Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Reaction of OH radicals with 5-hydroxy-2-pentanone: formation yield of 4-oxopentanal and its OH radical reaction rate constant

Sara M. Aschmann A , Janet Arey A B C and Roger Atkinson A C
+ Author Affiliations
- Author Affiliations

A Air Pollution Research Center, University of California, Riverside, CA 92521, USA.

B Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.

C Corresponding authors. Email: janet.arey@ucr.edu; ratkins@mail.ucr.edu

Environmental Chemistry 10(3) 145-150 https://doi.org/10.1071/EN12146
Submitted: 22 September 2012  Accepted: 25 November 2012   Published: 1 May 2013

Environmental context. Alkanes, major constituents of vehicle exhausts, are emitted to the atmosphere where they react, chiefly by gas-phase reactions with the hydroxyl radical, to form products which can also react further. In laboratory experiments, we studied the further reactions of a model first-generation alkane reaction product. Understanding alkane reaction chains is important because the toxicity, secondary aerosol formation and other properties of vehicle emissions can change as new compounds are formed.

Abstract. 1,4-Hydroxycarbonyls are major products of the gas-phase reactions of alkanes with OH radicals, and in the atmosphere they will react with OH radicals or undergo acid-catalysed cyclisation with subsequent dehydration to form highly reactive dihydrofurans. 3-Oxobutanal (CH3C(O)CH2CHO) and 4-oxopentanal (CH3C(O)CH2CH2CHO) are first-generation products of the OH radical-initiated reaction of 5-hydroxy-2-pentanone (CH3C(O)CH2CH2CH2OH). The behaviours of 3-oxobutanal and 4-oxopentanal have been monitored during OH + 5-hydroxy-2-pentanone reactions carried out in the presence of NO, using solid phase microextraction fibres coated with O-(2,3,4,5,6,-pentafluorobenzyl)hydroxyl amine (PFBHA) for on-fibre derivatisation of carbonyl compounds and an annular denuder coated with XAD resin and further coated with PFBHA. The time-concentration data for 4-oxopentanal during OH + 5-hydroxy-2-pentanone reactions were independent of relative humidity (0–50 %), and were consistent with a rate constant for OH + 4-oxopentanal of (1.2 ± 0.5) × 10–11 cm3 molecule–1 s–1 at 296 ± 2 K, a factor of 2 lower than both literature rate constants for other aldehydes and that estimated using a structure-reactivity approach. The molar formation yield for 4-oxopentanal from OH + 5-hydroxy-2-pentanone in the presence of NO was determined to be 17 ± 5 %, consistent with predictions based on a structure-reactivity relationship and current knowledge of the subsequent reaction mechanisms.


References

[1]  T. W. Kirchstetter, B. C. Singer, R. A. Harley, G. R. Kendall, M. Traverse, Impact of California reformulated gasoline on motor vehicle emissions. 1. Mass emission rates. Environ. Sci. Technol. 1999, 33, 318.
Impact of California reformulated gasoline on motor vehicle emissions. 1. Mass emission rates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1ylsLs%3D&md5=dca33fadd50c4372d3759e351c3707cbCAS |

[2]  T. W. Kirchstetter, B. C. Singer, R. A. Harley, G. R. Kendall, J. M. Hesson, Impact of California reformulated gasoline on motor vehicle emissions. 2. Volatile organic compound speciation and reactivity. Environ. Sci. Technol. 1999, 33, 329.
Impact of California reformulated gasoline on motor vehicle emissions. 2. Volatile organic compound speciation and reactivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1ylsLg%3D&md5=875f2bf0fe729872b20946d5db5e93b1CAS |

[3]  E. S. C. Kwok, J. Arey, R. Atkinson, Alkoxy radical isomerization in the OH radical-initiated reactions of C4–C8 n-alkanes. J. Phys. Chem. 1996, 100, 214.
Alkoxy radical isomerization in the OH radical-initiated reactions of C4–C8 n-alkanes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVeis78%3D&md5=45ef6ba8d94bea30bbe5ec6cb39d6a99CAS |

