Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Composition of water-soluble organic carbon in non-urban atmospheric aerosol collected at the Storm Peak Laboratory

Vera Samburova A E , A. Gannet Hallar A B , Lynn R. Mazzoleni C D , Parichehr Saranjampour C , Douglas Lowenthal A , Steven D. Kohl A and Barbara Zielinska A
+ Author Affiliations
- Author Affiliations

A Desert Research Institute, Division of Atmospheric Sciences, 2215 Raggio Parkway, Reno, NV 89512, USA.

B Desert Research Institute, Storm Peak Laboratory, PO Box 882530, Steamboat Springs, CO 80488, USA.

C Michigan Technological University, Department of Chemistry, 1400 Townsend Drive, Houghton, MI 49931, USA.

D Michigan Technological University, Atmospheric Sciences Program, 1400 Townsend Drive, Houghton, MI 49931, USA.

E Corresponding author. Email: vera.samburova@dri.edu

Environmental Chemistry 10(5) 370-380 https://doi.org/10.1071/EN13079
Submitted: 12 April 2013  Accepted: 29 June 2013   Published: 12 September 2013

Environmental context. The organic fraction of atmospheric aerosols is a complex mixture of thousands of species, which play an important role in many atmospheric processes, such as absorbing and scattering solar radiation. We analysed the water-soluble organic fraction of ambient aerosol samples, and quantified over 45 carboxylic acids, sugars, sugar anhydrides and sugar alcohols. The presence of fairly high concentrations of sugars and sugar-alcohols suggests a significant biological input (e.g. pollen, fungi and bacteria) to the water-soluble organic fraction of non-urban aerosols.

Abstract. Water-soluble organic constituents of PM2.5 aerosol (particulate matter with an aerodynamic diameter ≤2.5 µm) have not been well characterised so far. The goal of this work was to perform quantitative analysis of individual water-soluble organic species in aerosol samples collected in July of 2010 at the Storm Peak Laboratory (3210 m above sea level) located in the Colorado Park Range (Steamboat Springs, CO, USA). Aqueous extracts were combined into six composites and analysed for organic carbon (OC), water-soluble organic carbon (WSOC), water-insoluble OC, inorganic ions, organic acids, lignin derivatives, sugar-alcohols, sugars and sugar-anhydrates. Analysis of higher molecular weight water-soluble organics was done using ultrahigh resolution mass spectrometry. Approximately 2400 positive and 4000 negative ions were detected and assigned to monoisotopic molecular formulae in the mass range of 100–800 Da. The higher number of negative ions reflects a predominant presence of highly oxidised organic compounds. Individual identified organic species represented up to 30 % of the water-soluble organic mass (WSOM). The WSOM fractions of the low molecular weight organic acids, sugars and sugar alcohols were 3–12 %, 1.0–16 % and 0.4–1.9 %. Significant amounts of arabitol, mannitol and oxalic acid are most likely associated with airborne fungal spores and conidia that were observed on the filters using high resolution electron microscopy. Overall, higher concentrations of sugars (glucose, sucrose, fructose etc.) in comparison with biomass burning tracer levoglucosan indicate that a significant mass fraction of WSOC is related to airborne biological species.

Additional keywords: airborne fungi, carboxylic acids, pollen, sugars, sugar derivatives, water-soluble organic carbon fraction.


References

[1]  S. Twomey, Pollution and planetary albedo. Atmos. Environ. 1974, 8, 1251.
Pollution and planetary albedo.Crossref | GoogleScholarGoogle Scholar |

[2]  C. C. Chuang, J. E. Penner, K. E. Taylor, A. S. Grossman, J. J. Walton, An assessment of the radiative effects of anthropogenic sulfate. J. Geophys. Res. 1997, 102, 3761.
An assessment of the radiative effects of anthropogenic sulfate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFClsLg%3D&md5=ac6badb74d2a675eba9767f9557184d7CAS |

[3]  J. C. Chow, J. G. Watson, E. M. Fujita, Z. Q. Lu, D. R. Lawson, L. L. Ashbaugh, Temporal and spatial variations of PM2.5 and PM10 aerosol in the southern California air-quality study. Atmos. Environ. 1994, 28, 2061.
Temporal and spatial variations of PM2.5 and PM10 aerosol in the southern California air-quality study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsVSnu7c%3D&md5=63159903e11830332b7ad0659b779510CAS |

[4]  W. C. Malm, J. F. Sisler, D. Huffman, R. A. Eldred, T. A. Cahill, Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res. 1994, 99, 1347.
Spatial and seasonal trends in particle concentration and optical extinction in the United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvF2isb0%3D&md5=2bdd31b9d1f8f7c8fde0351fc556c498CAS |

[5]  S. Zappoli, A. Andracchio, S. Fuzzi, M. C. Facchini, A. Gelencser, G. Kiss, Z. Krivacsy, A. Molnar, E. Meszaros, H. C. Hansson, K. Rosman, Y. Zebuhr, Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility. Atmos. Environ. 1999, 33, 2733.
Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFKntL0%3D&md5=442437ec56866cdddde2ca1a36fd2940CAS |

[6]  V. Samburova, T. Didenko, E. Kunenkov, C. Emmenegger, R. Zenobi, M. Kalberer, Functional group analysis of high-molecular weight compounds in the water-soluble fraction of organic aerosols. Atmos. Environ. 2007, 41, 4703.
Functional group analysis of high-molecular weight compounds in the water-soluble fraction of organic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVWht70%3D&md5=7cd02f68d825d77844e60e98c72b633dCAS |

[7]  J. H. Seinfeld, J. F. Pankow, Organic atmospheric particulate material. Annu. Rev. Phys. Chem. 2003, 54, 121.
Organic atmospheric particulate material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSgs7s%3D&md5=9937f341a2cdeed5352c5cf2bb1f5d1dCAS | 12524426PubMed |

