Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Effects of nitrate and humic acid on enrofloxacin photolysis in an aqueous system under three light conditions: kinetics and mechanism

Yang Li A , Junfeng Niu A B , Enxiang Shang A , Mengyuan Zheng A and Tianlai Luan A
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P.R. China.

B Corresponding author. Email: junfengn@bnu.edu.cn

Environmental Chemistry 11(3) 333-340 https://doi.org/10.1071/EN13192
Submitted: 23 October 2013  Accepted: 11 March 2014   Published: 10 June 2014

Environmental context. Photolysis is one of the most important transformation pathways in natural ecosystem for enrofloxacin (Enro), which is a hazard for humans and other living organisms. The effects of NO3 and humic acid on Enro photolysis were found to be light-source dependent. These results are of significance toward the goal of providing insight into the transformation and fate of Enro in the environment.

Abstract. The light-source-dependent effects of NO3 and humic acid (HA) on enrofloxacin (Enro) photolysis kinetics in aqueous solutions were investigated under solar, UV-254 and UV-365 lamp irradiation. NO3 was found to suppress Enro photolysis through competitive photoabsorption under UV-365 irradiation, whereas it accelerated Enro photolysis under UV-254 and solar irradiation as a result of NO3 photosensitisation. Similarly, HA enhanced, inhibited or had no obvious effect on Enro photolysis under different light irradiation conditions. Even under the same light irradiation conditions, the effect of HA on Enro photolysis varied with HA concentration. The reactive oxygen species (ROS) scavenger experiments demonstrated that Enro photolysis undergoes OH- and 1O2-mediated self-sensitised photolysis. The photolysis pathway of Enro involved decarboxylation, defluorination and piperazinyl N4-dealkylation reactions. The toxicity towards Vibrio fischeri luminescent bacteria under solar irradiation was different from that under UV irradiation. The 90-min toxicity of Enro and its photoproducts increased under solar irradiation but decreased under UV-365 and UV-254 irradiation compared to the initial Enro toxicity, which indicated that UV light not only had higher photolysis efficiency but also posed less toxicity towards bacteria than solar.

Additional keyword: photoproducts, sunlight, toxicity, UV light.


References

[1]  M. R. Cooper, C. R. Durand, M. T. Beaulac, M. Steinberg, Single-agent, broad-spectrum fluoroquinolones for the outpatient treatment of low-risk febrile neutropenia. Ann. Pharmacother. 2011, 45, 1094.
Single-agent, broad-spectrum fluoroquinolones for the outpatient treatment of low-risk febrile neutropenia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSrtbzL&md5=6da3ef823d1cc956412ff6f9ccd6d146CAS | 21862714PubMed |

[2]  T. E. Albertson, B. M. Morrissey, A. L. Chan, Are fluoroquinolones superior antibiotics for the treatment of community-acquired pneumonia? Curr. Infect. Dis. Rep. 2012, 14, 317.
Are fluoroquinolones superior antibiotics for the treatment of community-acquired pneumonia?Crossref | GoogleScholarGoogle Scholar | 22415582PubMed |

[3]  K. Molbak, Spread of resistant bacteria and resistance genes from animals to humans-The public health consequences. J. Vet. Med. B 2004, 51, 364.
Spread of resistant bacteria and resistance genes from animals to humans-The public health consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFShtg%3D%3D&md5=2692327d388ec0bcb86e8ff8bbe44eaaCAS |

[4]  M. Sturini, A. Speltini, F. Maraschi, A. Profumo, L. Pretali, E. Fasani, A. Albini, Photochemical degradation of marbofloxacin and enrofloxacin in natural waters. Environ. Sci. Technol. 2010, 44, 4564.
Photochemical degradation of marbofloxacin and enrofloxacin in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1agurk%3D&md5=8ff14e90d7a63b3b7de4132f2569eef4CAS | 20481547PubMed |

