Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Observations and assessment of iron oxide and green rust nanoparticles in metal-polluted mine drainage within a steep redox gradient

Carol A. Johnson A B F , Gina Freyer B , Maria Fabisch B , Manuel A. Caraballo A C D , Kirsten Küsel B E and Michael F. Hochella Jr A
+ Author Affiliations
- Author Affiliations

A Department of Geosciences, Virginia Tech, 4044 Derring Hall, 1405 Perry Street, Blacksburg, VA 24061, USA.

B Institute of Ecology, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany.

C Geology Department, University of Huelva, Campus ‘El Carmen’, Avenida 3 de Marzo s/n, E-21071 Huelva, Spain.

D Mining Engineering Department, University of Chile, Avenida Tupper 2069, 8370451 Santiago, Chile.

E German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany.

F Corresponding author. Email: cjohns49@vt.edu

Environmental Chemistry 11(4) 377-391 https://doi.org/10.1071/EN13184
Submitted: 11 October 2013  Accepted: 15 January 2014   Published: 19 May 2014

Environmental context. Legacy contamination from mining operations is a serious and complex environmental problem. We examine a former uranium mine where groundwater leaving the site enters a stream with chemically dramatic effects resulting in a fundamental change in the way contaminant metals are transported to the surface environment. The results are important for our understanding of how these contaminants are dispersed, and how they could interact with the biosphere.

Abstract. In this study of iron- and silica-bearing nanoparticle and colloid aggregates in slightly acidic mine drainage, we combined bulk scale geochemistry techniques with detailed nanoscale analyses using high-resolution transmission electron microscopy (HR-TEM) to demonstrate the complexity of iron oxide formation and transformation at a steep redox gradient (groundwater outflow into a stream), and the resulting role in metal(loid) uptake. We also identified pseudohexagonal nanosheets of Zn-bearing green rust in outflowing groundwater using HR-TEM. This is only the second study where green rust was identified in groundwater, and the second to examine naturally occurring green rust with analytical TEM. In aerated downstream waters, we found aggregates of poorly crystalline iron oxide particles (20–200 nm in diameter). Inductively coupled plasma–mass spectrometry (ICP-MS) analysis of water fractions shows that most elements such as Ni and Zn were found almost exclusively in the dissolved–nanoparticulate (<0.1 μm) fraction, whereas Cu and As were primarily associated with suspended particles. In the underlying sediments composed of deposited particles, goethite nanoneedles formed on the ferrihydrite surfaces of larger aggregated particles (100–1000 nm), resulting in more reactive surface area for metal(loid) uptake. Sequential extraction of sediments showed that many metal(loid)s, particularly As and Zn, were associated with iron oxides identified as ferrihydrite, goethite and possibly schwertmannite. Amorphous silica co-precipitation with iron oxides was prevalent at all sampling sites, but its effect on metal(loid) sorption is unknown. Fine-grained iron oxide sediments are easily remobilised during turbulent flow events, adding to the mobility of the associated metals.

Additional keywords: colloids, electron microscopy, ferrihydrite, goethite, iron oxidation, schwertmannite.


References

[1]  M. F. Hochella, S. K. Lower, P. A. Maurice, R. L. Penn, N. Sahai, D. L. Sparks, B. S. Twining, Nanominerals, mineral nanoparticles, and Earth systems. Science 2008, 319, 1631.
Nanominerals, mineral nanoparticles, and Earth systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVamur8%3D&md5=d65e618a29744d59d6f4ac9df256c140CAS | 18356515PubMed |

[2]  M. F. Hochella Jr, D. M. Aruguete, B. Kim, Naturally occurring inorganic nanoparticles: general assessment and a global budget for one of Earth’s last unexplored major geochemical components, in Nature’s Nanostructures (Eds A. S. Barnard, H. Guo) 2012, pp. 1–31 (Pan Stanford Pte Ltd: Singapore).