[8]  K. M. Gierlus, O. Laskina, T. L. Abernathy, V. H. Grassian, Laboratory study of the effect of oxalic acid on the cloud condensation nuclei activity of mineral dust aerosol. Atmos. Environ. 2012, 46, 125.
Laboratory study of the effect of oxalic acid on the cloud condensation nuclei activity of mineral dust aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGks73M&md5=38e747282320f1598e0fbdc73d7d0010CAS |

[9]  A. J. Prenni, P. J. De Mott, S. M. Kreidenweis, Water uptake of internally mixed particles containing ammonium sulfate and dicarboxylic acids. Atmos. Environ. 2003, 37, 4243.
Water uptake of internally mixed particles containing ammonium sulfate and dicarboxylic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Snu7k%3D&md5=82ce81d13bd4b34532c7bbe4efee5f1fCAS |

[10]  A. J. Prenni, P. J. DeMott, S. M. Kreidenweis, D. E. Sherman, L. M. Russell, Y. Ming, The effects of low molecular weight dicarboxylic acids on cloud formation. J. Phys. Chem. A 2001, 105, 11 240.
The effects of low molecular weight dicarboxylic acids on cloud formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosVegtrc%3D&md5=a49ae9d8c4244746cdda7ed25485e3d8CAS |

[11]  B. Svenningsson, J. Rissler, E. Swietlicki, M. Mircea, M. Bilde, M. C. Facchini, S. Decesari, S. Fuzzi, J. Zhou, J. Monster, T. Rosenorn, Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance. Atmos. Chem. Phys. 2006, 6, 1937.
Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslWqt7c%3D&md5=3233db3fd4152a0f4ca63dcb95516357CAS |

[12]  Z. Varga, G. Kiss, H. C. Hansson, Modelling the cloud condensation nucleus activity of organic acids on the basis of surface tension and osmolality measurements. Atmos. Chem. Phys. 2007, 7, 4601.
Modelling the cloud condensation nucleus activity of organic acids on the basis of surface tension and osmolality measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yqu7nI&md5=77b225dfcfef28f69e0cae5364487eadCAS |

[13]  J. M. Sun, P. A. Ariya, Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review. Atmos. Environ. 2006, 40, 795.
Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ymtg%3D%3D&md5=09448fece7d24e516c3822e1e4a3de18CAS |

[14]  G. Kiss, B. Varga, I. Galambos, I. Ganszky, Characterization of water-soluble organic matter isolated from atmospheric fine aerosol. J. Geophys. Res. 2002, 107, 8339.
Characterization of water-soluble organic matter isolated from atmospheric fine aerosol.Crossref | GoogleScholarGoogle Scholar |

[15]  P. Lin, X. F. Huang, L. Y. He, J. Z. Yu, Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China. J. Aerosol Sci. 2010, 41, 74.
Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1entg%3D%3D&md5=63636ec3de49b8a639dc96e0dd3d028cCAS |

[16]  E. R. Graber, Y. Rudich, Atmospheric HULIS: how humic-like are they? A comprehensive and critical review. Atmos. Chem. Phys. 2006, 6, 729.
Atmospheric HULIS: how humic-like are they? A comprehensive and critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltV2jtLg%3D&md5=503930ae4aa79f40d1dd7fc556c084caCAS |

[17]  I. Salma, R. Ocskay, X. Chi, W. Maenhaut, Sampling artefacts, concentration and chemical composition of fine water-soluble organic carbon and humic-like substances in a continental urban atmospheric environment. Atmos. Environ. 2007, 41, 4106.
Sampling artefacts, concentration and chemical composition of fine water-soluble organic carbon and humic-like substances in a continental urban atmospheric environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFyltLc%3D&md5=fb76ef395644bbda25eda05b4e54fd78CAS |

[18]  Z. Krivácsy, G. Kiss, D. Ceburnis, G. Jennings, W. Maenhaut, I. Salma, D. Shooter, Study of water-soluble atmospheric humic matter in urban and marine environments. Atmos. Res. 2008, 87, 1.
Study of water-soluble atmospheric humic matter in urban and marine environments.Crossref | GoogleScholarGoogle Scholar |

[19]  E. A. Stone, C. J. Hedman, R. J. Sheesley, M. M. Shafer, J. J. Schauer, Investigating the chemical nature of humic-like substances (HULIS) in North American atmospheric aerosols by liquid chromatography tandem mass spectrometry. Atmos. Environ. 2009, 43, 4205.
Investigating the chemical nature of humic-like substances (HULIS) in North American atmospheric aerosols by liquid chromatography tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Cltrg%3D&md5=de360ff1724902ce78a70b58584166efCAS |

[20]  G. Kiss, E. Tombacz, B. Varga, T. Alsberg, L. Persson, Estimation of the average molecular weight of humic-like substances isolated from fine atmospheric aerosol. Atmos. Environ. 2003, 37, 3783.
Estimation of the average molecular weight of humic-like substances isolated from fine atmospheric aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsleku7g%3D&md5=d94e91902cc5037e1f41dc538c59b509CAS |

[21]  Z. Krivácsy, A. Gelencser, G. Kiss, E. Meszaros, A. Molnar, A. Hoffer, T. Meszaros, Z. Sarvari, D. Temesi, B. Varga, U. Baltensperger, S. Nyeki, E. Weingartner, Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch. J. Atmos. Chem. 2001, 39, 235.
Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch.Crossref | GoogleScholarGoogle Scholar |

[22]  Z. Krivacsy, A. Hoffer, Z. Sarvari, D. Temesi, U. Baltensperger, S. Nyeki, E. Weingartner, S. Kleefeld, S. G. Jennings, Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmos. Environ. 2001, 35, 6231.
Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslOiu7o%3D&md5=a01feef3d133c17038ace865e196156eCAS |