[4]  J. Arey, S. M. Aschmann, E. S. C. Kwok, R. Atkinson, Alkyl nitrate, hydroxyalkyl nitrate, and hydroxycarbonyl formation from the NOx–air photooxidations of C5–C8 n-alkanes. J. Phys. Chem. A 2001, 105, 1020.
Alkyl nitrate, hydroxyalkyl nitrate, and hydroxycarbonyl formation from the NOx–air photooxidations of C5–C8 n-alkanes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVOrsw%3D%3D&md5=872e34c22d056c333f25c01651c4457eCAS |

[5]  F. Reisen, S. M. Aschmann, R. Atkinson, J. Arey, 1,4-Hydroxycarbonyl products of the OH radical initiated reactions of C5-C8 n-alkanes in the presence of NO. Environ. Sci. Technol. 2005, 39, 4447.
1,4-Hydroxycarbonyl products of the OH radical initiated reactions of C5-C8 n-alkanes in the presence of NO.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvFKjs74%3D&md5=4955085b9c3136ba73e8fe1457254ba0CAS | 16047780PubMed |

[6]  S. M. Aschmann, J. Arey, R. Atkinson, Kinetics and products of the gas-phase reaction of OH radicals with 5-hydroxy-2-pentanone at 296 ± 2 K. J. Atmos. Chem. 2003, 45, 289.
Kinetics and products of the gas-phase reaction of OH radicals with 5-hydroxy-2-pentanone at 296 ± 2 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Cnt70%3D&md5=51c0c29ed811eaac727fb86f922aa15eCAS |

[7]  P. Martin, E. C. Tuazon, S. M. Aschmann, J. Arey, R. Atkinson, Formation and atmospheric reactions of 4,5-dihydro-2-methylfuran. J. Phys. Chem. A 2002, 106, 11492.
Formation and atmospheric reactions of 4,5-dihydro-2-methylfuran.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlSmtrg%3D&md5=386128dfcd0d0eb1bd4b03fc94269b62CAS |

[8]  T. Holt, R. Atkinson, J. Arey, Effect of water vapor concentration on the conversion of a series of 1,4-hydroxycarbonyls to dihydrofurans. J. Photochem. Photobiol. Chem. 2005, 176, 231.
Effect of water vapor concentration on the conversion of a series of 1,4-hydroxycarbonyls to dihydrofurans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ahsbnJ&md5=946a22637c3210673fe5ee8d25e19f6dCAS |

[9]  Y. B. Lim, P. J. Ziemann, Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of NOx. Environ. Sci. Technol. 2005, 39, 9229.
Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of NOx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKltr3O&md5=5f111704cfc078fa5fd88d3aafb6a09fCAS | 16382947PubMed |

[10]  R. Atkinson, J. Arey, S. M. Aschmann, Atmospheric chemistry of alkanes: review and recent developments. Atmos. Environ. 2008, 42, 5859.
Atmospheric chemistry of alkanes: review and recent developments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVaisbo%3D&md5=29da0af9bee033f715ddba77a0a5214eCAS |

[11]  Y. B. Lim, P. J. Ziemann, Chemistry of secondary organic aerosol formation from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of NOx. Aerosol Sci. Technol. 2009, 43, 604.
Chemistry of secondary organic aerosol formation from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of NOx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFKiurg%3D&md5=65ec53422dd05f48e845928cb24ff5a0CAS |

[12]  A. A. Bothner-By, R. K. Harris, Conformational preferences in malondialdehyde and acetylacetaldehyde enols investigated by nuclear magnetic resonance. J. Org. Chem. 1965, 30, 254.
Conformational preferences in malondialdehyde and acetylacetaldehyde enols investigated by nuclear magnetic resonance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXjs1eluw%3D%3D&md5=f5b6db422902b59ea14dbda3e9f6ba47CAS |

[13]  W. O. George, V. G. Mansell, Nuclear magnetic resonance spectra of acetylacetaldehyde and malondialdehyde. J. Chem. Soc. B: Phys. Org 1968, 132.
Nuclear magnetic resonance spectra of acetylacetaldehyde and malondialdehyde.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXos1KmtQ%3D%3D&md5=efec40ca043105c8b6af07bedbb7c4b8CAS |

[14]  A. Nowroozi, A. F. Jalbout, H. Roohi, E. Khalilinia, M. Sadeghi, A. De Leon, H. Raissi, Hydrogen bonding in acetylacetaldehyde: theoretical insights from the theory of atoms in molecules. Int. J. Quantum Chem. 2009, 109, 1505.
Hydrogen bonding in acetylacetaldehyde: theoretical insights from the theory of atoms in molecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Kqtro%3D&md5=de167f8094fe173110889f682a0e085dCAS |