[3]  B. Kim, C.-S. Park, M. Murayama, M. F. Hochella, Discovery and characterization of silver sulfide nanoparticles in final sewage sludge. Environ. Sci. Technol. 2010, 44, 7509.
Discovery and characterization of silver sulfide nanoparticles in final sewage sludge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGhtr%2FL&md5=65fbaa4f818111971bc08296c239c594CAS | 20839838PubMed |

[4]  R. A. French, M. A. Caraballo, B. Kim, J. D. Rimstidt, M. Murayama, M. F. Hochella, The enigmatic iron oxyhydroxysulfate nanomineral schwertmannite: morphology, structure, and composition. Am. Mineral. 2012, 97, 1469.
The enigmatic iron oxyhydroxysulfate nanomineral schwertmannite: morphology, structure, and composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Cgsr7M&md5=f6d29e8a9c61900c85a5a991988c1802CAS |

[5]  H. Guo, A. S. Barnard, Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability. J. Mater. Chem. A 2013, 1, 27.
| 1:CAS:528:DC%2BC38XhslOjsbzP&md5=1e633b1215904259fb242c98925a9b1dCAS |

[6]  H. Guo, H. Xu, A. S. Barnard, Can hematite nanoparticles be an environmental indicator? Energy Environ. Sci. 2013, 6, 561.
| 1:CAS:528:DC%2BC3sXhsValu74%3D&md5=4a98da559c392b500c19fe0e5f3865e6CAS |

[7]  D. Perret, J.-F. Gaillard, J. Dominik, O. Atteia, The diversity of natural hydrous iron oxides. Environ. Sci. Technol. 2000, 34, 3540.
The diversity of natural hydrous iron oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVOjtL4%3D&md5=52aeb35b5d71513b976e99b7b36e0787CAS |

[8]  S.-G. Lu, F.-F. Sun, Y.-T. Zong, Occurrence, structure and mineral phases of nanoparticles in an anthrosol. Pedosphere 2013, 23, 273.
Occurrence, structure and mineral phases of nanoparticles in an anthrosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVahsb7L&md5=49338011894468e37cf56b932c90f922CAS |

[9]  R. L. Penn, G. Oskam, T. J. Strathmann, P. C. Searson, A. T. Stone, D. R. Veblen, Epitaxial assembly in aged colloids. J. Phys. Chem. B 2001, 105, 2177.
Epitaxial assembly in aged colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlShtrw%3D&md5=d3eb7be2964806ff3ca1a0bf8d166e3fCAS |

[10]  C. Carbone, F. Di Benedetto, P. Marescotti, A. Martinelli, C. Sangregorio, C. Cipriani, G. Lucchetti, M. Romanelli, Genetic evolution of nanocrystalline Fe oxide and oxyhydroxide assemblages from the Libiola mine (eastern Liguria, Italy): structural and microstructural investigations. Eur. J. Mineral. 2005, 17, 785.
Genetic evolution of nanocrystalline Fe oxide and oxyhydroxide assemblages from the Libiola mine (eastern Liguria, Italy): structural and microstructural investigations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKjt77O&md5=11e1ce4e97c885d97f9dc32ec0f3fde1CAS |

[11]  A. Genovese, M. Mellini, Ferrihydrite flocs, native copper nanocrystals and spontaneous remediation in the Fosso dei Noni stream, Tuscany, Italy. Appl. Geochem. 2007, 22, 1439.
Ferrihydrite flocs, native copper nanocrystals and spontaneous remediation in the Fosso dei Noni stream, Tuscany, Italy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVCrsrk%3D&md5=8339424ba26bc0337d7119f2d31da064CAS |

[12]  T. Hiemstra, J. Antelo, R. Rahnemaie, W. H. v. Riemsdijk, Nanoparticles in natural systems I: the effective reactive surface area of the natural oxide fraction in field samples. Geochim. Cosmochim. Acta 2010, 74, 41.
Nanoparticles in natural systems I: the effective reactive surface area of the natural oxide fraction in field samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCqsLzJ&md5=ca209104907386184b5c3d12e7e506e4CAS |

[13]  G. A. Waychunas, C. S. Kim, J. F. Banfield, Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J. Nanopart. Res. 2005, 7, 409.
Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFWhsL0%3D&md5=386e8cb8b09f64b01c0b0aaaffb8bf5aCAS |

[14]  K. L. Plathe, F. von der Kammer, M. Hassellöv, J. Moore, M. Murayama, T. Hofmann, M. F. Hochella, Using FlFFF and aTEM to determine trace metal–nanoparticle associations in riverbed sediment. Environ. Chem. 2010, 7, 82.
Using FlFFF and aTEM to determine trace metal–nanoparticle associations in riverbed sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt12jtLY%3D&md5=e1c442bc145b8ff3897aacf51c926f61CAS |

