Hard X-ray synchrotron biogeochemistry: piecing together the increasingly detailed puzzle
Enzo Lombi A B , Ryo Sekine A and Erica Donner AA Centre for Environmental Risk Assessment and Remediation, University of South Australia, Building X, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
B Corresponding author. Email enzo.lombi@unisa.edu.au
Enzo Lombi is a Professor and an Australian Research Council (ARC) Future Fellow at the University of South Australia. Before joining CERAR in 2009, he was Associate Professor at the University of Copenhagen. He received a Ph.D. in Environmental Chemistry from the Catholic University of Italy and held positions at the University of Natural Resources and Applied Life Sciences in Vienna, Rothamsted Research (UK) and the CSIRO. His main area of research is in the biogeochemistry of trace elements and manufactured nanoparticles with an emphasis on synchrotron-based techniques. |
Ryo Sekine is a postdoctoral researcher in the Centre for Environmental Risk Assessment and Remediation (CERAR) at the University of South Australia. He is currently working within the framework of an Australian Research Council Discovery Project on environmental risk assessment of engineered nanomaterials. He has a background in vibrational spectroscopy and is extending his interests into synchrotron based X-ray and infrared techniques, with a focus on micro- and nano-scale processes. |
Erica Donner is a Research Fellow and an Australian Research Council (ARC) Future Fellow recipient with Centre for Environmental Risk Assessment and Remediation (CERAR) at the University of South Australia. She holds a Ph.D. in Environmental Soil Chemistry from The University of Reading, UK. Erica uses a range of hard X-ray synchrotron techniques in her research investigating environmental contaminant and nutrient biogeochemistry and has conducted experiments at several different synchrotron facilities worldwide. |
Environmental Chemistry 11(1) 1-3 https://doi.org/10.1071/EN13209
Submitted: 18 November 2013 Accepted: 10 January 2014 Published: 17 February 2014
References
[1] E. Lombi, J. Susini, Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives. Plant Soil 2009, 320, 1.| Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFGjtLo%3D&md5=620f8be30a63879688ab9f76568d105eCAS |
[2] G. Martínez-Criado, A. Somogyi, A. Homs, R. Tucoulou, J. Susini, Micro-x-ray absorption near-edge structure imaging for detecting metallic Mn in GaN. Appl. Phys. Lett. 2005, 87, 061913.
| Micro-x-ray absorption near-edge structure imaging for detecting metallic Mn in GaN.Crossref | GoogleScholarGoogle Scholar |
[3] Upgrade Programme – Phase I. UPBL conceptual design report – UPBL4: Nano-imaging and nano-analysis 2013, (European Synchrotron Radiation Facility). Available at http://www.esrf.eu/files/live/sites/www/files/UsersAndScience/Experiments/Imaging/beamline-portfolio/CDR_UPBL04_future-ID16.pdf [Verified 14 January 2014].
[4] E. Lombi, M. D. de Jonge, E. Donner, C. G. Ryan, D. Paterson, Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors. Anal. Bioanal. Chem. 2011, 400, 1637.
| Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVOns7o%3D&md5=249489e3082ba79690ce1ead8a45496aCAS | 21390564PubMed |
[5] M. D. de Jonge, S. Vogt, Hard X-ray fluorescence tomography – an emerging tool for structural visualization. Curr. Opin. Struct. Biol. 2010, 20, 606.
| Hard X-ray fluorescence tomography – an emerging tool for structural visualization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKmu7fF&md5=f49e6879e44f083071b135d1270be9e1CAS | 20934872PubMed |
[6] B. De Samber, G. Silversmit, R. Evens, K. De Schamphelaere, C. Janssen, B. Masschaele, L. Van Hoorebeke, L. Balcaen, F. Vanhaecke, G. Falkenberg, L. Vincze, Three-dimensional elemental imaging by means of synchrotron radiation micro-XRF: developments and applications in environmental chemistry. Anal. Bioanal. Chem. 2008, 390, 267.