[23]  L. R. Mazzoleni, P. Saranjampour, M. M. Dalbec, V. Samburova, A. G. Hallar, B. Zielinska, D. H. Lowenthal, S. Kohl, Identification of water-soluble organic carbon in non-urban aerosols using ultrahigh-resolution FT-ICR mass spectrometry: organic anions. Environ. Chem. 2012, 9, 285.
Identification of water-soluble organic carbon in non-urban aerosols using ultrahigh-resolution FT-ICR mass spectrometry: organic anions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVOisro%3D&md5=db4a9cd5935b9124abaa024cc12b6c8dCAS |

[24]  H. Bauer, A. Kasper-Giebl, M. Loflund, H. Giebl, R. Hitzenberger, F. Zibuschka, H. Puxbaum, The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos. Res. 2002, 64, 109.
The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVWrtL8%3D&md5=6509857d3ac393fe67261f3e25c52469CAS |

[25]  L. M. Hildemann, W. F. Rogge, G. R. Cass, M. A. Mazurek, B. R. T. Simoneit, Contribution of primary aerosol emissions from vegetation-derived sources to fine particle concentrations in Los Angeles. J. Geophys. Res. 1996, 101, 19 541.
Contribution of primary aerosol emissions from vegetation-derived sources to fine particle concentrations in Los Angeles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvVKitLY%3D&md5=de7ae60415c4023c317dd9e22638315dCAS |

[26]  M. Kunit, H. Puxbaum, Enzymatic determination of the cellulose content of atmospheric aerosols. Atmos. Environ. 1996, 30, 1233.
Enzymatic determination of the cellulose content of atmospheric aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVaku74%3D&md5=74eb4a7376b9338b5b69643bb11e554eCAS |

[27]  C. Wiedinmyer, R. M. Bowers, N. Fierer, E. Horanyi, M. Hannigan, A. G. Hallar, I. McCubbin, K. Baustian, The contribution of biological particles to observed particulate organic carbon at a remote high altitude site. Atmos. Environ. 2009, 43, 4278.
The contribution of biological particles to observed particulate organic carbon at a remote high altitude site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1CmtLY%3D&md5=dca46fed4519543f0ad9d3f1ad3bfdefCAS |

[28]  G. H. Wang, C. L. Chen, J. J. Li, B. H. Zhou, M. J. Xie, S. Y. Hu, K. Kawamura, Y. Chen, Molecular composition and size distribution of sugars, sugar-alcohols and carboxylic acids in airborne particles during a severe urban haze event caused by wheat straw burning. Atmos. Environ. 2011, 45, 2473.
Molecular composition and size distribution of sugars, sugar-alcohols and carboxylic acids in airborne particles during a severe urban haze event caused by wheat straw burning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVegtr8%3D&md5=a07145b282c440393ba70d7a3beaf921CAS |

[29]  E. C. H. Wan, J. Z. Yu, Analysis of sugars and sugar polyols in atmospheric aerosols by chloride attachment in liquid chromatography/negative ion electrospray mass spectrometry. Environ. Sci. Technol. 2007, 41, 2459.
Analysis of sugars and sugar polyols in atmospheric aerosols by chloride attachment in liquid chromatography/negative ion electrospray mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVSitrY%3D&md5=51dd3ad6a6a3e28b1efb831aa48f6deeCAS |

[30]  K. F. Ho, S. C. Lee, J. J. Cao, K. Kawamura, T. Watanabe, Y. Cheng, J. C. Chow, Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmos. Environ. 2006, 40, 3030.
Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVajsrs%3D&md5=5bb9e421ef477dc462c856dfd1c7bc05CAS |

[31]  L.-Y. Hsieh, S.-C. Kuo, C.-L. Chen, Y. I. Tsai, Origin of low-molecular-weight dicarboxylic acids and their concentration and size distribution variation in suburban aerosol. Atmos. Environ. 2007, 41, 6648.
Origin of low-molecular-weight dicarboxylic acids and their concentration and size distribution variation in suburban aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsl2jt70%3D&md5=2dd9ce5a9159548400f8afffa925f6e0CAS |

[32]  A. Kubátová, R. Vermeylen, M. Claeys, J. Cafmeyer, W. Maenhaut, Organic compounds in urban aerosols from Gent, Belgium: characterization, sources, and seasonal differences. J. Geophys. Res. 2002, 107, 8343.
Organic compounds in urban aerosols from Gent, Belgium: characterization, sources, and seasonal differences.Crossref | GoogleScholarGoogle Scholar |

[33]  J. D. Surratt, J. H. Kroll, T. E. Kleindienst, E. O. Edney, M. Claeys, A. Sorooshian, N. L. Ng, J. H. Offenberg, M. Lewandowski, M. Jaoui, R. C. Flagan, J. H. Seinfeld, Evidence for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 517.
Evidence for organosulfates in secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OmsLzM&md5=6f96cc4406eafb4da71a45edfea6e928CAS | 17310716PubMed |

[34]  C. N. Olson, M. M. Galloway, G. Yu, C. J. Hedman, M. R. Lockett, T. Yoon, E. A. Stone, L. M. Smith, F. N. Keutsch, Hydroxycarboxylic acid-derived organosulfates: synthesis, stability, and quantification in ambient aerosol. Environ. Sci. Technol. 2011, 45, 6468.
Hydroxycarboxylic acid-derived organosulfates: synthesis, stability, and quantification in ambient aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslCgt7s%3D&md5=ddb0606040caa79b39359b377763385aCAS | 21682266PubMed |

[35]  P. Lin, J. Z. Yu, G. Engling, M. Kalberer, Organosulfates in humic-like substance fraction isolated from aerosols at seven locations in East Asia: a study by ultra-high-resolution mass spectrometry. Environ. Sci. Technol. 2012, 46, 13 118.
Organosulfates in humic-like substance fraction isolated from aerosols at seven locations in East Asia: a study by ultra-high-resolution mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Ons7fJ&md5=de29e433b4e9801fffe946a1256270ccCAS |

[36]  L. N. Hawkins, L. M. Russell, D. S. Covert, P. K. Quinn, T. S. Bates, Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALS-REx 2008. J. Geophys. Res. 2010, 115, D13201.
Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALS-REx 2008.Crossref | GoogleScholarGoogle Scholar |