[15]  M. Hassellov, F. von der Kammer, Iron oxides as geochemical nanovectors for metal transport in soil-river systems. Elements 2008, 4, 401.
Iron oxides as geochemical nanovectors for metal transport in soil-river systems.Crossref | GoogleScholarGoogle Scholar |

[16]  M. F. Hochella, J. N. Moore, U. Golla, A. Putnis, A TEM study of samples from acid mine drainage systems: metal–mineral association with implications for transport. Geochim. Cosmochim. Acta 1999, 63, 3395.
A TEM study of samples from acid mine drainage systems: metal–mineral association with implications for transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVCksbw%3D&md5=d89b5d437a0b66aa0459edfcad29f50bCAS |

[17]  J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, R. L. Penn, Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 2000, 289, 751.
Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslyjsrc%3D&md5=9582bc6c7b7ad9251207681a9d01987aCAS | 10926531PubMed |

[18]  P. Marescotti, C. Carbone, P. Comodi, F. Frondini, G. Lucchetti, Mineralogical and chemical evolution of ochreous precipitates from the Libiola Fe-Cu-sulfide mine (Eastern Liguria, Italy). Appl. Geochem. 2012, 27, 577.
Mineralogical and chemical evolution of ochreous precipitates from the Libiola Fe-Cu-sulfide mine (Eastern Liguria, Italy).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyit74%3D&md5=4dfb5f127242d2d67649e01257c3115dCAS |

[19]  B. Kim, M. Murayama, B. P. Colman, M. F. Hochella, Characterization and environmental implications of nano- and larger TiO2 particles in sewage sludge, and soils amended with sewage sludge. J. Environ. Monit. 2012, 14, 1129.
Characterization and environmental implications of nano- and larger TiO2 particles in sewage sludge, and soils amended with sewage sludge.Crossref | GoogleScholarGoogle Scholar | 22349742PubMed |

[20]  J. Gautier, C. Grosbois, J. P. Floc’h, F. Martin, Transformation of natural As-associated ferrihydrite downstream of a remediated mining site. Eur. J. Mineral. 2006, 18, 187.
Transformation of natural As-associated ferrihydrite downstream of a remediated mining site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFWisr8%3D&md5=f7a1e1fabfb0011ae5ff7b72a2948edeCAS |

[21]  M. Paul, M. Gengnagel, D. Baacke, Integrated water protection approaches under the WISMUT project: the Ronneburg case, in Uranium in the Environment: Mining Impact and Consequences (Eds B. Merkel, A. Hasche-Berger) 2006, pp. 369–379 (Springer: Berlin).

[22]  J. W. Geletneky, G. Buechel, M. Paul, Impact of acid rock drainage in a discrete catchment area of the former mining site of Ronneburg (Germany), in Tailings and Mine Waste 2002: Proceedings of the 9th International Conference, 27–30 January 2002, Fort Collins, CO 2002, pp. 67–74 (CRC Press).

[23]  Umweltbericht 2010 2011 (Wismut GmbH: Chemnitz, Germany).

[24]  D. K. Nordstrom, F. D. Wilde, Chapter A6: field measurements: 6.5 reduction-oxidation potential (electrode method), in US Geological Survey TWRI Book 9: Handbooks for Water-Resources Investigations (Ed. F. D. Wilde) 2005 (US Geological Survey). Available at http://water.usgs.gov/owq/FieldManual/Chapter6/6.5_contents.html [Verified 8 April 2014].

[25]  W. Deutsch, Groundwater Geochemistry: Fundamentals and Applications to Contamination 1997, p. 35 (CRC Press: Boca Raton, FL).

[26]  H. Tamura, K. Goto, T. Yotsuyanagi, M. Nagayama, Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta 1974, 21, 314.
Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXksVCqsbY%3D&md5=e3576fc4bd15486c2610f23243913818CAS | 18961462PubMed |

[27]  M. Tabatabai, A rapid method for determination of sulfate in water samples. Environ. Lett. 1974, 7, 237.
A rapid method for determination of sulfate in water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXitFGrsg%3D%3D&md5=e80333dff0df31a7d2273f99c99f15e6CAS |