| Three-dimensional elemental imaging by means of synchrotron radiation micro-XRF: developments and applications in environmental chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKgur%2FF&md5=2a0ac24e13d2bef1a93a436051dd6a45CAS | 17989960PubMed |
[7] C. G. Ryan, D. P. Siddons, G. Moorhead, R. Kirkham, G. De Geronimo, B. E. Etschmann, A. Dragone, P. A. Dunn, A. Kuczewski, P. Davey, M. Jensen, J. M. Ablett, J. Kuczewski, R. Hough, D. Patersons, High-throughput X-ray fluorescence imaging using a massively parallel detector array, integrated scanning and real-time spectral deconvolution. J. Phys. 2009, 186, 012013.
| High-throughput X-ray fluorescence imaging using a massively parallel detector array, integrated scanning and real-time spectral deconvolution.Crossref | GoogleScholarGoogle Scholar |
[8] B. M. Toner, S. L. Nicholas, J. K. Coleman Wasik, Scaling up: fulfilling the promise of X-ray microprobe for biogeochemical research. Environ. Chem. 2014, 4.
| Scaling up: fulfilling the promise of X-ray microprobe for biogeochemical research.Crossref | GoogleScholarGoogle Scholar |
[9] P. A. B. Scoullar, C. C. McLean, R. J. Evans, Real time pulse pile-up recovery in a high throughput digital pulse processor. AIP Conf. Proc. 2011, 1412, 270.
[10] C. G. Ryan, D. P. Siddons, R. Kirkham, P. A. Dunn, A. Kuczewski, G. Moorhead, G. De Geronimo, D. J. Paterson, M. D. de Jonge, R. M. Hough, M. J. Lintern, D. L. Howard, P. Kappen, J. Cleverley, The new MAIA detector system: methods for high definition trace element imaging of natural material. AIP Conf. Proc. 2011, 1221, 9.
[11] B. E. Etschmann, C. G. Ryan, J. Brugger, R. Kirkham, R. M. Hough, G. Moorhead, D. P. Siddons, G. De Geronimo, A. Kuczewski, P. Dunn, D. Paterson, M. D. de Jonge, D. L. Howard, P. Davey, M. Jensen, Reduced As components in highly oxidized environments: evidence from full spectral XANES imaging using the MAIA massively parallel detector. Am. Mineral. 2010, 95, 884.
| Reduced As components in highly oxidized environments: evidence from full spectral XANES imaging using the MAIA massively parallel detector.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslKksLg%3D&md5=04d5b580c649f0654432b1f7518f3caaCAS |
[12] D. Solomon, J. Lehmann, J. Harden, J. Wang, J. Kinyangi, K. Heymann, C. Karunakaran, Y. Lu, S. Wirick, C. Jacobsen, Micro- and nano-environments of carbon sequestration: multi-element STXM-NEXAFS spectromicroscopy assessment of microbial carbon and mineral associations. Chem. Geol. 2012, 329, 53.
| Micro- and nano-environments of carbon sequestration: multi-element STXM-NEXAFS spectromicroscopy assessment of microbial carbon and mineral associations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlymurzI&md5=e127da55ab416c04c64b2c20507e3391CAS |
[13] M. Kansiz, P. Heraud, B. Wood, F. Burden, J. Beardall, D. McNaughton, Fourier transform infrared microspectroscopy and chemometrics as a tool for the discrimination of cyanobacterial strains. Phytochemistry 1999, 52, 407.
| Fourier transform infrared microspectroscopy and chemometrics as a tool for the discrimination of cyanobacterial strains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlaisbc%3D&md5=07fa02f1eeb13bef8a667c2038ba714bCAS |
[14] G. T. Webster, K. A. de Villiers, T. J. Egan, S. Deed, L. Tilley, M. J. Tobin, K. R. Bambery, D. McNaughton, B. R. Wood, Discriminating the intraerythrocytic lifecycle stages of the malaria parasite using synchrotron FT-IR microspectroscopy and an artificial neural network. Anal. Chem. 2009, 81, 2516.