[37]  M. Z. Özel, J. F. Hamilton, A. C. Lewis, New sensitive and quantitative analysis method for organic nitrogen compounds in urban aerosol samples. Environ. Sci. Technol. 2011, 45, 1497.
New sensitive and quantitative analysis method for organic nitrogen compounds in urban aerosol samples.Crossref | GoogleScholarGoogle Scholar | 21210660PubMed |

[38]  J. M. González Benítez, J. N. Cape, M. R. Heal, Gaseous and particulate water-soluble organic and inorganic nitrogen in rural air in southern Scotland. Atmos. Environ. 2010, 44, 1506.
Gaseous and particulate water-soluble organic and inorganic nitrogen in rural air in southern Scotland.Crossref | GoogleScholarGoogle Scholar |

[39]  A. Laskin, J. S. Smith, J. Laskin, Molecular characterization of nitrogen-containing organic compounds in biomass burning aerosols using high-resolution mass spectrometry. Environ. Sci. Technol. 2009, 43, 3764.
Molecular characterization of nitrogen-containing organic compounds in biomass burning aerosols using high-resolution mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslCrtLw%3D&md5=bb09e909f0293baaa83db0f8447a70feCAS | 19544885PubMed |

[40]  T. B. Nguyen, J. Laskin, A. Laskin, S. A. Nizkorodov, Nitrogen-containing organic compounds and oligomers in secondary organic aerosol formed by photooxidation of isoprene. Environ. Sci. Technol. 2011, 45, 6908.
Nitrogen-containing organic compounds and oligomers in secondary organic aerosol formed by photooxidation of isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1Cjsr8%3D&md5=1ff12827bf5d4eb6d962dc5bed1b2e51CAS | 21732631PubMed |

[41]  J. L. Battarbee, N. L. Rose, X. Z. Long, A continuous, high resolution record of urban airborne particulates suitable for retrospective microscopical analysis. Atmos. Environ. 1997, 31, 171.
A continuous, high resolution record of urban airborne particulates suitable for retrospective microscopical analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVymuro%3D&md5=8652f171f6dfd8438024ce7655a891a5CAS |

[42]  P. Fu, K. Kawamura, M. Kobayashi, B. R. T. Simoneit, Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: significant contributions of airbone pollen and Asian dust in spring. Atmos. Environ. 2012, 55, 234.
Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: significant contributions of airbone pollen and Asian dust in spring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1ejsrY%3D&md5=daac53c3a4dc4ff151dbaa411a4a1a52CAS |

[43]  Y. L. Jia, M. Fraser, Characterization of saccharides in size-fractionated ambient particulate matter and aerosol sources: the contribution of primary biological aerosol particles (PBAPs) and soil to ambient particulate matter. Environ. Sci. Technol. 2011, 45, 930.
Characterization of saccharides in size-fractionated ambient particulate matter and aerosol sources: the contribution of primary biological aerosol particles (PBAPs) and soil to ambient particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFCnsg%3D%3D&md5=64565d0609596b813c1aea7ede3c504aCAS |

[44]  R. Jaenicke, Abundance of cellular material and proteins in the atmosphere. Science 2005, 308, 73.
Abundance of cellular material and proteins in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFClu7o%3D&md5=9903b5ee50fb2c936506ffa0f583bcc6CAS | 15802596PubMed |

[45]  H. Bauer, H. Giebl, R. Hitzenberger, A. Kasper-Giebl, G. Reischl, F. Zibuschka, H. Puxbaum, Airborne bacteria as cloud condensation nuclei. J. Geophys. Res. 2003, 108, 4658.
Airborne bacteria as cloud condensation nuclei.Crossref | GoogleScholarGoogle Scholar |

[46]  R. M. Bowers, C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallar, R. Fall, R. Knight, N. Fierer, Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl. Environ. Microbiol. 2009, 75, 5121.
Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSgtrjK&md5=c6bd48008c23fdc806398871a07dffd8CAS | 19502432PubMed |

[47]  U. Pöschl, S. T. Martin, B. Sinha, Q. Chen, S. S. Gunthe, J. A. Huffman, S. Borrmann, D. K. Farmer, R. M. Garland, G. Helas, J. L. Jimenez, S. M. King, A. Manzi, E. Mikhailov, T. Pauliquevis, M. D. Petters, A. J. Prenni, P. Roldin, D. Rose, J. Schneider, H. Su, S. R. Zorn, P. Artaxo, M. O. Andreae, Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 2010, 329, 1513.
Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon.Crossref | GoogleScholarGoogle Scholar | 20847268PubMed |

[48]  B. C. Christner, C. E. Morris, C. M. Foreman, R. Cai, D. C. Sands, Ubiquity of biological ice nucleators in snowfall. Science 2008, 319, 1214.
Ubiquity of biological ice nucleators in snowfall.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVSks70%3D&md5=8a93c372444dc58972e034457f295904CAS | 18309078PubMed |

[49]  B. Sattler, H. Puxbaum, R. Psenner, Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 2001, 28, 239.
Bacterial growth in supercooled cloud droplets.Crossref | GoogleScholarGoogle Scholar |

[50]  L. J. Herlihy, J. N. Galloway, A. L. Mills, Bacterial utilization of formic and acetic acid in rainwater. Atmos. Environ. 1987, 21, 2397.
Bacterial utilization of formic and acetic acid in rainwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmsVagtb8%3D&md5=42169c921527ba2f9f8ffaecbac524a7CAS |

[51]  P. A. Ariya, M. Amyot, New directions: the role of bioaerosols in atmospheric chemistry and physics. Atmos. Environ. 2004, 38, 1231.
New directions: the role of bioaerosols in atmospheric chemistry and physics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot12qsg%3D%3D&md5=74a4847aa131653e617ce858a1d413c6CAS |

[52]  L. R. Maki, E. L. Galyan, M. M. Chang-Chien, D. R. Caldwell, Ice nucleation induced by Pseudomonas syringae. Appl. Microbiol. 1974, 28, 456.
| 1:STN:280:DyaE2M%2FivFGqtA%3D%3D&md5=bc44832d1339f70f70bb8f155163f4aeCAS | 4371331PubMed |

[53]  F. B. Soulage, Les noyaux de congelation de l’ atmosphere. Ann. Geophys. 1957, 13, 103.