[28]  M. A. Caraballo, T. S. Rotting, J. M. Nieto, C. Ayora, Sequential extraction and DXRD applicability to poorly crystalline Fe- and Al-phase characterization from an acid mine water passive remediation system. Am. Mineral. 2009, 94, 1029.
Sequential extraction and DXRD applicability to poorly crystalline Fe- and Al-phase characterization from an acid mine water passive remediation system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslCgurc%3D&md5=ce6f5c2f021bffa60943ecd21ec8aca8CAS |

[29]  B. Dold, E. Gonzalez-Toril, A. Aguilera, E. Lopez-Pamo, M. E. Cisternas, F. Bucchi, R. Amils, Acid rock drainage and rock weathering in Antarctica: important sources for iron cycling in the Southern Ocean. Environ. Sci. Technol. 2013, 47, 6129.
| 1:CAS:528:DC%2BC3sXnslentLg%3D&md5=c28787ab345b3df28ba5083576a89859CAS | 23682976PubMed |

[30]  M. A. Caraballo, F. Macías, J. M. Nieto, D. Quispe, C. Ayora, Hydrochemical performance and mineralogical evolution of a dispersed alkaline substrate (DAS) remediating the highly polluted acid mine drainage in the full-scale passive treatment of Mina Esperanza (SW Spain). Am. Mineral. 2011, 96, 1270.
Hydrochemical performance and mineralogical evolution of a dispersed alkaline substrate (DAS) remediating the highly polluted acid mine drainage in the full-scale passive treatment of Mina Esperanza (SW Spain).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2gsbfE&md5=622298fce790e958bfef8b557d43ac4dCAS |

[31]  G. Rauret, J. F. López-Sánchez, A. Sahuquillo, R. Rubio, C. Davidson, A. Ure, P. Quevauviller, Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57.
Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtFartrg%3D&md5=06c7ed46151c5b7c71eb91a271e00defCAS | 11529080PubMed |

[32]  F. Macías, M. A. Caraballo, J. M. Nieto, Environmental assessment and management of metal-rich wastes generated in acid mine drainage passive remediation systems. J. Hazard. Mater. 2012, 229–230, 107.
Environmental assessment and management of metal-rich wastes generated in acid mine drainage passive remediation systems.Crossref | GoogleScholarGoogle Scholar | 22717063PubMed |

[33]  American Water Works Association, Water Environment Federation, Standard Methods for Examination of Wastewater, 20th edn 1998 (American Public Health Association: Washington DC).

[34]  A. Zaffiro, M. Zimmerman, S. Wendelken, G. Smith, D. Munch, Method 218.7: Determination of hexavalent chromium in drinking water by ion chromatography with post-column derivitization and UV-visible spectroscopic detection 2011, pp. 1–30 (US Environmental Protection Agency: Cincinnati, OH).

[35]  M. J. Dykstra, A Manual of Applied Techniques for Biological Electron Microscopy 1993 (Plenum Press: New York).

[36]  A. M. Glauert, P. R. Lewis, Practical Methods in Electron Microscopy. Vol 17: Biological Specimen Preparation for Transmission Electron Microscopy 1998, pp. 40–43 (Portland Press: London).

[37]  J. M. Bigham, D. K. Nordstrom, Iron and aluminum hydroxysulfates from acid sulfate waters. Rev. Mineral. Geochem. 2000, 40, 351.
Iron and aluminum hydroxysulfates from acid sulfate waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlygurk%3D&md5=5acfc4cd923b50308e3ff64f51a21170CAS |

[38]  A. C. Cismasu, F. M. Michel, A. P. Tcaciuc, T. Tyliszczak, J. G. E. Brown, Composition and structural aspects of naturally occurring ferrihydrite. C. R. Geosci. 2011, 343, 210.
Composition and structural aspects of naturally occurring ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFKhsb4%3D&md5=0763b249a6e14e6309f452c84f6a682bCAS |

[39]  G. Lee, J. M. Bigham, G. Faure, Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Appl. Geochem. 2002, 17, 569.
Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVSmuro%3D&md5=076421d7643335d45c4c17934bdd31a7CAS |

[40]  Y. Arai, Spectroscopic evidence for NiII surface speciation at the iron oxyhydroxides-water interface. Environ. Sci. Technol. 2008, 42, 1151.
Spectroscopic evidence for NiII surface speciation at the iron oxyhydroxides-water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlKktQ%3D%3D&md5=870b6718d5784cd2fb2036439715c9baCAS | 18351086PubMed |

[41]  Chemical Aspects, in Guidelines for Drinking-Water Quality 2011, pp. 155–201 (World Health Organization: Geneva, Switzerland).

