Effect of biogeochemical redox processes on the fate and transport of As and U at an abandoned uranium mine site: an X-ray absorption spectroscopy study
Lyndsay D. Troyer A , James J. Stone B and Thomas Borch A C DA Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA.
B Department of Civil and Environmental Engineering South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA.
C Present address: Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, USA.
D Corresponding author. Email: borch@colostate.edu
Environmental Chemistry 11(1) 18-27 https://doi.org/10.1071/EN13129
Submitted: 15 July 2013 Accepted: 30 September 2013 Published: 28 January 2014
Environmental context. Uranium and arsenic, two elements of human health concern, are commonly found at sites of uranium mining, but little is known about processes influencing their environmental behaviour. Here we focus on understanding the chemical and physical processes controlling uranium and arsenic transport at an abandoned uranium mine. We find that the use of sedimentation ponds limits the mobility of uranium; however, pond conditions at our site resulted in arsenic mobilisation. Our findings will help optimise restoration strategies for mine tailings.
Abstract. Although As can occur in U ore at concentrations up to 10 wt-%, the fate and transport of both U and As at U mine tailings have not been previously investigated at a watershed scale. The major objective of this study was to determine primary chemical and physical processes contributing to transport of both U and As to a down gradient watershed at an abandoned U mine site in South Dakota. Uranium is primarily transported by erosion at the site, based on decreasing concentrations in sediment with distance from the tailings. Sequential extractions and U X-ray absorption near-edge fine structure (XANES) fitting indicate that U is immobilised in a near-source sedimentation pond both by prevention of sediment transport and by reduction of UVI to UIV. In contrast to U, subsequent release of As to the watershed takes place from the pond partially due to reductive dissolution of Fe oxy(hydr)oxides. However, As is immobilised by adsorption to clays and Fe oxy(hydr)oxides in oxic zones and by formation of As–sulfide mineral phases in anoxic zones down gradient, indicated by sequential extractions and As XANES fitting. This study indicates that As should be considered during restoration of uranium mine sites in order to prevent transport.
References
[1] A. Abdelouas, Uranium mill tailings: geochemistry, mineralogy, and environmental impact. Elements 2006, 2, 335.| Uranium mill tailings: geochemistry, mineralogy, and environmental impact.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFant70%3D&md5=5137ca5591d66a85ad172cd4afcdf2f8CAS |
[2] J. J. Stone, L. D. Stetler, A. Schwalm, Final Report: North Cave Hills Abandoned Uranium Mines Impact Investigation. South Dakota School of Mines and Technology 2007, 1.
[3] G. G. Kipp, J. J. Stone, L. D. Stetler, Arsenic and uranium transport in sediments near abandoned uranium mines in Harding County, South Dakota. Appl. Geochem. 2009, 24, 2246.
| Arsenic and uranium transport in sediments near abandoned uranium mines in Harding County, South Dakota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyrt7bN&md5=7a283bd78882222151baea6194fe1648CAS |
[4] L. N. Larson, G. G. Kipp, H. V. Mott, J. J. Stone, Sediment pore-water interactions associated with arsenic and uranium transport from the North Cave Hills mining region, South Dakota, USA. Appl. Geochem. 2012, 27, 879.
| Sediment pore-water interactions associated with arsenic and uranium transport from the North Cave Hills mining region, South Dakota, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyjs7w%3D&md5=6ac542acb591203ba03ce038bb017aceCAS |
[5] L. N. Larson, J. J. Stone, Sediment-bound arsenic and uranium within the Bowman-Haley Reservoir, North Dakota. Water Air Soil Pollut. 2011, 219, 27.
| Sediment-bound arsenic and uranium within the Bowman-Haley Reservoir, North Dakota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVSks7k%3D&md5=4e34a812d6636388332dfc175519da5dCAS |
[6] T. D. Waite, J. A. Davis, T. Payne, G. A. Waychunas, N. Xu, Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model. Geochim. Cosmochim. Acta 1994, 58, 5465.
| Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivVCmu78%3D&md5=003b252df95216a8cb87820f4f8cea52CAS |
[7] G. Bernhard, G. Geipel, T. Reich, V. Brendler, S. Amayri, H. Nitsche, Uranyl(VI) carbonate complex formation: Validation of the Ca2UO2(CO3)3 (aq) species. Radiochim. Acta 2001, 89, 511.