[54]  G. Vali, M. Christensen, R. W. Fresh, E. L. Galyan, L. R. Maki, R. C. Schnell, Biogenic ice nuclei. 2. Bacterial sources. J. Atmos. Sci. 1976, 33, 1565.
Biogenic ice nuclei. 2. Bacterial sources.Crossref | GoogleScholarGoogle Scholar |

[55]  K. E. Yttri, C. Dye, G. Kiss, Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway. Atmos. Chem. Phys. 2007, 7, 4267.
Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWiurbM&md5=30cc0d63ff5fc9a43e0597be5467e4a4CAS |

[56]  S. Fuzzi, M. O. Andreae, B. J. Huebert, M. Kulmala, T. C. Bond, M. Boy, S. J. Doherty, A. Guenther, M. Kanakidou, K. Kawamura, V. M. Kerminen, U. Lohmann, L. M. Russell, U. Pöschl, Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos. Chem. Phys. 2006, 6, 2017.
Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslWqtLo%3D&md5=35d133afbe36052c92a85f8ba81b0fe5CAS |

[57]  R. D. Borys, M. A. Wetzel, Storm peak laboratory: a research, teaching, and service facility for the atmospheric sciences. Bull. Am. Meteorol. Soc. 1997, 78, 2115.
Storm peak laboratory: a research, teaching, and service facility for the atmospheric sciences.Crossref | GoogleScholarGoogle Scholar |

[58]  A. G. Hallar, D. H. Lowenthal, B. Zielinska, V. Samburova, G. Chirokova, I. B. McCubbin, C. Dodson, D. Collins, N. Taylor, L. R. Mazzoleni, S. Clegg, T. B. Kristensen, Chemical and hygroscopic properties of aerosol organics at Storm Peak Laboratory. J. Geophys. Res. 2013, 118, 4767.
| 1:CAS:528:DC%2BC3sXhtVKhtrnJ&md5=119ee4b83b68cdd243a3262baf86a4feCAS |
| 1:CAS:528:DC%2BC3sXhtVKhtrnJ&md5=119ee4b83b68cdd243a3262baf86a4feCAS |

[59]  B. J. Turpin, J. J. Huntzicker, S. V. Hering, Investigation of organic aerosol sampling artifacts in the Los-Angeles basin. Atmos. Environ. 1994, 28, 3061.
Investigation of organic aerosol sampling artifacts in the Los-Angeles basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXis1KmsLg%3D&md5=0dfde927934b226b532427b973d53871CAS | 1:CAS:528:DyaK2MXis1KmsLg%3D&md5=0dfde927934b226b532427b973d53871CAS |

[60]  J. C. Chow, J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, R. G. Purcell, The DRI thermal optical reluctance carbon analysis system – description, evaluation and applications in United States air-quality studies. Atmos. Environ. 1993, 27, 1185.
The DRI thermal optical reluctance carbon analysis system – description, evaluation and applications in United States air-quality studies.Crossref | GoogleScholarGoogle Scholar |

[61]  L. R. Rinehart, E. M. Fujita, J. C. Chow, K. Magliano, B. Zielinska, Spatial distribution of PM2.5 associated organic compounds in central California. Atmos. Environ. 2006, 40, 290.
Spatial distribution of PM2.5 associated organic compounds in central California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWhsbfF&md5=4949a3c88c6467405e8f6704e67b6211CAS | 1:CAS:528:DC%2BD2MXhtlWhsbfF&md5=4949a3c88c6467405e8f6704e67b6211CAS |

[62]  S. Kim, A. J. Simpson, E. B. Kujawinski, M. A. Freitas, P. G. Hatcher, High resolution electrospray ionization mass spectrometry and 2D solution NMR for the analysis of DOM extracted by C18 solid phase disk. Org. Geochem. 2003, 34, 1325.
High resolution electrospray ionization mass spectrometry and 2D solution NMR for the analysis of DOM extracted by C18 solid phase disk.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFagtr0%3D&md5=67391209985e3707635fd7e677b8adebCAS | 1:CAS:528:DC%2BD3sXmtFagtr0%3D&md5=67391209985e3707635fd7e677b8adebCAS |

[63]  L. R. Mazzoleni, B. M. Ehrmann, X. H. Shen, A. G. Marshall, J. L. Collett, Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 2010, 44, 3690.
Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVaiu7o%3D&md5=034fdac097066014223c5fb12c4939eaCAS | 1:CAS:528:DC%2BC3cXkvVaiu7o%3D&md5=034fdac097066014223c5fb12c4939eaCAS | 20397689PubMed |

[64]  P. Saranjampour, Characterization of water-soluble organic compounds in ambient aerosol using ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry 2012, MSc thesis. Michigan Technological University, Houghton, MI.

[65]  G. T. Blakney, C. L. Hendrickson, A. G. Marshall, Predator data station: a fast data acquisition system for advanced FT-ICR MS experiments. Int. J. Mass Spectrom. 2011, 306, 246.
Predator data station: a fast data acquisition system for advanced FT-ICR MS experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFehsbbP&md5=5915923755a22835acd559e0ceb51cd1CAS | 1:CAS:528:DC%2BC3MXhtFehsbbP&md5=5915923755a22835acd559e0ceb51cd1CAS |

[66]  C. A. Hughey, C. L. Hendrickson, R. P. Rodgers, A. G. Marshall, K. N. Qian, Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal. Chem. 2001, 73, 4676.
Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtlWisbo%3D&md5=493b8b1eba11591582af56b51029d2a5CAS | 1:CAS:528:DC%2BD3MXmtlWisbo%3D&md5=493b8b1eba11591582af56b51029d2a5CAS | 11605846PubMed |

[67]  L. R. Mazzoleni, P. Saranjampour, M. M. Dalbec, V. Samburova, A. G. Hallar, B. Zielinska, D. Lowenthal, Molecular composition of water-soluble organic carbon in non-urban aerosols, in 31st Annual Conference: American Association for Aerosol Research, 8–12 October 2012, Minneapolis, MN 2012 (American Association for Aerosol Research (AAAR): Mount Laurel, NJ).