[42]  M. A. Caraballo, A. M. Sarmiento, D. Sánchez-Rodas, J. M. Nieto, A. Parviainen, Seasonal variations in the formation of Al and Si rich Fe-stromatolites in the highly polluted acid mine drainage of Agua Agria Creek (Tharsis, SW Spain). Chem. Geol. 2011, 284, 97.
Seasonal variations in the formation of Al and Si rich Fe-stromatolites in the highly polluted acid mine drainage of Agua Agria Creek (Tharsis, SW Spain).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksleqt7c%3D&md5=1bcd5f5528e5f41a8e486b6b0bfab4b0CAS |

[43]  J. Sánchez-España, E. S. Pastor, E. Lopez-Pamo, Iron terraces in acid mine drainage systems: a discussion about the organic and inorganic factors involved in their formation through observations from the Tintillo acidic river (Rio Tinto mine, Huelva, Spain). Geosphere 2007, 3, 133.
Iron terraces in acid mine drainage systems: a discussion about the organic and inorganic factors involved in their formation through observations from the Tintillo acidic river (Rio Tinto mine, Huelva, Spain).Crossref | GoogleScholarGoogle Scholar |

[44]  R. Pérez-López, M. P. Asta, G. Roman-Ross, J. M. Nieto, C. Ayora, R. Tuccoulou, Synchrotron-based X-ray study of iron oxide transformations in terraces from the Tinto–Odiel river system: influence on arsenic mobility. Chem. Geol. 2011, 280, 336.
Synchrotron-based X-ray study of iron oxide transformations in terraces from the Tinto–Odiel river system: influence on arsenic mobility.Crossref | GoogleScholarGoogle Scholar |

[45]  M. A. Caraballo, J. D. Rimstidt, F. Macias, J. M. Nieto, M. F. Hochella, Metastability, nanocrystallinity and pseudo-solid solution constraints to schwertmannite solubility. Chem. Geol. 2013, 360–361, 22.
Metastability, nanocrystallinity and pseudo-solid solution constraints to schwertmannite solubility.Crossref | GoogleScholarGoogle Scholar |

[46]  P. M. Heikkinen, M. L. Räisänen, Trace metal and As solid-phase speciation in sulphide mine tailings – Indicators of spatial distribution of sulphide oxidation in active tailings impoundments. Appl. Geochem. 2009, 24, 1224.
Trace metal and As solid-phase speciation in sulphide mine tailings – Indicators of spatial distribution of sulphide oxidation in active tailings impoundments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFelu70%3D&md5=cf8199335e6b96f6fa5d0bf2575a04dcCAS |

[47]  J. A. Dyer, P. Trivedi, N. C. Scrivner, D. L. Sparks, Surface complexation modeling of zinc sorption onto ferrihydrite. J. Colloid Interface Sci. 2004, 270, 56.
Surface complexation modeling of zinc sorption onto ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFentLs%3D&md5=6372df36f96fadf07b8087de8715086eCAS | 14693135PubMed |

[48]  R. G. Ford, P. M. Bertsch, K. J. Farley, Changes in transition and heavy metal partitioning during hydrous iron oxide aging. Environ. Sci. Technol. 1997, 31, 2028.
Changes in transition and heavy metal partitioning during hydrous iron oxide aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlGisbc%3D&md5=13af2a5c9edf62d73e1940f9b7d378afCAS |

[49]  F. Feder, F. Trolard, G. Klingelhöfer, G. Bourrié, In situ Mössbauer spectroscopy: evidence for green rust (fougerite) in a gleysol and its mineralogical transformations with time and depth. Geochim. Cosmochim. Acta 2005, 69, 4463.
In situ Mössbauer spectroscopy: evidence for green rust (fougerite) in a gleysol and its mineralogical transformations with time and depth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOhtrvE&md5=dc56078d3495cf66b1c3f0149cd87bc2CAS |

[50]  T. Rennert, K. Eusterhues, V. De Andrade, K. U. Totsche, Iron species in soils on a mofette site studied by Fe K-edge X-ray absorption near-edge spectroscopy. Chem. Geol. 2012, 332–333, 116.
Iron species in soils on a mofette site studied by Fe K-edge X-ray absorption near-edge spectroscopy.Crossref | GoogleScholarGoogle Scholar |

[51]  F. Trolard, G. Bourrié, Fougerite a natural layered double hydroxide in gley soil: habitus, structure, and some properties, in Clay Minerals in Nature – Their Characterization, Modification, and Application (Eds M. Valaskova, G. S. Martynkova) 2012, pp. 171–188 (InTech).