| Uranyl(VI) carbonate complex formation: Validation of the Ca2UO2(CO3)3 (aq) species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvFGgsL0%3D&md5=3c6edbcc2f567df97564ecd4cf3fd31bCAS |
[8] B. D. Stewart, M. A. Mayes, S. Fendorf, Impact of uranyl–calcium–carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments. Environ. Sci. Technol. 2010, 44, 928.
| Impact of uranyl–calcium–carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1yiug%3D%3D&md5=3aaa01f8be2ded04bc55a24c692162b0CAS | 20058915PubMed |
[9] W. Dong, W. P. Ball, C. Liu, Z. Wang, A. T. Stone, J. Bai, J. M. Zachara, Influence of calcite and dissolved calcium on uranium(VI) sorption to a Hanford subsurface sediment. Environ. Sci. Technol. 2005, 39, 7949.
| Influence of calcite and dissolved calcium on uranium(VI) sorption to a Hanford subsurface sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWrtr3J&md5=1adcd3bd7dc70387d1366291c4c942c9CAS | 16295860PubMed |
[10] J. R. Bargar, R. Bernier-Latmani, D. E. Giammar, B. M. Tebo, Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements 2008, 4, 407.
| Biogenic uraninite nanoparticles and their importance for uranium remediation.Crossref | GoogleScholarGoogle Scholar |
[11] R. Bernier-Latmani, H. Veeramani, E. D. Vecchia, P. Junier, J. S. Lezama-Pacheco, E. I. Suvorova, J. O. Sharp, N. S. Wigginton, J. R. Bargar, Non-uraninite products of microbial UVI reduction. Environ. Sci. Technol. 2010, 44, 9456.
| Non-uraninite products of microbial UVI reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWmsrrP&md5=65d290383fbd5aa689c86352a25956daCAS | 21069950PubMed |
[12] V. Sivaswamy, M. I. Boyanov, B. M. Peyton, S. Viamajala, R. Gerlach, W. A. Apel, R. K. Sani, A. Dohnalkova, K. M. Kemner, T. Borch, Multiple mechanisms of uranium immobilization by Cellulomonas sp. strain ES6. Biotechnol. Bioeng. 2011, 108, 264.
| Multiple mechanisms of uranium immobilization by Cellulomonas sp. strain ES6.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOjsLnK&md5=14c1ebefa6fea2e94e1fe0ab8d73c1c7CAS | 20872821PubMed |
[13] J. O. Sharp, J. S. Lezama-Pacheco, E. J. Schofield, P. Junier, K.-U. Ulrich, S. Chinni, H. Veeramani, C. Margot-Roquier, S. M. Webb, B. M. Tebo, D. E. Giammar, J. R. Bargar, R. Bernier-Latmani, Uranium speciation and stability after reductive immobilization in aquifer sediments. Geochim. Cosmochim. Acta 2011, 75, 6497.
| Uranium speciation and stability after reductive immobilization in aquifer sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Oqu73F&md5=80170b4fa31b0d41e45f8ed6ebfec9e2CAS |
[14] T. Borch, R. Kretzschmar, A. Kappler, P. Van Cappellen, M. Ginder-Vogel, A. Voegelin, K. M. Campbell, Biogeochemical Redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 2010, 44, 15.
| Biogeochemical Redox processes and their impact on contaminant dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhtLnF&md5=1413c3144837751a409a1e64a54400a1CAS | 20000681PubMed |
[15] J. R. Bargar, K. H. Williams, K. M. Campbell, P. E. Long, J. E. Stubbs, E. I. Suvorova, J. S. Lezama-Pacheco, D. S. Alessi, M. Stylo, S. M. Webb, Uranium redox transition pathways in acetate-amended sediments. Proc. Natl. Acad. Sci. USA 2013, 110, 4506.
| Uranium redox transition pathways in acetate-amended sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms12nsbc%3D&md5=a4597edc20c535d3b3f1c61516e1d8a8CAS |
[16] S. E. Fendorf, H. A. Michael, A. Van Geen, Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 2010, 328, 1123.
| Spatial and temporal variations of groundwater arsenic in South and Southeast Asia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVGjtrc%3D&md5=94cd2d7a804ab9f0dd97e9bf90e15635CAS |
[17] S. Dixit, J. G. Hering, Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 2003, 37, 4182.
| Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFOltr8%3D&md5=e95cefdfa6e7bd583150adbcd471263fCAS | 14524451PubMed |
[18] K. J. Tufano, C. Reyes, C. W. Saltikov, S. E. Fendorf, Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environ. Sci. Technol. 2008, 42, 8283.
| Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1CgsbfP&md5=3eb971791cc4dd832fa632dd68654eafCAS | 19068807PubMed |
[19] J. Petrick, Monomethylarsonous acid (MMAIII) Is more toxic than arsenite in chang human hepatocytes. Toxicol. Appl. Pharmacol. 2000, 163, 203.
| Monomethylarsonous acid (MMAIII) Is more toxic than arsenite in chang human hepatocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVSnurw%3D&md5=977f4d170ea38799e9da5017e46ec2f8CAS | 10698679PubMed |
[20] B. D. Kocar, T. Borch, S. Fendorf, Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite. Geochim. Cosmochim. Acta 2010, 74, 980.
| Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SlsbrN&md5=94f50fdca1a25eda55126631fd7ade89CAS |
[21] P. A. O’Day, D. Vlassopoulos, R. Root, N. Rivera, The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl. Acad. Sci. USA 2004, 101, 13 703.
| The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVygtrk%3D&md5=ed0e21739bc198e411ffdfdb7ae42a0eCAS |
[22] P. M. Fox, J. A. Davis, R. Kukkadapu, D. M. Singer, J. R. Bargar, K. H. Williams, Abiotic UVI reduction by sorbed FeII on natural sediments. Geochim. Cosmochim. Acta 2013, 117, 266.
| Abiotic UVI reduction by sorbed FeII on natural sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Whs7fF&md5=a073b5d04f0707b5fa474ef40085e9a2CAS |
[23] D. E. Latta, M. I. Boyanov, K. M. Kemner, E. J. O'Loughlin, M. M. Scherer, Abiotic reduction of uranium by FeII in soil. Appl. Geochem. 2012, 27, 1512.
| Abiotic reduction of uranium by FeII in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1OhtLs%3D&md5=b27e0e9f788a9e9fac61a6c8e4018b7cCAS |
[24] B. Hua, B. Deng, Reductive immobilization of uranium(VI) by amorphous iron sulfide. Environ. Sci. Technol. 2008, 42, 8703.
| Reductive immobilization of uranium(VI) by amorphous iron sulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSqtbvJ&md5=5013eba36ebe973eb6614437230f7105CAS | 19192785PubMed |
[25] B. Hua, H. Xu, J. Terry, B. Deng, Kinetics of uranium(VI) reduction by hydrogen sulfide in anoxic aqueous systems. Environ. Sci. Technol. 2006, 40, 4666.
| Kinetics of uranium(VI) reduction by hydrogen sulfide in anoxic aqueous systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFSgsrY%3D&md5=c963814ced6db8625dfedbf9008608b3CAS | 16913122PubMed |
[26] S. P. Hyun, J. A. Davis, K. Sun, K. F. Hayes, Uranium(VI) reduction by iron(II) monosulfide mackinawite. Environ. Sci. Technol. 2012, 46, 3369.
| Uranium(VI) reduction by iron(II) monosulfide mackinawite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVSntbc%3D&md5=703baafd467a0cb6fdaadbaf894c7e3dCAS | 22316012PubMed |
[27] H. Veeramani, A. C. Scheinost, N. Monsegue, Abiotic reductive immobilization of UVI by biogenic mackinawite. Sci.Technol. 2013, 47, 2361.
| Abiotic reductive immobilization of UVI by biogenic mackinawite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFaltrk%3D&md5=a3a39dbf5020dd5b1d5177ada6dd2a16CAS |
[28] D. R. Lovley, E. J. P. Phillips, Y. A. Gorby, E. R. Landa, Microbial reduction of uranium. Nature 1991, 350, 413.
| Microbial reduction of uranium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVegsb8%3D&md5=16c536a2ec75545b90678ed32a2088e9CAS |
[29] D. R. Lovley, E. Phillips, Reduction of uranium by Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 1992, 58, 850.