[68]  B. J. Turpin, H. J. Lim, Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol. 2001, 35, 602.
| 1:CAS:528:DC%2BD3MXkvVarsb8%3D&md5=734178c87fb0ae8d587bbf9009e2f6d0CAS |
| 1:CAS:528:DC%2BD3MXkvVarsb8%3D&md5=734178c87fb0ae8d587bbf9009e2f6d0CAS |

[69]  D. Lowenthal, B. Zielinska, B. Mason, S. Samy, V. Samburova, D. Collins, C. Spencer, N. Taylor, J. Allen, N. Kumar, Aerosol characterization studies at Great Smoky Mountains National Park, summer 2006. J. Geophys. Res. 2009, 114, D08206.
Aerosol characterization studies at Great Smoky Mountains National Park, summer 2006.Crossref | GoogleScholarGoogle Scholar |

[70]  D. H. Lowenthal, B. Zielinska, D. Collins, N. Taylor, L. Alexander, N. Kumar, Aerosol chemistry and hygroscopic growth in US National Parks, in Air &Waste Management Association Specialty Conference Aerosol and Atmospheric Optics: Visibility and Air Pollution, 24–28 September 2012, Whitefish, MT 2012, pp. 112–116 (Curran Associates, Inc.: Red Hook, NY).

[71]  H. S. El-Zanan, B. Zielinska, L. R. Mazzoleni, D. A. Hansen, Analytical determination of the aerosol organic mass-to-organic carbon ratio. J. Air Waste Manage. Assoc. 2009, 59, 58.
Analytical determination of the aerosol organic mass-to-organic carbon ratio.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVKku7s%3D&md5=800795f1903641fd66e1860bfe912a81CAS | 1:CAS:528:DC%2BD1MXhvVKku7s%3D&md5=800795f1903641fd66e1860bfe912a81CAS |

[72]  T. Feczko, H. Puxbaum, A. Kasper-Giebl, M. Handler, A. Limbeck, A. Gelencser, C. Pio, S. Preunkert, M. Legrand, Determination of water and alkaline extractable atmospheric humic-like substances with the TU Vienna HULIS analyzer in samples from six background sites in Europe. J. Geophys. Res. 2007, 112, D23S10.
Determination of water and alkaline extractable atmospheric humic-like substances with the TU Vienna HULIS analyzer in samples from six background sites in Europe.Crossref | GoogleScholarGoogle Scholar |

[73]  A. P. Sullivan, R. J. Weber, A. L. Clements, J. R. Turner, M. S. Bae, J. J. Schauer, A method for on-line measurement of water-soluble organic carbon in ambient aerosol particles: results from an urban site. Geophys. Res. Lett. 2004, 31, L13105.
A method for on-line measurement of water-soluble organic carbon in ambient aerosol particles: results from an urban site.Crossref | GoogleScholarGoogle Scholar |

[74]  M. C. Facchini, S. Fuzzi, S. Zappoli, A. Andracchio, A. Gelencser, G. Kiss, Z. Krivacsy, E. Meszaros, H. C. Hansson, T. Alsberg, Y. Zebuhr, Partitioning of the organic aerosol component between fog droplets and interstitial air. J. Geophys. Res. 1999, 104, 26 821.
Partitioning of the organic aerosol component between fog droplets and interstitial air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotFajs7Y%3D&md5=1741449f250aa4e5105a9a7ed82cd5e4CAS | 1:CAS:528:DyaK1MXotFajs7Y%3D&md5=1741449f250aa4e5105a9a7ed82cd5e4CAS |

[75]  J. L. Jaffrezo, G. Aymoz, C. Delaval, J. Cozic, Seasonal variations of the water soluble organic carbon mass fraction of aerosol in two valleys of the French Alps. Atmos. Chem. Phys. 2005, 5, 2809.
Seasonal variations of the water soluble organic carbon mass fraction of aerosol in two valleys of the French Alps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1KgsrzM&md5=28f741c8902250f345c863021843bf97CAS |

[76]  N. Havers, P. Burba, J. Lambert, D. Klockow, Spectroscopic characterization of humic-like substances in airborne particulate matter. J. Atmos. Chem. 1998, 29, 45.
Spectroscopic characterization of humic-like substances in airborne particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFKqs7c%3D&md5=82ad27da90e83a3035950d5c2f7ee416CAS | 1:CAS:528:DyaK1cXhvFKqs7c%3D&md5=82ad27da90e83a3035950d5c2f7ee416CAS |

[77]  V. Samburova, R. Zenobi, M. Kalberer, Characterization of high molecular weight compounds in urban atmospheric particles. Atmos. Chem. Phys. 2005, 5, 2163.
Characterization of high molecular weight compounds in urban atmospheric particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kgs7jI&md5=26252ff93b122b617c6d85ba2ee2b6c3CAS | 1:CAS:528:DC%2BD2MXht1Kgs7jI&md5=26252ff93b122b617c6d85ba2ee2b6c3CAS |

[78]  V. Samburova, P. Saranjampour, L. Mazzoleni, S. Kohl, A. G. Hallar, D. Lowenthal, B. Zielinska, Isolation and characterization of atmospheric water-soluble organic compounds, in 30th Annual Conference: American Association for Aerosol Research, 3–7 October 2011, Orlando, FL 2011, paper 8A.6 (American Association for Aerosol Research (AAAR): Mount Laurel, NJ).