[52]  S. D. Wankel, M. M. Adams, D. T. Johnston, C. M. Hansel, S. B. Joye, P. R. Girguis, Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environ. Microbiol. 2012, 14, 2726.
Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVentbbK&md5=1d29db2ae7bd168f70c0b9e226b8c4ccCAS | 22827909PubMed |

[53]  B. C. Christiansen, T. Balic-Zunic, K. Dideriksen, S. L. S. Stipp, Identification of green rust in groundwater. Environ. Sci. Technol. 2009, 43, 3436.
Identification of green rust in groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFeku74%3D&md5=fc1ccab8a8be0bab746de6abf8df2808CAS | 19544836PubMed |

[54]  A. Zegeye, S. Bonneville, L. G. Benning, A. Sturm, D. A. Fowle, C. Jones, D. E. Canfield, C. Ruby, L. C. MacLean, S. Nomosatryo, S. A. Crowe, S. W. Poulton, Green rust formation controls nutrient availability in a ferruginous water column. Geology 2012, 40, 599.
Green rust formation controls nutrient availability in a ferruginous water column.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ShtL%2FI&md5=6e8a9eb6a450ff2180f14acf0208e2aaCAS |

[55]  L. Skovbjerg, Reduction of hexavalent chromium by green rust sulphate: Determination of end product and reduction mechanism 2005, MSc thesis, Geological Institute, University of Copenhagen, Copenhagen, Denmark.

[56]  J. Vins, J. Subrt, Z. Zapletal, F. Hanousek, Preparation and properties of green rust type substances. Collect. Czech. Chem. Commun. 1987, 52, 93.
Preparation and properties of green rust type substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhs1OltLY%3D&md5=f2223e40c59491466a198e8d558ed53cCAS |

[57]  I. A. Ahmed, L. G. Benning, G. Kakonyi, A. D. Sumoondur, N. J. Terrill, S. Shaw, Formation of green rust sulfate: a combined in situ time-resolved X-ray scattering and electrochemical study. Langmuir 2010, 26, 6593.
Formation of green rust sulfate: a combined in situ time-resolved X-ray scattering and electrochemical study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitl2jt7o%3D&md5=0fa80bd6580392958a340316660920efCAS | 20180583PubMed |

[58]  C. Pantke, M. Obst, K. Benzerara, G. Morin, G. Ona-Nguema, U. Dippon, A. Kappler, Green rust formation during FeII oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1. Environ. Sci. Technol. 2012, 46, 1439.
Green rust formation during FeII oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Glsb%2FP&md5=ea23674e5f8bfbbbd839f83b2842ace2CAS | 22201257PubMed |

[59]  L. Simon, M. François, P. Refait, G. Renaudin, M. Lelaurain, J.-M. R. Génin, Structure of the FeII-III layered double hydroxysulphate green rust two from Rietveld analysis. Solid State Sci. 2003, 5, 327.
Structure of the FeII-III layered double hydroxysulphate green rust two from Rietveld analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1Kgu7c%3D&md5=488381bef08c836bca0a09fec3537ca9CAS |

[60]  S. J. Mills, A. G. Christy, J. M. R. Génin, T. Kameda, F. Colombo, Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineral. Mag. 2012, 76, 1289.
Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslaru73L&md5=b8228a63c3a3344a089c09ade044d5e1CAS |

[61]  I. A. M. Ahmed, S. Shaw, L. G. Benning, Formation of hydroxysulphate and hydroxycarbonate green rusts in the presence of zinc using time-resolved in situ small and wide angle X-ray scattering. Mineral. Mag. 2008, 72, 159.
Formation of hydroxysulphate and hydroxycarbonate green rusts in the presence of zinc using time-resolved in situ small and wide angle X-ray scattering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2rtrbM&md5=bd36d2f8a5cef5ba99435bf620a1d65aCAS |