| 1:CAS:528:DyaK38Xhs12rtbo%3D&md5=dfa234eee38f39a777e56de1970632a5CAS | 1575486PubMed |
[30] D. E. Cummings, F. Caccavo, S. Fendorf, R. F. Rosenzweig, Arsenic mobilization by the dissimilatory FeIII-reducing bacterium Shewanella alga BrY. Environ. Sci. Technol. 1999, 33, 723.
| Arsenic mobilization by the dissimilatory FeIII-reducing bacterium Shewanella alga BrY.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFSguw%3D%3D&md5=f3a16d14eeccc2884b60026eec607035CAS |
[31] V. K. Stucker, K. H. Williams, M. J. Robbins, J. F. Ranville, Arsenic geochemistry in a biostimulated aquifer: an aqueous speciation study. Environ. Toxicol. Chem. 2013, 32, 1216.
| Arsenic geochemistry in a biostimulated aquifer: an aqueous speciation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVCgu7k%3D&md5=23ca4f4bf805c243a1160ff124a7fe72CAS | 23401165PubMed |
[32] R. Oremland, J. Stolz, The ecology of arsenic. Science 2003, 300, 939.
| The ecology of arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVyjsLs%3D&md5=840e38f53bf5d9201af72c47691ceb50CAS | 12738852PubMed |
[33] S. Fendorf, P. S. Nico, B. D. Kocar, Y. Masue, K. J. Tufano, Arsenic chemistry in soils and sediments. Dev. Soil Sci. 2010, 34, 357.
| Arsenic chemistry in soils and sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVOqu7s%3D&md5=ae829247042a65b238335bd65b94c614CAS |
[34] W. R. Cullen, K. J. Reimer, Arsenic speciation in the environment. Science 1989, 89, 713.
| 1:CAS:528:DyaL1MXktVaitbg%3D&md5=4f62255a7fe1f0f64d6429815eef729dCAS |
[35] B. D. Kocar, S. E. Fendorf, Thermodynamic constraints on reductive reactions influencing the biogeochemistry of arsenic in soils and sediments. Environ. Sci. Technol. 2009, 43, 4871.
| Thermodynamic constraints on reductive reactions influencing the biogeochemistry of arsenic in soils and sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFaktLo%3D&md5=a856a9b30a972537ff629f30b93de87dCAS | 19673278PubMed |
[36] W. A. Gezahegne, C. Hennig, S. Tsushima, B. Planer-Friedrich, A. C. Scheinost, B. J. Merkel, EXAFS and DFT investigations of uranyl arsenate complexes in aqueous solution. Environ. Sci. Technol. 2012, 46, 2228.
| EXAFS and DFT investigations of uranyl arsenate complexes in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1Wqsw%3D%3D&md5=6c150542b042369eb0478f1049d45c07CAS | 22229913PubMed |
[37] Y. Tang, R. J. Reeder, Uranyl and arsenate cosorption on aluminum oxide surface. Geochim. Cosmochim. Acta 2009, 73, 2727.
| Uranyl and arsenate cosorption on aluminum oxide surface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVals7k%3D&md5=7659ae6caf4097b704e01c466b706f70CAS |
[38] R. Donahue, M. J. Hendry, Geochemistry of arsenic in uranium mine mill tailings, Saskatchewan, Canada. Appl. Geochem. 2003, 18, 1733.
| Geochemistry of arsenic in uranium mine mill tailings, Saskatchewan, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVSlurc%3D&md5=c52e035d26a10d55a262fd7a7dc11546CAS |
[39] A. Abdelouas, W. Lutze, E. Nuttall, Chemical reactions of uranium in ground water at a mill tailings site. J. Contam. Hydrol. 1998, 34, 343.
| Chemical reactions of uranium in ground water at a mill tailings site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslKju7k%3D&md5=d35cb44a5c2b2262f0b0fe4ddd108a49CAS |
[40] K. M. Campbell, R. K. Kukkadapu, N. P. Qafoku, A. D. Peacock, E. Lesher, K. H. Williams, J. R. Bargar, M. J. Wilkins, L. Figueroa, J. Ranville, J. A. Davis, P. E. Long, Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer. Appl. Geochem. 2012, 27, 1499.
| Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlOnsLg%3D&md5=cb4e1b2f2df34f1cbe33826c5dacf8ccCAS |
[41] T. Ohnuki, N. Kozai, M. Samadfam, R. Yasuda, S. Yamamoto, K. Narumi, H. Naramoto, T. Murakami, The formation of autunite (Ca(UO2)2(PO4)2nH2O) within the leached layer of dissolving apatite: incorporation mechanism of uranium by apatite. Chem. Geol. 2004, 211, 1.