[5]  A. de Jong, B. Stephan, P. Silley, Fluoroquinolone resistance of Escherichia coli and Salmonella from healthy livestock and poultry in the EU. J. Appl. Microbiol. 2012, 112, 239.
Fluoroquinolone resistance of Escherichia coli and Salmonella from healthy livestock and poultry in the EU.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Sisb4%3D&md5=640089fd8f7923c5c3d75f5f75c2172fCAS | 22066763PubMed |

[6]  H. G. Wetzstein, J. Schneider, W. Karl, Patterns of metabolites produced from the fluoroquinolone enrofloxacin by basidiomycetes indigenous to agricultural sites. Appl. Microbiol. Biotechnol. 2006, 71, 90.
Patterns of metabolites produced from the fluoroquinolone enrofloxacin by basidiomycetes indigenous to agricultural sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltFWlurY%3D&md5=923af815ac985b8023baed4626675902CAS |

[7]  F. Pirro, In vitro activity of enrofloxacin and other fluoroquinolones in companion and livestock animals. Tierarztl. Umsch. 2000, 55, 389.

[8]  L. Ge, J. Chen, X. Wei, S. Zhang, X. Qiao, X. Cai, Q. Xie, Aquatic photochemistry of fluoroquinolone antibiotics: kinetics, pathways, and multivariate fffects of main water constituents. Environ. Sci. Technol. 2010, 44, 2400.
Aquatic photochemistry of fluoroquinolone antibiotics: kinetics, pathways, and multivariate fffects of main water constituents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisl2js74%3D&md5=16278210483481e150677e8430b5f378CAS | 20205456PubMed |

[9]  D. G. J. Larsson, C. de Pedro, N. Paxeus, Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 2007, 148, 751.
Effluent from drug manufactures contains extremely high levels of pharmaceuticals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslOqurs%3D&md5=ba80f821d3834d27e9370102716a1d27CAS |

[10]  K. H. Wammer, A. R. Korte, R. A. Lundeen, J. E. Sundberg, K. McNeill, W. A. Arnold, Direct photochemistry of three fluoroquinolone antibacterials: norfloxacin, ofloxacin, and enrofloxacin. Water Res. 2013, 47, 439.
Direct photochemistry of three fluoroquinolone antibacterials: norfloxacin, ofloxacin, and enrofloxacin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1eltrvM&md5=5fb73d7dffbd789f6771d560a786e92aCAS | 23141476PubMed |

[11]  S. Babić, M. Periša, I. Škoric, Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media. Chemosphere 2013, 91, 1635.
Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media.Crossref | GoogleScholarGoogle Scholar | 23394957PubMed |

[12]  C. W. Knapp, L. A. Cardoza, J. N. Hawes, E. M. H. Wellington, C. K. Larive, D. W. Graham, Fate and effects of enrofloxacin in aquatic systems under different light conditions. Environ. Sci. Technol. 2005, 39, 9140.
Fate and effects of enrofloxacin in aquatic systems under different light conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFalu73O&md5=467c36da8b7ed34b202c18602bc59be7CAS | 16382935PubMed |

[13]  J. Fisher, J. Reese, P. Pellechia, P. Moeller, J. Ferry, Role of FeIII, phosphate, dissolved organic matter, and nitrate during the photodegradation of domoic acid in the marine environment. Environ. Sci. Technol. 2006, 40, 2200.
Role of FeIII, phosphate, dissolved organic matter, and nitrate during the photodegradation of domoic acid in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFOgtLs%3D&md5=ed71052fc11db7987d31170e33bb2c6cCAS | 16646453PubMed |

[14]  D. E. Latch, K. McNeill, Microheterogeneity of singlet oxygen distributions in irradiated humic acid solutions. Science 2006, 311, 1743.
Microheterogeneity of singlet oxygen distributions in irradiated humic acid solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1eqtLY%3D&md5=a269d3b6bf691ce79b43ff1446fd567fCAS | 16497888PubMed |