[62]  L. Legrand, L. Mazerolles, A. Chaussé, The oxidation of carbonate green rust into ferric phases: solid-state reaction or transformation via solution. Geochim. Cosmochim. Acta 2004, 68, 3497.
The oxidation of carbonate green rust into ferric phases: solid-state reaction or transformation via solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVGisr8%3D&md5=87272ee7c7a2c71f7b21e09760b412b6CAS |

[63]  X. Wang, F. Liu, W. Tan, X. Feng, L. K. Koopal, Transformation of hydroxycarbonate green rust into crystalline iron (hydr)oxides: influences of reaction conditions and underlying mechanisms. Chem. Geol. 2013, 351, 57.
Transformation of hydroxycarbonate green rust into crystalline iron (hydr)oxides: influences of reaction conditions and underlying mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFShtb3L&md5=982d4610f0ece163c4f071d33c1a2279CAS |

[64]  M. A. Williamson, C. S. Kirby, J. D. Rimstidt, Iron dynamics in acid mine drainage, in 7th International Conference on Acid Rock Drainage, 26–30 March 2006, St Louis, MO (Ed. R. I. Barnhisel) 2006, pp. 2411–2423 (American Society of Mining Reclamation: Lexington, NY).

[65]  D. Emerson, E. J. Fleming, J. M. McBeth, Iron-oxidizing bacteria: an environmental and genomic perspective. Annu. Rev. Microbiol. 2010, 64, 561.
Iron-oxidizing bacteria: an environmental and genomic perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVeisL3E&md5=bcf568ce263d2aeb30a65c7fdf3f4359CAS | 20565252PubMed |

[66]  D. Sobolev, E. E. Roden, Evidence for rapid microscale bacterial redox cycling of iron in circumneutral environments. Antonie van Leeuwenhoek 2002, 81, 587.
Evidence for rapid microscale bacterial redox cycling of iron in circumneutral environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1Sgtrw%3D&md5=73e547b913f6e9b4ed3ec778bea94e47CAS | 12448754PubMed |

[67]  J. H. Langwaldt, J. A. Puhakka, Competition for oxygen by iron and 2,4,6-trichlorophenol oxidizing bacteria in boreal groundwater. Water Res. 2003, 37, 1378.
Competition for oxygen by iron and 2,4,6-trichlorophenol oxidizing bacteria in boreal groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1WnsrY%3D&md5=a2b58a356b74d5a30fad59c38e05cde0CAS | 12598200PubMed |

[68]  M. Fabisch, F. Beulig, D. M. Akob, K. Küsel, Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations. Front. Microbiol. 2013, 4, 1.
Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations.Crossref | GoogleScholarGoogle Scholar |

[69]  L. Hallbeck, F. Ståhl, K. Pedersen, Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea. J. Gen. Microbiol. 1993, 139, 1531.
Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsVGhu7o%3D&md5=5f6eb1a092ab98cc07e2be8486a6bd81CAS | 8371116PubMed |

[70]  C. S. Chan, S. C. Fakra, D. C. Edwards, D. Emerson, J. F. Banfield, Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochim. Cosmochim. Acta 2009, 73, 3807.
Iron oxyhydroxide mineralization on microbial extracellular polysaccharides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVyktbo%3D&md5=625bb9d83a2cb416ce50fae8c09773ccCAS |

[71]  E. G. Søgaard, R. Aruna, J. Abraham-Peskir, C. Bender Koch, Conditions for biological precipitation of iron by Gallionella ferruginea in a slightly polluted ground water. Appl. Geochem. 2001, 16, 1129.
Conditions for biological precipitation of iron by Gallionella ferruginea in a slightly polluted ground water.Crossref | GoogleScholarGoogle Scholar |

[72]  D. Emerson, E. K. Field, O. Chertkov, K. W. Davenport, L. Goodwin, C. Munk, M. Nolan, T. Woyke, Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Front. Microbiol. 2013, 4, 1.
Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics.Crossref | GoogleScholarGoogle Scholar |

[73]  E.-M. Burkhardt, D. M. Akob, S. Bischoff, J. Sitte, J. E. Kostka, D. Banerjee, A. C. Scheinost, K. Kuesel, Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former mining area. Environ. Sci. Technol. 2010, 44, 177.
Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former mining area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVahtrfL&md5=07109844d4ab234ddc741e5821d74503CAS | 19938814PubMed |