| Discriminating the intraerythrocytic lifecycle stages of the malaria parasite using synchrotron FT-IR microspectroscopy and an artificial neural network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFOmtbg%3D&md5=66953688785c7ff44a56dce61d0e449eCAS | 19278236PubMed |
[15] M. A. L. Marcus, P. J. Lam, Visualising Fe speciation diversity in ocean particulate samples by micro X-ray absorption near-edge spectroscopy. Environ. Chem. 2014, 10.
| Visualising Fe speciation diversity in ocean particulate samples by micro X-ray absorption near-edge spectroscopy.Crossref | GoogleScholarGoogle Scholar |
[16] J. Trevisan, P. P. Angelov, P. L. Carmichael, A. D. Scott, F. L. Martin, Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives. Analyst (Lond.) 2012, 137, 3202.
| Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1Ort7w%3D&md5=885abebc497c72040944ef7ded1a9418CAS |
[17] E. Donner, T. Punshon, M. L. Guerinot, E. Lombi, Functional characterisation of metal(loid) processes in planta through the integration of synchrotron techniques and plant molecular biology. Anal. Bioanal. Chem. 2012, 402, 3287.
| Functional characterisation of metal(loid) processes in planta through the integration of synchrotron techniques and plant molecular biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OiurnJ&md5=ca6bb56d23f1e2e94ae750be8874399aCAS | 22200921PubMed |
[18] S. Behrens, A. Kappler, M. Obst, Linking environmental processes to the in situ functioning of microorganisms by high-resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission X-ray microscopy (STXM). Environ. Microbiol. 2012, 14, 2851.
| Linking environmental processes to the in situ functioning of microorganisms by high-resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission X-ray microscopy (STXM).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGqt7bL&md5=f956ffc94e2bfc2d28d0e9eed5b8d041CAS | 22409443PubMed |
[19] F. Reith, B. Etschmann, C. Grosse, H. Moors, M. A. Benotmane, P. Monsieurs, G. Grass, C. Doonan, S. Vogt, B. Lai, G. Martínez-Criado, G. N. George, D. H. Nies, M. Mergeay, A. Pring, G. Southam, J. Brugger, Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc. Natl. Acad. Sci. USA 2009, 106, 17757.
| Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSjsLjO&md5=388670ad080044a1d75a680176ebd80aCAS | 19815503PubMed |
[20] J. Feldmann, P. Salaun, E. Lombi, Critical review perspective: elemental speciation analysis methods in environmental chemistry – moving towards methodological integration. Environ. Chem. 2009, 6, 275.
| Critical review perspective: elemental speciation analysis methods in environmental chemistry – moving towards methodological integration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSlurfK&md5=8b6c3ebaa34f828c223745530e786b43CAS |
[21] X. Liu, K. Eusterhues, J. Thieme, V. Ciobota, C. Hoeschen, C. W. Mueller, K. Küsel, I. Kögel-Knabner, P. Rösch, J. Popp, K. U. Totsche, STXM and NanoSIMS investigations on EPS fractions before and after adsorption to goethite. Environ. Sci. Technol. 2013, 47, 3158.
| 1:CAS:528:DC%2BC3sXjtlOqsbY%3D&md5=f640b4825996ad1b08e84f1f106dd0bcCAS | 23451805PubMed |
[22] L. D. Troyer, J. J. Stone, T. Borch, Effect of biogeochemical redox processes on the fate and transport of As and U at an abandoned uranium mine site: an X-ray absorption spectroscopy study. Environ. Chem. 2014, 18.
| Effect of biogeochemical redox processes on the fate and transport of As and U at an abandoned uranium mine site: an X-ray absorption spectroscopy study.Crossref | GoogleScholarGoogle Scholar |
[23] P. M. Wynn, I. J. Fairchild, C. Spötl, A. Hartland, D. Mattey, B. Fayard, M. Cotte, Synchrotron X-ray distinction of seasonal hydrological and temperature patterns in speleothem carbonate. Environ. Chem. 2014, 28.
| Synchrotron X-ray distinction of seasonal hydrological and temperature patterns in speleothem carbonate.Crossref | GoogleScholarGoogle Scholar |