[15]  L. E. Jacobs, L. K. Weavers, E. F. Houtz, Y. P. Chin, Photosensitized degradation of caffeine: role of fulvic acids and nitrate. Chemosphere 2012, 86, 124.
Photosensitized degradation of caffeine: role of fulvic acids and nitrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFejurzF&md5=5be12ec51ca06de493c4e39adf6a2dddCAS | 22055309PubMed |

[16]  P. Schmitt-Kopplin, J. Burhenne, D. Freitag, M. Spiteller, A. Kettrup, Development of capillary electrophoresis methods for the analysis of fluoroquinolones and application to the study of the influence of humic substances on their photodegradation in aqueous phase. J. Chromatogr. A 1999, 837, 253.
Development of capillary electrophoresis methods for the analysis of fluoroquinolones and application to the study of the influence of humic substances on their photodegradation in aqueous phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlKjsbg%3D&md5=233bc1c378bcff8016027a917cb4ee59CAS |

[17]  Y. Li, J. F. Niu, W. L. Wang, Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: kinetics, mechanism and toxicity of photolysis products. Chemosphere 2011, 85, 892.
Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: kinetics, mechanism and toxicity of photolysis products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVehsbbO&md5=8f05a2e2ea934534869457bc5def14d7CAS | 21807396PubMed |

[18]  J. Burhenne, M. Ludwig, P. Nikoloudis, M. Spiteller, Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. 1. Primary photoproducts and half-lives. Environ. Sci. Pollut. Res. 1997, 4, 10.
Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. 1. Primary photoproducts and half-lives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkt1yqtLc%3D&md5=a81d697884faedcf43038237e035d596CAS |

[19]  J. Burhenne, M. Ludwig, M. Spiteller, Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. 2. Isolation and structural elucidation of polar photometabolites. Environ. Sci. Pollut. Res. 1997, 4, 61.
Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. 2. Isolation and structural elucidation of polar photometabolites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksFemtb0%3D&md5=86527d4fd94001ddd8b106647bf1eea5CAS |

[20]  C. Rensheng, L. Shihua, K. Ersi, Y. Jianping, J. Xibin, Estimating daily global radiation using two types of revised models in China. Energy Convers. Manage. 2006, 47, 865.
Estimating daily global radiation using two types of revised models in China.Crossref | GoogleScholarGoogle Scholar |

[21]  Y. Li, J. F. Niu, L. F. Yin, W. L. Wang, Y. P. Bao, J. Chen, Y. P. Duan, Photocatalytic degradation kinetics and mechanism of pentachlorophenol based on superoxide radicals. J. Environ. Sci. (China) 2011, 23, 1911.
Photocatalytic degradation kinetics and mechanism of pentachlorophenol based on superoxide radicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1CrtbzO&md5=f3f16d83b914570e4a7509ae3e54bd23CAS | 22432318PubMed |

[22]  M. Sturini, A. Speltini, F. Maraschi, A. Profumo, L. Pretali, E. Fasani, A. Albini, Sunlight-induced degradation of soil-adsorbed veterinary antimicrobials Marbofloxacin and Enrofloxacin. Chemosphere 2012, 86, 130.
Sunlight-induced degradation of soil-adsorbed veterinary antimicrobials Marbofloxacin and Enrofloxacin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFejur3M&md5=c48ff9c6b19b8e25373224d4d043dfebCAS | 22051342PubMed |

[23]  M. Sturini, A. Speltini, F. Maraschi, L. Pretali, A. Profumo, E. Fasani, A. Albini, R. Migliavacca, E. Nucleo, Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts. Water Res. 2012, 46, 5575.
Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtF2ru7fN&md5=09bbb0e730294eb400bae68013226c8aCAS | 22901305PubMed |

[24]  M. Sturini, A. Speltini, F. Maraschi, A. Profumo, L. Pretali, E. A. Irastorza, E. Fasani, A. Albini, Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight. Appl. Catal. B 2012, 119–120, 32.
Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight.Crossref | GoogleScholarGoogle Scholar |

[25]  X. Hong, Z. Wang, W. Cai, F. Lu, J. Zhang, Y. Yang, N. Ma, Y. Liu, Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem. Mater. 2005, 17, 1548.
Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsF2jsL8%3D&md5=d8c242d6c5006ca3ac0cfaede681ce01CAS |