| The formation of autunite (Ca(UO2)2(PO4)2nH2O) within the leached layer of dissolving apatite: incorporation mechanism of uranium by apatite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Cgsb0%3D&md5=60423810629b33f1d7f8752b2c912519CAS |
[42] K. R. Salome, S. J. Green, M. J. Beazley, S. M. Webb, J. E. Kostka, M. Taillefert, The role of anaerobic respiration in the immobilization of uranium through biomineralization of phosphate minerals. Geochim. Cosmochim. Acta 2013, 106, 344.
| The role of anaerobic respiration in the immobilization of uranium through biomineralization of phosphate minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVejsbo%3D&md5=38d42f87b80fc9f658e85bff27f08aa2CAS |
[43] R. Donahue, M. J. Hendry, P. Landine, Distribution of arsenic and nickel in uranium mill tailings, Rabbit Lake, Saskatchewan, Canada. Appl. Geochem. 2000, 15, 1097.
| Distribution of arsenic and nickel in uranium mill tailings, Rabbit Lake, Saskatchewan, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFalu7c%3D&md5=1dfa23e876e38dada77db544d39e417eCAS |
[44] J. Essilfie-Dughan, M. J. Hendry, J. Warner, T. Kotzer, Arsenic and iron speciation in uranium mine tailings using X-ray absorption spectroscopy. Appl. Geochem. 2013, 28, 11.
| Arsenic and iron speciation in uranium mine tailings using X-ray absorption spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsleisbnK&md5=52da8b6c7d14c8889356e64114ade1c8CAS |
[45] B. J. Moldovan, D. T. Jiang, M. J. Hendry, Mineralogical characterization of arsenic in uranium mine tailings precipitated from iron-rich hydrometallurgical solutions. Environ. Sci. Technol. 2003, 37, 873.
| Mineralogical characterization of arsenic in uranium mine tailings precipitated from iron-rich hydrometallurgical solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptV2lsA%3D%3D&md5=bbf0241983f34028d3d5d7be79fef80eCAS | 12666915PubMed |
[46] J. L. Domingo, Reproductive and developmental toxicity of natural and depleted uranium: a review. Reprod. Toxicol. 2001, 15, 603.
| Reproductive and developmental toxicity of natural and depleted uranium: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVChurk%3D&md5=0826851742d9beb32a3a6fd5cec0981cCAS | 11738513PubMed |
[47] E. S. Craft, A. W. Abu-Qare, M. M. Flaherty, M. C. Garofolo, H. L. Rincavage, M. B. Abou-Donia, Depleted and natural uranium: chemistry and toxicological effects. J. Toxicol. Env. Health B 2004, 7, 297.
| 1:CAS:528:DC%2BD2cXkvFGgsrc%3D&md5=34309d7c6ab652d8cac4738fb36b87c6CAS |
[48] G. W. Kunze, J. B. Dixon, Pretreatment for mineralogical analysis, in Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods (Ed. A. Klute) 1986, pp. 91–100 (Soil Science Society of America: Madison, WI ).
[49] K. H. Tan, Methods of soil chemical analysis, in Soil Sampling, Preparation, and Analysis, 2nd edn 2005, pp. 82–98 (Taylor & Francis Group: Boca Raton, FL).
[50] L. J. Poppe, V. F. Paskevich, J. C. Hathaway, D. S. Blackwood, Separation of the silt and clay fractions for x-ray powder diffraction by centrifugation, in A Laboratory Manual for X-Ray Powder Diffraction, US Geological Survey Open-File Report 01-041 2001 (Woods Hole, MA). Available at http://pubs.usgs.gov/of/2001/of01-041/htmldocs/methods/centrifu.htm [Verified 1 November 2013].
[51] L. D. Whittig, W. R. Allardice, X-Ray diffraction techniques, in Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods (Ed. A. Klute) 1986, pp. 331–362 (Soil Science Society of America: Madison, WI).
[52] W. Harris, G. N. White, X-Ray diffraction techniques for soil mineral identification, in Methods of Soil Analysis: Part 5. Mineralogical Methods (Eds A. L. Ulery, L. R. Drees) 2008, pp. 81–115 (Soil Science Society of America: Madison, WI).
