PubMed |

[185]  H. J. Allen, C. A. Impellitteri, D. A. Macke, J. L. Heckman, H. C. Poynton, J. M. Lazorchak, S. Govindaswamy, D. L. Roose, M. N. Nadagouda, Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ. Toxicol. Chem. 2010, 29, 2742.
Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 20890913PubMed |

[186]  S. M. Hoheisel, S. Diamond, D. Mount, Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas. Environ. Toxicol. Chem. 2012, 31, 2557.
Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1KhurbK&md5=155c0ab7c5941c96e176e662818d829dCAS | 22887018PubMed |

[187]  A. J. Kennedy, M. S. Hull, A. J. Bednar, J. D. Goss, J. C. Gunter, J. L. Bouldin, P. J. Vikesland, J. A. Steevens, Fractionating nanosilver: importance for determining toxicity to aquatic test organisms. Environ. Sci. Technol. 2010, 44, 9571.
Fractionating nanosilver: importance for determining toxicity to aquatic test organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVaqsL7E&md5=6131e5965547e20e4ce07cb3bf639562CAS | 21082828PubMed |

[188]  S. Leclerc, K. J. Wilkinson, Bioaccumulation of nanosilver by Chlamydomonas reinhardtii – nanoparticle or the free ion? Environ. Sci. Technol. 2014, 48, 358.
Bioaccumulation of nanosilver by Chlamydomonas reinhardtii – nanoparticle or the free ion?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2mtL%2FO&md5=0a3d0d9209dad88354784c44beec993dCAS | 24320028PubMed |

[189]  R. J. Griffitt, K. Hyndman, N. D. Denslow, D. S. Barber, Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol. Sci. 2008, 107, 404.
Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles.Crossref | GoogleScholarGoogle Scholar | 19073994PubMed |

[190]  T. Li, B. Albee, M. Alemayehu, R. Diaz, L. Ingham, S. Kamal, M. Rodriguez, S. W. Bishnoi, Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna. Anal. Bioanal. Chem. 2010, 398, 689.
Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFOit7Y%3D&md5=ffdd41bf19eae52f89e5d28acae5e1c2CAS | 20577719PubMed |

[191]  C. M. Zhao, W. X. Wang, Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environ. Sci. Technol. 2010, 44, 7699.
Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChs77P&md5=5aa2415d6f5b3b9466f92d88d7efd165CAS | 20831153PubMed |

[192]  C. M. Zhao, W. X. Wang, Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ. Sci. Technol. 2012, 46, 11345.
Size-dependent uptake of silver nanoparticles in Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGjsbbP&md5=8f299de2db11ba33f61248ff05abfa21CAS | 22974052PubMed |

[193]  A. Bianchini, C. M. Wood, Mechanism of acute silver toxicity in Daphnia magna. Environ. Toxicol. Chem. 2003, 22, 1361.
Mechanism of acute silver toxicity in Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVGgs78%3D&md5=a5c75f5474a1d25d8fe0433132e9bbfdCAS | 12785595PubMed |

[194]  M. Solioz, A. Odermatt, Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J. Biol. Chem. 1995, 270, 9217.
Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt1ajtrw%3D&md5=5c039fe8a1ac97356eb63d952c8db090CAS | 7721839PubMed |

[195]  M. D. Page, J. Kropat, P. P. Hamel, S. S. Merchant, Two Chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation. Plant Cell 2009, 21, 928.
Two Chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFylurg%3D&md5=97f55c43805ac3ed07178052a0baa815CAS | 19318609PubMed |

[196]  H. J. Jo, J. W. Choi, S. H. Lee, S. W. Hong, Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: the importance of their dissolved fraction varying with preparation methods. J. Hazard. Mater. 2012, 227–228, 301.
Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: the importance of their dissolved fraction varying with preparation methods.Crossref | GoogleScholarGoogle Scholar | 22682800PubMed |

[197]  C. M. Zhao, W. X. Wang, Regulation of sodium and calcium in Daphnia magna exposed to silver nanoparticles. Environ. Toxicol. Chem. 2013, 32, 913.
Regulation of sodium and calcium in Daphnia magna exposed to silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkslSltb4%3D&md5=14852b98bbef3ed8dc09abf50bdd17b7CAS | 23344927PubMed |

[198]  G. Laban, L. F. Nies, R. F. Turco, J. W. Bickham, M. S. Sepulveda, The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 2010, 19, 185.
The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlKgsQ%3D%3D&md5=714c98ed37f24779c5f49a1e88b263baCAS | 19728085PubMed |

[199]  A. Massarsky, L. Dupuis, J. Taylor, S. Eisa-Beygi, L. Strek, V. L. Trudeau, T. W. Moon, Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere 2013, 92, 59.
Assessment of nanosilver toxicity during zebrafish (Danio rerio) development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVGjtbY%3D&md5=ffe646d61e784bb9ffbd8e4f2ea7e3dbCAS | 23548591PubMed |

[200]  P. Das, M. A. Xenopoulos, C. D. Metcalfe, Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna. Bull. Environ. Contam. Toxicol. 2013, 91, 76.
Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFemtb8%3D&md5=8154765b64b5366f5b606bdf947ac48bCAS | 23708262PubMed |