[26]  L. Ge, J. Chen, X. Qiao, J. Lin, X. Cai, Light-source-dependent effects of main water constituents on photodegradation of phenicol antibiotics: mechanism and kinetics. Environ. Sci. Technol. 2009, 43, 3101.
Light-source-dependent effects of main water constituents on photodegradation of phenicol antibiotics: mechanism and kinetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFalsbw%3D&md5=7764e933e0663c029878921dff13ed6dCAS | 19534120PubMed |

[27]  J. Mack, J. Bolton, Photochemistry of nitrite and nitrate in aqueous solution: a review. J. Photochem. Photobiol. Chem. 1999, 128, 1.
Photochemistry of nitrite and nitrate in aqueous solution: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVyqsbY%3D&md5=ab60279617e349a620db5aaf70630e9cCAS |

[28]  R. Andreozzi, M. Canterino, R. Giudice, R. Marotta, G. Pinto, A. Pollio, Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means of ozonation. Water Res. 2006, 40, 630.
Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means of ozonation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVahs7o%3D&md5=acbcfc1bc84a1b6abb181c438d9f8236CAS | 16405942PubMed |

[29]  C. Li, N. Y. Gao, L. Wang, Y. G. Shen, Hydrogen peroxide-assisted low pressure UV photodegradation of atrazine in aqueous solution. Int. J. Environ. Stud. 2012, 69, 625.
Hydrogen peroxide-assisted low pressure UV photodegradation of atrazine in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVWhurnM&md5=f17fa831f7755e9487bb4f48b7149039CAS |

[30]  N. Takahashi, M. Ito, N. Mikami, T. Matsuda, J. Miyamoto, Identification of reactive oxygen species generated by irradiation of aqueous humid acid solution. J. Pestic. Sci. 1988, 13, 429.
Identification of reactive oxygen species generated by irradiation of aqueous humid acid solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXms1Oisg%3D%3D&md5=0717bd468889a4ded381ee1a82d5efcbCAS |

[31]  J. P. Aguer, C. Richard, Reactive species produced on irradiation at 365 nm of aqueous solutions of humic acids. J. Photochem. Photobiol. Chem. 1996, 93, 193.
Reactive species produced on irradiation at 365 nm of aqueous solutions of humic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtlWntLs%3D&md5=b0f57f351bef47963eff6242f4eaea09CAS |

[32]  H.-R. Park, T. H. Kim, K.-M. Bark, Physicochemical properties of quinolone antibiotics in various environments. Eur. J. Med. Chem. 2002, 37, 443.
Physicochemical properties of quinolone antibiotics in various environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFWgtrk%3D&md5=82cebec202f44cfd6dd93563c2c50f2fCAS | 12204471PubMed |

[33]  M. J. Lima, M. E. Leblebici, M. M. Dias, J .C. B. Lopes, C. G. Silva, A. M. T. Silva, J. L. Faria, Continuous flow photo-Fenton treatment of ciprofloxacin in aqueous solutions using homogeneous and magnetically recoverable catalysts. Environ. Sci. Pollut. Res. 2014, [Published online early 23 January 2014]
Continuous flow photo-Fenton treatment of ciprofloxacin in aqueous solutions using homogeneous and magnetically recoverable catalysts.Crossref | GoogleScholarGoogle Scholar |

[34]  R. H. O. Montes, M. C. Marra, M. M. Rodrigues, E. M. Richter, R. A. A. Munoz, Fast determination of ciprofloxacin by batch injection analysis with amperometric detection and capillary electrophoresis with capacitively coupled contactless conductivity detection. Electroanalysis 2014, 26, 432.
Fast determination of ciprofloxacin by batch injection analysis with amperometric detection and capillary electrophoresis with capacitively coupled contactless conductivity detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGqs7o%3D&md5=c2f5e7bade60a6e3ab4608bd0ee10de4CAS |