[53] P. N. Soltanpour, J. Benton Jones, S. M. Workman, Optical emission spectroscopy, in Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties, 2nd edn (Ed. A. L. Page) 1982, pp. 55–57 (Soil Science Society of America: Madison, WI).
[54] J.-H. Huang, R. Kretzschmar, Sequential extraction method for speciation of arsenate and arsenite in mineral soils. Anal. Chem. 2010, 82, 5534.
| Sequential extraction method for speciation of arsenate and arsenite in mineral soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVSjsrg%3D&md5=6b7f3783c80f1d9f894f1a39c66df5bfCAS | 20524641PubMed |
[55] M. J. Beazley, R. J. Martinez, S. M. Webb, P. A. Sobecky, M. Taillefert, The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils. Geochim. Cosmochim. Acta 2011, 75, 5648.
| The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWltLvK&md5=5f190d2039c479e763884cf2c3ef935dCAS |
[56] A. Tessier, P. Campbell, M. Bisson, Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844.
| Sequential extraction procedure for the speciation of particulate trace metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXitV2rtr4%3D&md5=8f350c2b3f8f0286c5489ff0ff6c6df7CAS |
[57] T. Borch, Y. Masue-Slowey, R. K. Kukkadapu, S. E. Fendorf, Phosphate imposed limitations on biological reduction and alteration of ferrihydrite. Environ. Sci. Technol. 2007, 41, 166.
| Phosphate imposed limitations on biological reduction and alteration of ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCit7jF&md5=dd278d5f98a3a92c098186d98d028d56CAS | 17265943PubMed |
[58] K. Amstaetter, T. Borch, P. Larese-Casanova, A. Kappler, Redox transformation of arsenic by FeII-activated goethite (α-FeOOH). Environ. Sci. Technol. 2010, 44, 102.
| Redox transformation of arsenic by FeII-activated goethite (α-FeOOH).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1artbrI&md5=094665af2b901d73dd8f585e995a4fabCAS | 20039739PubMed |
[59] B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537.
| ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlCntLo%3D&md5=38393bb2fbbd8e2e2db909c600fda025CAS | 15968136PubMed |
[60] E. J. Schofield, H. Veeramani, J. O. Sharp, E. Suvorova, R. Bernier-Latmani, A. Mehta, J. Stahlman, S. M. Webb, D. L. Clark, S. D. Conradson, E. S. Ilton, J. R. Bargar, Structure of biogenic uraninite produced by Shewanella oneidensis strain MR-1. Environ. Sci. Technol. 2008, 42, 7898.
| Structure of biogenic uraninite produced by Shewanella oneidensis strain MR-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFGksbfF&md5=29346c8ab8d6dc2529324f25bb263957CAS | 19031878PubMed |
[61] P. A. O'day, N. Rivera, R. Root, S. Carroll, X-Ray absorption spectroscopic study of Fe reference compounds for the analysis of natural sediments. Am. Mineral. 2004, 89, 572.
| 1:CAS:528:DC%2BD2cXivFCrtLo%3D&md5=30c43a25ee71aa17eb14496fa6803c9aCAS |
[62] R. M. Cornell, U. Schwertmann, Formation, in The Iron Oxides 2006, pp. 345–364 (Wiley-VCH: Weinheim, Germany).
[63] J. J. Moran, M. K. Newburn, M. L. Alexander, R. L. Sams, J. F. Kelly, H. W. Kreuzer, Laser ablation isotope ratio mass spectrometry for enhanced sensitivity and spatial resolution in stable isotope analysis. Rapid Commun. Mass Spectrom. 2011, 25, 1282.
| Laser ablation isotope ratio mass spectrometry for enhanced sensitivity and spatial resolution in stable isotope analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1ajtrc%3D&md5=ca7d87344ca505d1c0f2d499722cbb3bCAS | 21488126PubMed |
[64] J. D. Wall, L. R. Krumholz, Uranium reduction. Annu. Rev. Microbiol. 2006, 60, 149.
| Uranium reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WhtbzM&md5=72737ed375d2903c406d7d0a5920c3feCAS | 16704344PubMed |
[65] J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, M. C. Duff, Y. A. Gorby, S. W. Li, K. M. Krupka, Reduction of UVI in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochim. Cosmochim. Acta 2000, 64, 3085.
| Reduction of UVI in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1yju7c%3D&md5=39761bebf5f968f8f63397ec280e5657CAS |
[66] D. Langmuir, Carbonate chemistry, in Aqueous Environmental Geochemistry 1997, pp. 193–230 (Prentice Hall: Upper Saddle River, NJ).