[79]  A. Limbeck, H. Puxbaum, Organic acids in continental background aerosols. Atmos. Environ. 1999, 33, 1847.
Organic acids in continental background aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlGltLw%3D&md5=e9e16972a4436f70bc004b94f0e8f470CAS | 1:CAS:528:DyaK1MXitlGltLw%3D&md5=e9e16972a4436f70bc004b94f0e8f470CAS |

[80]  A. Chebbi, P. Carlier, Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review. Atmos. Environ. 1996, 30, 4233.
Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFaqsLo%3D&md5=cf324f230881cc2b91a563d6917024c3CAS | 1:CAS:528:DyaK28XmtFaqsLo%3D&md5=cf324f230881cc2b91a563d6917024c3CAS |

[81]  K. Kawamura, I. R. Kaplan, Motor exhaust emissions as a primary source for dicarboxylic acids in Los-Angeles ambient air. Environ. Sci. Technol. 1987, 21, 105.
Motor exhaust emissions as a primary source for dicarboxylic acids in Los-Angeles ambient air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXit1Giuw%3D%3D&md5=c4d859b4edd1e4a0b778eec31a3a9264CAS |

[82]  B. R. T. Simoneit, Biomass burning – a review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129.
Biomass burning – a review of organic tracers for smoke from incomplete combustion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVaqtA%3D%3D&md5=df6634ee4c0f6e911e3cdc2812e6e022CAS |

[83]  W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, B. R. T. Simoneit, Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ. Sci. Technol. 1993, 27, 636.
Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlSqsrc%3D&md5=e2687c1192115d5e7366b51a5da94a6aCAS | 1:CAS:528:DyaK3sXhtlSqsrc%3D&md5=e2687c1192115d5e7366b51a5da94a6aCAS |

[84]  W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, B. R. T. Simonelt, Sources of fine organic aerosol. 1. Charbroilers and meatcooking operations. Environ. Sci. Technol. 1991, 25, 1112.
Sources of fine organic aerosol. 1. Charbroilers and meatcooking operations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitFeiu7g%3D&md5=5bcccaa43040285a3d0b0ef3d2da5368CAS |

[85]  J. J. Schauer, M. J. Kleeman, G. R. Cass, B. R. T. Simoneit, Measurement of emissions from air pollution sources. 3. C1–C29 organic compounds from fireplace combustion of wood. Environ. Sci. Technol. 2001, 35, 1716.
Measurement of emissions from air pollution sources. 3. C1–C29 organic compounds from fireplace combustion of wood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitFWhu7k%3D&md5=9a265529cb0500b3e3a9f5acee06fd68CAS | 11355184PubMed |

[86]  H. Amin, P. T. Atkins, R. S. Russo, A. W. Brown, B. Sive, A. G. Hallar, K. E. H. Hartz, Effect of bark beetle infestation on secondary organic aerosol precursor emissions. Environ. Sci. Technol. 2012, 46, 5696.
Effect of bark beetle infestation on secondary organic aerosol precursor emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1ert7k%3D&md5=08f76823d6669bfc07ac10563d98cd1aCAS | 22545866PubMed |

[87]  M. V. Dutton, C. S. Evans, Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can. J. Microbiol. 1996, 42, 881.
Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFCgtLs%3D&md5=b69af5e9bed755779918b5ae7f94e45cCAS | 1:CAS:528:DyaK28XmtFCgtLs%3D&md5=b69af5e9bed755779918b5ae7f94e45cCAS |

[88]  H. Bauer, M. Claeys, R. Vermeylen, E. Schueller, G. Weinke, A. Berger, H. Puxbaum, Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmos. Environ. 2008, 42, 588.
Arabitol and mannitol as tracers for the quantification of airborne fungal spores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltV2qtQ%3D%3D&md5=9ac5a356e5a601853cc045b354438f95CAS | 1:CAS:528:DC%2BD1cXltV2qtQ%3D%3D&md5=9ac5a356e5a601853cc045b354438f95CAS |

[89]  K. Wittmaack, H. Wehnes, U. Heinzmann, R. Agerer, An overview on bioaerosols viewed by scanning electron microscopy. Sci. Total Environ. 2005, 346, 244.
An overview on bioaerosols viewed by scanning electron microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvVCntrY%3D&md5=27bb6ecb446ae6f80f72259dbab48ad7CAS | 1:CAS:528:DC%2BD2MXlvVCntrY%3D&md5=27bb6ecb446ae6f80f72259dbab48ad7CAS | 15993698PubMed |

[90]  M. Hyder, J. Genberg, M. Sandahl, E. Swietlicki, J. A. Jonsson, Yearly trend of dicarboxylic acids in organic aerosols from south of Sweden and source attribution. Atmos. Environ. 2012, 57, 197.
Yearly trend of dicarboxylic acids in organic aerosols from south of Sweden and source attribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFynsbY%3D&md5=cd8eaafb291cae0b25d977d9ea9220cbCAS | 1:CAS:528:DC%2BC38XovFynsbY%3D&md5=cd8eaafb291cae0b25d977d9ea9220cbCAS |

[91]  A. Ooki, K. Miura, M. Uematsu, The increase of biogenic sulfate aerosol and particle number in marine atmosphere over the northwestern North Pacific. J. Oceanogr. 2003, 59, 799.
The increase of biogenic sulfate aerosol and particle number in marine atmosphere over the northwestern North Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1Oh&md5=5d4f69bef4c3e2878cac12654d1edfa8CAS | 1:CAS:528:DC%2BD2cXks1Oh&md5=5d4f69bef4c3e2878cac12654d1edfa8CAS |

[92]  G. P. Ayers, J. L. Gras, Seasonal relationship between cloud condensation nuclei and aerosol methanesulfonate in marine air. Nature 1991, 353, 834.
Seasonal relationship between cloud condensation nuclei and aerosol methanesulfonate in marine air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmvVCjs7g%3D&md5=f4a3c8089fa8f0e2682e818086b7d8c9CAS | 1:CAS:528:DyaK3MXmvVCjs7g%3D&md5=f4a3c8089fa8f0e2682e818086b7d8c9CAS |