[201]  F. Gagné, J. Auclair, P. Turcotte, C. Gagnon, Sublethal effects of silver nanoparticles and dissolved silver in freshwater mussels. J. Toxicol. Environ. Health A 2013, 76, 479.
Sublethal effects of silver nanoparticles and dissolved silver in freshwater mussels.Crossref | GoogleScholarGoogle Scholar | 23721583PubMed |

[202]  R. de Lima, A. B. Seabra, N. Durán, Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J. Appl. Toxicol. 2012, 32, 867.
Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles.Crossref | GoogleScholarGoogle Scholar | 22696476PubMed |

[203]  S. Kim, D.-Y. Ryu, Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J. Appl. Toxicol. 2013, 33, 78.
Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues.Crossref | GoogleScholarGoogle Scholar | 22936301PubMed |

[204]  C. M. Powers, T. A. Slotkin, F. J. Seidler, A. R. Badireddy, S. Padilla, Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicol. Teratol. 2011, 33, 708.
Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFegsrvN&md5=c7ddb9e5f853e5f58a68ed93800518ffCAS | 21315816PubMed |

[205]  H. C. Poynton, J. M. Lazorchak, C. A. Impellitteri, B. J. Blalock, K. Rogers, H. J. Allen, A. Loguinov, J. L. Heckman, S. Govindasmawy, Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles. Environ. Sci. Technol. 2012, 46, 6288.
Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1eqsbY%3D&md5=d1785afb9efb84090e20fe85729aea34CAS | 22545559PubMed |

[206]  C. H. Pham, J. Yi, M. B. Gu, Biomarker gene response in male medaka (Oryzias latipes) chronically exposed to silver nanoparticle. Ecotoxicol. Environ. Saf. 2012, 78, 239.
Biomarker gene response in male medaka (Oryzias latipes) chronically exposed to silver nanoparticle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVanurg%3D&md5=3f22aa76b070146d8917d84b08dbe94eCAS | 22154143PubMed |

[207]  Y. J. Chae, C. H. Pham, J. Lee, E. Bae, J. Yi, M. B. Gu, Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat. Toxicol. 2009, 94, 320.
Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWqt7bI&md5=87137ebcef5d277c78d54213f578bf05CAS | 19699002PubMed |

[208]  C. Beer, R. Foldbjerg, Y. Hayashi, D. S. Sutherland, H. Autrup, Toxicity of silver nanoparticles – nanoparticle or silver ion? Toxicol. Lett. 2012, 208, 286.
Toxicity of silver nanoparticles – nanoparticle or silver ion?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWhsA%3D%3D&md5=ae5dbedd2c7f03b15167835633643b00CAS | 22101214PubMed |

[209]  R. Bernot, M. Brandenburg, Freshwater snail vital rates affected by non-lethal concentrations of silver nanoparticles. Hydrobiologia 2013, 714, 25.
Freshwater snail vital rates affected by non-lethal concentrations of silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVegur7L&md5=3cc522ed1ebba8c74af21bc00d63f83dCAS |

[210]  A. Hinther, S. Vawda, R. C. Skirrow, N. Veldhoen, P. Collins, J. T. Cullen, G. van Aggelen, C. C. Helbing, Nanometals induce stress and alter thyroid hormone action in amphibia at or below North American water quality guidelines. Environ. Sci. Technol. 2010, 44, 8314.
Nanometals induce stress and alter thyroid hormone action in amphibia at or below North American water quality guidelines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Gqtr3F&md5=f2516df95796ce51b7f9990686849e64CAS | 20929207PubMed |

[211]  D. B. Warheit, How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol. Sci. 2008, 101, 183.
How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsV2ruw%3D%3D&md5=1eab0439e73eb6e3758aca11271758a3CAS | 18300382PubMed |

[212]  G. P. S. Marcone, Å. C. Oliveira, G. Almeida, G. A. Umbuzeiro, W. F. Jardim, Ecotoxicity of TiO2 to Daphnia similis under irradiation. J. Hazard. Mater. 2012, 211–212, 436.
Ecotoxicity of TiO2 to Daphnia similis under irradiation.Crossref | GoogleScholarGoogle Scholar |

[213]  J. F. Reeves, S. J. Davies, N. J. F. Dodd, A. N. Jha, Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat. Res. – Fund. Mol. M. 2008, 640, 113.
Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVSgtb8%3D&md5=b8c7e04e85af026d05b4b7ecf10eebeeCAS |

[214]  J. Ji, Z. Long, D. Lin, Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem. Eng. J. 2011, 170, 525.
Toxicity of oxide nanoparticles to the green algae Chlorella sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslahtr8%3D&md5=684a49929aff3524b29ff37fc802f2ecCAS |

[215]  K. Hund-Rinke, K. Schlich, A. Wenzel, TiO2 nanoparticles – relationship between dispersion preparation method and ecotoxicity in the algal growth test. Environ. Sci. Eur. 2010, 22, 517.
TiO2 nanoparticles – relationship between dispersion preparation method and ecotoxicity in the algal growth test.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGns7nE&md5=d57fd604f191e4f5d3b0c1b71d2543e7CAS |