Combination of nitrate (N, O) and boron isotopic ratios with microbiological indicators for the determination of nitrate sources in karstic groundwater
Cyrielle Briand A F , Valérie Plagnes A , Mathieu Sebilo B , Pascale Louvat C , Thierry Chesnot D , Maude Schneider D , Pierre Ribstein A and Pierre Marchet EA UPMC University of Paris 06, UMR Sisyphe, 4 place Jussieu, F-75252 Paris Cedex 05, France.
B UPMC University of Paris 06, UMR Bioemco, 4 place Jussieu, F-75252 Paris Cedex 05, France.
C Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris-Diderot, UMR CNRS 7154, 1 rue Jussieu, F-75238 Paris Cedex, France.
D Eurofins Expertises Environnementales, Microbiologie, Santé-Environnement, rue Lucien Cuenot/site St Jacques II, F-54521 Maxeville, France.
E Agence de l’Eau Adour-Garonne, 90 rue du Férétra, F-31078 Toulouse Cedex 4, France.
F Corresponding author. Email: briandcyrielle@gmail.com
Environmental Chemistry 10(5) 365-369 https://doi.org/10.1071/EN13036
Submitted: 16 February 2013 Accepted: 3 August 2013 Published: 25 October 2013
Journal Compilation © CSIRO Publishing 2013 Open Access CC BY-NC-ND
Environmental context. Nitrate contamination of drinking water quality may be critical, particularly in rural areas where agricultural practices may release large amounts of nitrogen. Knowledge of the source of such contamination, mandatory for water supply management, can be successfully acquired by combining the natural stable isotopes of nitrate, boron isotopic ratios and microbiological indicators.
Abstract. A new approach based on measurements of nitrate and boron isotopic composition associated with microbiological indicators for the determination of nitrate origin in karstic groundwater (SW, France) is presented. Nitrate and boron isotopic data indicate an animal source of nitrate (δ15N–NO3– > 5 ‰, δ18O–NO3– < 10 ‰ and δ11B ~25 ‰). Microorganism detection (bacteriophages) confirmed contamination from animal sources and proved fast water transfer (2–3 days) from surface to groundwater.
References
[1] D. Widory, W. Kloppman, L. Chery, J. Bonnin, H. Rochdi, J. L. Guinamant, Nitrate in groundwater: an isotopic multi-tracer approach. J. Contam. Hydrol. 2004, 72, 165.| Nitrate in groundwater: an isotopic multi-tracer approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFeqtLw%3D&md5=2ed252f599713aa9aedc2d0dda53b656CAS | 15240171PubMed |
[2] R. L. Seiler, Combined use of 15N and 18O of nitrate and 11B to evaluate nitrate contamination in groundwater. Appl. Geochem. 2005, 20, 1626.
| Combined use of 15N and 18O of nitrate and 11B to evaluate nitrate contamination in groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosVajsL8%3D&md5=bfdc340c1b3317e757d04012fd293326CAS |
[3] J. Bronders, K. Tirez, N. Desmet, D. Widory, E. Petelet-Giraud, A. Bregnot, P. Boeckx, Use of compound-specific nitrogen (δ15N), oxygen (δ18O), and bulk boron (δ11B) isotope ratios to identify sources of nitrate-contaminated waters: a guideline to identify polluters. Environ. Forensics. 2012, 13, 32.
| Use of compound-specific nitrogen (δ15N), oxygen (δ18O), and bulk boron (δ11B) isotope ratios to identify sources of nitrate-contaminated waters: a guideline to identify polluters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFWmtb4%3D&md5=7c56c9b3ce4138d26da37aca954f881cCAS |
[4] C. Kendall, Tracing nitrogen sources and cycling in catchment, in Isotope Tracers in Catchment Hydrology (Eds C. Kendall, J.J. McDonnell) 1998, pp. 519–576 (Elsevier: Amsterdam).