[67] R. J. Reeder, M. Nugent, C. D. Tait, D. E. Morris, S. M. Heald, K. M. Beck, W. P. Hess, A. Lanzirotti, Coprecipitation of uranium(VI) with calcite: XAFS, micro-XAS, and luminescence characterization. Geochim. Cosmochim. Acta 2001, 65, 3491.
| Coprecipitation of uranium(VI) with calcite: XAFS, micro-XAS, and luminescence characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVOrurY%3D&md5=8c68801d452c73f8e5cdaa3a38c8174cCAS |
[68] Z. Zheng, T. K. Tokunaga, J. Wan, Influence of calcium carbonate on UVI sorption to soils. Environ. Sci. Technol. 2003, 37, 5603.
| Influence of calcium carbonate on UVI sorption to soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Whs70%3D&md5=be6d5ad29cd70b5516fe3dbb31f4433aCAS | 14717170PubMed |
[69] J. D. C. Begg, I. T. Burke, J. R. Lloyd, C. Boothman, S. Shaw, J. M. Charnock, K. Morris, Bioreduction behavior of UVI sorbed to sediments. Geomicrobiol. J. 2011, 28, 160.
| Bioreduction behavior of UVI sorbed to sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVajtLk%3D&md5=3444a9e56635e7425383ceffbcb34167CAS |
[70] P. Smedley, D. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517.
| A review of the source, behaviour and distribution of arsenic in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVSmur0%3D&md5=e91f95bcfc6b5336d0e64af1fca2a6c1CAS |
[71] B. A. Manning, S. Goldberg, Adsorption and stability of arsenic(III) at the clay mineral – water interface. Environ. Sci. Technol. 1997, 31, 2005.
| Adsorption and stability of arsenic(III) at the clay mineral – water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlGisbk%3D&md5=64d28d19b15213fd25c6f011a4b33818CAS |
[72] M. F. Lengke, C. Sanpawanitchakit, R. N. Tempel, The oxidation and dissolution of arsenic-bearing sulfides. Can. Mineral. 2009, 47, 593.
| The oxidation and dissolution of arsenic-bearing sulfides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKmt7bI&md5=6746bf232019fe7dc23aee984303f9c9CAS |
[73] M. F. Lengke, R. N. Tempel, Reaction rates of natural orpiment oxidation at 25 to 40 °C and pH 68 to 82 and comparison with amorphous As2S3 oxidation. Geochim. Cosmochim. Acta 2002, 66, 3281.
| Reaction rates of natural orpiment oxidation at 25 to 40 °C and pH 68 to 82 and comparison with amorphous As2S3 oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslKkurw%3D&md5=afdef53077a2f7c5dbc303c2320a59feCAS |
[74] D. K. Newman, T. J. Beveridge, F. Morel, Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl. Environ. Microbiol. 1997, 63, 2022.
| 1:CAS:528:DyaK2sXjtFGmtbo%3D&md5=7aa57146e378e8a5d391168d03890f42CAS | 16535611PubMed |
[75] B. C. Bostick, Arsenite sorption on troilite (FeS) and pyrite (FeS2). Geochim. Cosmochim. Acta 2003, 67, 909.
| Arsenite sorption on troilite (FeS) and pyrite (FeS2).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1WgtLw%3D&md5=319a74cb9ee0668002d66cd1d5c8af02CAS |
[76] Agency for Toxic Substances and Disease Registry, Minimal risk levels (MRLs), in Toxicological Profile for Uranium 2013, pp. 20–21 (US Department of Health and Human Services, Public Health Service: Atlanta, GA).
[77] S. Kelly, D. Hesterberg, B. Ravel, Analysis of soils and minerals using X-ray absorption spectroscopy, in Methods of Soil Analysis: Part 5. Mineralogical Methods (Eds A. L. Ulery, L. R. Drees), 2008, pp. 387–463 (Soil Science Society of America: Madison, WI).