[74]  J. Sitte, D. M. Akob, C. Kaufmann, K. Finster, D. Banerjee, E. M. Burkhardt, J. E. Kostka, A. C. Scheinost, G. Buchel, K. Kusel, Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil. Appl. Environ. Microbiol. 2010, 76, 3143.
Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsF2ltLY%3D&md5=9f113a2a811ce0dfb6f6411e6310b04bCAS | 20363796PubMed |

[75]  E. M. Burkhardt, S. Bischoff, D. M. Akob, G. Buchel, K. Kusel, Heavy metal tolerance of FeIII-reducing microbial communities in contaminated creek bank soils. Appl. Environ. Microbiol. 2011, 77, 3132.
Heavy metal tolerance of FeIII-reducing microbial communities in contaminated creek bank soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVeisr%2FE&md5=8721e512e480ee49f0bfb8886ccb2413CAS | 21378042PubMed |

[76]  L. M. Nodwell, N. M. Price, Direct use of inorganic colloidal iron by marine mixotrophic phytoplankton. Limnol. Oceanogr. 2001, 46, 765.
Direct use of inorganic colloidal iron by marine mixotrophic phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFelu7c%3D&md5=5315e727afb35b21589ed85fc39c0fc2CAS |

[77]  M. Taillefert, J.-F. Gaillard, Reactive transport modeling of trace elements in the water column of a stratified lake: iron cycling and metal scavenging. J. Hydrol. 2002, 256, 16.
Reactive transport modeling of trace elements in the water column of a stratified lake: iron cycling and metal scavenging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Olsrs%3D&md5=1e5b9bdbecf30dd2c010e22a38c8376fCAS |

[78]  S. Lu, K. Chourey, M. Reiche, S. Nietzsche, M. B. Shah, T. R. Neu, R. L. Hettich, K. Kusel, Insights into the structure and metabolic function of microbes that shape pelagic iron-rich aggregates (‘iron snow’). Appl. Environ. Microbiol. 2013, 79, 4272.
Insights into the structure and metabolic function of microbes that shape pelagic iron-rich aggregates (‘iron snow’).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWjsbvJ&md5=9f6f8d96c0649a373d2f02a382b99599CAS | 23645202PubMed |

[79]  M. Reiche, S. Lu, V. Ciobota, T. R. Neu, S. Nietzsche, P. Rösch, J. Popp, K. Küsel, Pelagic boundary conditions affect the biological formation of iron-rich particles (iron snow) and their microbial communities. Limnol. Oceanogr. 2011, 56, 1386.
Pelagic boundary conditions affect the biological formation of iron-rich particles (iron snow) and their microbial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVCrurrK&md5=c3f7c88af1bf9844ec121378b9f97b90CAS |

[80]  S. G. Johnston, A. F. Keene, E. D. Burton, R. T. Bush, L. A. Sullivan, Iron and arsenic cycling in intertidal surface sediments during wetland remediation. Environ. Sci. Technol. 2011, 45, 2179.
Iron and arsenic cycling in intertidal surface sediments during wetland remediation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFWjtbk%3D&md5=e094fa3ff0cc6cea63bb6f5e6ade6672CAS | 21322553PubMed |

[81]  R. Raiswell, L. G. Benning, L. Davidson, M. Tranter, Nanoparticulate bioavailable iron minerals in icebergs and glaciers. Mineral. Mag. 2008, 72, 345.
Nanoparticulate bioavailable iron minerals in icebergs and glaciers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2rt7zN&md5=d71aef3be03ff6c20f06b872fba17975CAS |

[82]  R. Raiswell, L. G. Benning, L. Davidson, M. Tranter, S. Tulaczyk, Schwertmannite in wet, acid and oxic microenvironments beneath polar and polythermal glaciers. Geology 2009, 37, 431.
Schwertmannite in wet, acid and oxic microenvironments beneath polar and polythermal glaciers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFaqsL8%3D&md5=7f56d024e5a15b7159dbe86f4bc2fe77CAS |

[83]  J.-L. Hazemann, J. F. Berar, A. Manceau, Rietveld studies of the aluminium-iron substitution in synthetic goethite. Mater. Sci. Forum 1991, 79–82, 821.
Rietveld studies of the aluminium-iron substitution in synthetic goethite.Crossref | GoogleScholarGoogle Scholar |