[93]  L. N. Kolaitis, F. J. Bruynseels, R. E. Vangrieken, M. O. Andreae, Determination of methanesulfonic acid and non-sea-salt sulfate in single marine aerosol particles. Environ. Sci. Technol. 1989, 23, 236.
Determination of methanesulfonic acid and non-sea-salt sulfate in single marine aerosol particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVSgsw%3D%3D&md5=dd9c8afebb4b50fe20277bada8f699a6CAS | 1:CAS:528:DyaL1MXksVSgsw%3D%3D&md5=dd9c8afebb4b50fe20277bada8f699a6CAS |

[94]  S. Tominaga, K. Matsumoto, N. Kaneyasu, A. Shigihara, K. Katono, M. Igawa, Measurements of particulate sugars at urban and forested suburban sites. Atmos. Environ. 2011, 45, 2335.
Measurements of particulate sugars at urban and forested suburban sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVWktbg%3D&md5=e3f1e570c081dcf7af687e5d5b320950CAS | 1:CAS:528:DC%2BC3MXjvVWktbg%3D&md5=e3f1e570c081dcf7af687e5d5b320950CAS |

[95]  P. M. Medeiros, B. R. T. Simoneit, Source profiles of organic compounds emitted upon combustion of green vegetation from temperate climate forests. Environ. Sci. Technol. 2008, 42, 8310.
Source profiles of organic compounds emitted upon combustion of green vegetation from temperate climate forests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ohs7jF&md5=91e49ec20945753380df9c490f05a44bCAS | 1:CAS:528:DC%2BD1cXht1Ohs7jF&md5=91e49ec20945753380df9c490f05a44bCAS | 19068811PubMed |

[96]  P. M. Medeiros, M. H. Conte, J. C. Weber, B. R. T. Simoneit, Sugars as source indicators of biogenic organic carbon in aerosols collected above the Howland Experimental Forest, Maine. Atmos. Environ. 2006, 40, 1694.
Sugars as source indicators of biogenic organic carbon in aerosols collected above the Howland Experimental Forest, Maine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Giu7Y%3D&md5=2717f0b1125baf8bf658ff5c2828bfcbCAS | 1:CAS:528:DC%2BD28Xht1Giu7Y%3D&md5=2717f0b1125baf8bf658ff5c2828bfcbCAS |

[97]  O. F. Carvacho, L. L. Ashbaugh, M. S. Brown, R. G. Flocchini, Measurement of PM2.5 emission potential from soil using the UC Davis resuspension test chamber. Geomorphology 2004, 59, 75.
Measurement of PM2.5 emission potential from soil using the UC Davis resuspension test chamber.Crossref | GoogleScholarGoogle Scholar |

[98]  W. F. Rogge, P. M. Medeiros, B. R. T. Simoneit, Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study. Atmos. Environ. 2007, 41, 8183.
Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWntrrL&md5=cb0d7a2214ab672aef5e79ef87ce3aacCAS |

[99]  B. R. T. Simoneit, V. O. Elias, M. Kobayashi, K. Kawamura, A. I. Rushdi, P. M. Medeiros, W. F. Rogge, B. M. Didyk, Sugars – dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. Environ. Sci. Technol. 2004, 38, 5939.
Sugars – dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlamur4%3D&md5=9f0d94b6f983f1d3e3d659af9ff1d145CAS |

[100]  T. Zhang, G. Engling, C. Y. Chan, Y. N. Zhang, Z. S. Zhang, M. Lin, X. F. Sang, Y. D. Li, Y. S. Li, Contribution of fungal spores to particulate matter in a tropical rainforest. Environ. Res. Lett. 2010, 5, 024010.
Contribution of fungal spores to particulate matter in a tropical rainforest.Crossref | GoogleScholarGoogle Scholar |

[101]  A. P. Sullivan, N. Frank, D. M. Kenski, J. L. Collett, Application of high-performance anion-exchange chromatography-pulsed amperometric detection for measuring carbohydrates in routine daily filter samples collected by a national network: 2. Examination of sugar alcohols/polyols, sugars, and anhydrosugars in the upper Midwest. J. Geophys. Res. 2011, 116, D08303.
Application of high-performance anion-exchange chromatography-pulsed amperometric detection for measuring carbohydrates in routine daily filter samples collected by a national network: 2. Examination of sugar alcohols/polyols, sugars, and anhydrosugars in the upper Midwest.Crossref | GoogleScholarGoogle Scholar |

[102]  F. W. McLafferty, F. Turecek, Interpretation of Mass Spectra, 4th edn 1993 (University Science Books: Sausalito, CA).

[103]  J. H. Kroll, N. M. Donahue, J. L. Jimenez, S. H. Kessler, M. R. Canagaratna, K. R. Wilson, K. E. Altieri, L. R. Mazzoleni, A. S. Wozniak, H. Bluhm, E. R. Mysak, J. D. Smith, C. E. Kolb, D. R. Worsnop, Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem. 2011, 3, 133.
Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVGhuw%3D%3D&md5=411e8c0cd7c47820db1acdc81ccb0291CAS | 1:CAS:528:DC%2BC3MXovVGhuw%3D%3D&md5=411e8c0cd7c47820db1acdc81ccb0291CAS | 21258386PubMed |

[104]  S. Decesari, M. C. Facchini, S. Fuzzi, E. Tagliavini, Characterization of water-soluble organic compounds in atmospheric aerosol: a new approach. J. Geophys. Res. 2000, 105, 1481.
Characterization of water-soluble organic compounds in atmospheric aerosol: a new approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlKgtrg%3D&md5=7379c4799fc3fc920b9b4362603aa808CAS | 1:CAS:528:DC%2BD3cXhtlKgtrg%3D&md5=7379c4799fc3fc920b9b4362603aa808CAS |