[5] S. V. Panno, K. C. Hackley, H. H. Hwang, W. R. Kelly, Determination of the sources of nitrate contamination in karts springs using isotopic and chemical indicators. Chem. Geol. 2001, 179, 113.
| Determination of the sources of nitrate contamination in karts springs using isotopic and chemical indicators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltlGgtbk%3D&md5=e5d478d603b3bad78f1d9fad765a9cc5CAS |
[6] L. I. Wassenaar, M. J. Hendry, N. Harrington, Decadal geochemical and isotopic trends for nitrate in a transboundary aquifer and implications for agricultural beneficial management practices. Environ. Sci. Technol. 2006, 40, 4626.
| Decadal geochemical and isotopic trends for nitrate in a transboundary aquifer and implications for agricultural beneficial management practices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVSitrk%3D&md5=11766d04fc4499360b395b1f6ceeb2c0CAS | 16913116PubMed |
[7] F.-Z. J. El Gaouzi, M. Sebilo, P. Ribstein, V. Plagnes, P. Boeckx, D. Xue, S. Derenne, M. Zakeossian, Using δ15N and δ18O values to identify sources of nitrate in karstic springs in the Paris basin (France). Appl. Geochem. 2013, 35, 230.
| Using δ15N and δ18O values to identify sources of nitrate in karstic springs in the Paris basin (France).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXoslWrs7w%3D&md5=5fec14bf7ee3d682d3f022e599e721b0CAS |
[8] S. L. Li, C. Q. Liu, J. Li, Z. Xue, J. Guan, Y. Lang, H. Ding, L. Li, Evaluation of nitrate source in surface water of southwestern China based on stable isotopes. Environ. Earth Sci. 2013, 68, 219.
| Evaluation of nitrate source in surface water of southwestern China based on stable isotopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCltA%3D%3D&md5=d57bfe210cb76161137ba1658b59848aCAS |
[9] B. Chetelat, J. Gaillardet, Boron isotopes in the Seine River, France: a probe of anthropogenic contamination. Environ. Sci. Technol. 2005, 39, 2486.
| Boron isotopes in the Seine River, France: a probe of anthropogenic contamination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVCks7g%3D&md5=cac77a0c9a51d8fdb87ff9bc564642a5CAS | 15884339PubMed |
[10] M. Schaper, J. Jofre, M. Uys, W. O. K. Grabow, Distribution of genotypes of F-specific RNA bacteriophages in human and non-human sources of faecal pollution in South Africa and Spain. J. Appl. Microbiol. 2002, 92, 657.
| Distribution of genotypes of F-specific RNA bacteriophages in human and non-human sources of faecal pollution in South Africa and Spain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVKiurY%3D&md5=cfe222a38042306faa1411eb30ebe6cbCAS | 11966906PubMed |
[11] L. Ogorzaly, C. Gantzer, Development of real-time RT-PCR methods for specific detection of F-specific RNA bacteriophage genogroups: application to urban raw wastewater. J. Virol. Methods 2006, 138, 131.
| Development of real-time RT-PCR methods for specific detection of F-specific RNA bacteriophage genogroups: application to urban raw wastewater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeqtLnP&md5=43ec91200571505527ff95b38bbbcd67CAS | 16997389PubMed |
[12] A. R. Blanch, L. Belanche-Muñoz, X. Bonjoch, J. Ebdon, C. Gantzer, F. Lucena, J. Ottoson, C. Kourtis, A. Iversen, I. Kühn, L. Mocé, M. Muniesa, J. Schwartzbrod, S. Skraber, G. T. Papageorgiou, H. Taylor, J. Wallis, J. Jofre, Integrated analysis of established and novel microbial and chemical methods for microbial source tracking. Appl. Environ. Microbiol. 2006, 72, 5915.
| Integrated analysis of established and novel microbial and chemical methods for microbial source tracking.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVKjsb8%3D&md5=982f89bbee79a33eb35b188315ea4914CAS | 16957211PubMed |
[13] S. Mieszkin, J. P. Furet, G. Corthier, M. Gourmelon, Estimation of pig fecal contamination in a river catchment by Real-Time PCR using two pig-specific bacteroidales 16S rRNA genetic markers. Appl. Environ. Microbiol. 2009, 75, 3045.
| Estimation of pig fecal contamination in a river catchment by Real-Time PCR using two pig-specific bacteroidales 16S rRNA genetic markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFWis7s%3D&md5=73fac569cd058541ec6953b082855d41CAS | 19329663PubMed |
[14] S. Mieszkin, J. F. Yala, R. Joubrel, M. Gourmelon, Phylogenetic analysis of bacteroidales 16S rRNA gene sequences from human and animal effluents and assessment of ruminant faecal pollution by real-time PCR. J. Appl. Microbiol. 2010, 108, 974.
| Phylogenetic analysis of bacteroidales 16S rRNA gene sequences from human and animal effluents and assessment of ruminant faecal pollution by real-time PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVOnsb0%3D&md5=af599e2ba18fe8719dfdf0778b2ab4ceCAS | 19735325PubMed |
[15] F. C. Hsu, Y. S. Shieh, J. Duin, M. J. Beekwilder, M. D. Sobsey, Genotyping male-specific RNA coliphages by hybridization with oligonucleotide probes. Appl. Environ. Microbiol. 1995, 61, 3960.
| 1:CAS:528:DyaK2MXptFGgt7c%3D&md5=a61d2269ca634fa21aeee85d76d9a4aeCAS | 8526509PubMed |
[16] S. Seurinck, T. Defoirdt, W. Verstraete, W. S. D. Siciliano, Detection and quantification of the human-specific HF183 bacteroides 16S rRNA genetic marker with real-time PCR for assessment of human faecal pollution in freshwater. Environ. Microbiol. 2005, 7, 249.
| Detection and quantification of the human-specific HF183 bacteroides 16S rRNA genetic marker with real-time PCR for assessment of human faecal pollution in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslSlt7Y%3D&md5=78de41b89fc5ed8ef484bed1e3b1741eCAS | 15658992PubMed |
[17] P. Semaoune, M. Sebilo, J. Templier, S. Derenne, Is there any isotopic fractionation of nitrate associated with diffusion and advection? Environ. Chem. 2012, 9, 158.
| Is there any isotopic fractionation of nitrate associated with diffusion and advection?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFGnt74%3D&md5=12824245a51c0b17705c8ac06b0dcab8CAS |
[18] P. Louvat, J. Bouchez, G. Paris, MC-ICP-MS isotope measurements with direct injection nebulisation (d-DIHEN): optimisation and application to boron in seawater and carbonate samples. Geostand. and Geoanal. Res. 2011, 35, 75.
| MC-ICP-MS isotope measurements with direct injection nebulisation (d-DIHEN): optimisation and application to boron in seawater and carbonate samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVaqsLk%3D&md5=a3bfe2f556740cf700eca3718914478aCAS |
[19] D. Lemarchand, J. Gaillardet, C. Göpel, G. Manhès, An optimized procedure for boron separation and mass spectrometry analysis for river samples. Chem. Geol. 2002, 182, 323.
| An optimized procedure for boron separation and mass spectrometry analysis for river samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlSltbw%3D&md5=5601ec6b05ab3a01060e3334f482cff1CAS |
[20] ISO 9308-1. Water quality - detection and enumeration of Escherichia coli and coliform bacteria. Part 1. Membrane filtration method 2000 (International Organization for Standardization: Geneva, Switzerland).
[21] ISO 7899-2. Water quality – detection and enumeration of intestinal enterococci. Part 2. Membrane filtration method 2000 (International Organization for Standardization: Geneva, Switzerland).
[22] ISO 6222. Water quality – enumeration of culturable micro-organisms – colony count by inoculation in a nutrient agar culture medium 1999 (International Organization for Standardization: Geneva, Switzerland).
[23] J. Méndez, A. Audicana, A. Isern, J. Llaneza, B. Moreno, M. L. Tarancon, J. Jofre, F. Lucena, Standardised evaluation of the performance of a simple membrane filtration-elution method to concentrate bacteriophages from drinking water. J. Virol. Methods 2004, 117, 19.
| Standardised evaluation of the performance of a simple membrane filtration-elution method to concentrate bacteriophages from drinking water.Crossref | GoogleScholarGoogle Scholar | 15019256PubMed |
[24] ISO 10705-1. Water quality – detection and enumeration of bacteriophages. Part 1. Enumeration of F-specific RNA bacteriophages 2001 (International Organization for Standardization: Geneva, Switzerland).
[25] L. Ogorzaly, I. Bertrand, M. Paris, A. Maul, C. Gantzer, Occurrence, survival, and persistence of human adenoviruses and F-Specific RNA phages in raw groundwater. Appl. Environ. Microbiol. 2010, 76, 8019.
| Occurrence, survival, and persistence of human adenoviruses and F-Specific RNA phages in raw groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGksL8%3D&md5=082bc7642b0d162bcd5cddabb610a460CAS | 20952644PubMed |