[15]  H. Niki, P. D. Maker, C. M. Savage, L. P. Breitenbach, An FTIR study of mechanisms for the HO radical initiated oxidation of C2H4 in the presence of NO: detection of glycolaldehyde. Chem. Phys. Lett. 1981, 80, 499.
An FTIR study of mechanisms for the HO radical initiated oxidation of C2H4 in the presence of NO: detection of glycolaldehyde.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXls1yitrg%3D&md5=2ae0dbb93461a72a4c2cb52fa2aad45bCAS |

[16]  R. Atkinson, W. P. L. Carter, A. M. Winer, J. N. Pitts, An experimental protocol for the determination of OH radical rate constants with organics using methyl nitrite photolysis as an OH radical source. J. Air Pollut. Control Assoc. 1981, 31, 1090.
An experimental protocol for the determination of OH radical rate constants with organics using methyl nitrite photolysis as an OH radical source.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtV2qtw%3D%3D&md5=798a33e7b582aece5b052cf47880fcafCAS |

[17]  J. Arey, G. Obermeyer, S. M. Aschmann, S. Chattopadhyay, R. D. Cusick, R. Atkinson, Dicarbonyl products of the OH radical-initiated reaction of a series of aromatic hydrocarbons. Environ. Sci. Technol. 2009, 43, 683.
Dicarbonyl products of the OH radical-initiated reaction of a series of aromatic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Oi&md5=9a06beb0d5a4ae09b9cfd2d361475d17CAS | 19245002PubMed |

[18]  J. T. Scanlon, D. E. Willis, Calculation of flame ionization detector relative response factors using the effective carbon number concept. J. Chromatogr. Sci. 1985, 23, 333.
Calculation of flame ionization detector relative response factors using the effective carbon number concept.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlslWhs74%3D&md5=d90de823e2e3724ff4091aa208564071CAS |

[19]  N. Nishino, J. Arey, R. Atkinson, Formation yields of glyoxal and methylglyoxal from the gas-phase OH radical-initiated reactions of toluene, xylenes, and trimethylbenzenes as a function of NO2 concentration. J. Phys. Chem. A 2010, 114, 10140.
Formation yields of glyoxal and methylglyoxal from the gas-phase OH radical-initiated reactions of toluene, xylenes, and trimethylbenzenes as a function of NO2 concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrsbrJ&md5=9a231b2be4652bcfb48a61216f970328CAS | 20804209PubMed |

[20]  F. Reisen, S. M. Aschmann, R. Atkinson, J. Arey, Hydroxyaldehyde products from hydroxyl radical reactions of Z-3-hexen-1-ol and 2-methyl-3-buten-2-ol quantified by SPME and API-MS. Environ. Sci. Technol. 2003, 37, 4664.
Hydroxyaldehyde products from hydroxyl radical reactions of Z-3-hexen-1-ol and 2-methyl-3-buten-2-ol quantified by SPME and API-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Kls7k%3D&md5=bfabf3ab8995e1ae2281f4f1328b6f73CAS | 14594376PubMed |

[21]  W. D. Taylor, T. D. Allston, M. J. Moscato, G. B. Fazekas, R. Kozlowski, G. A. Takacs, Atmospheric photodissociation lifetimes for nitromethane, methyl nitrite, and methyl nitrate. Int. J. Chem. Kinet. 1980, 12, 231.
Atmospheric photodissociation lifetimes for nitromethane, methyl nitrite, and methyl nitrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksFWit7Y%3D&md5=42f736de093427876c5a32a6f21a3611CAS |

[22]  J. Baker, J. Arey, R. Atkinson, Rate constants for the gas-phase reactions of OH radicals with a series of hydroxyaldehydes at 296 ± 2 K. J. Phys. Chem. A 2004, 108, 7032.
Rate constants for the gas-phase reactions of OH radicals with a series of hydroxyaldehydes at 296 ± 2 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFOrsb8%3D&md5=f86c1b7eb48c12e2c73b111d38b8573dCAS |

[23]  A.-L. Holloway, J. Treacy, H. Sidebottom, A. Mellouki, V. Daële, G. Le Bras, I. Barnes, Rate coefficients for the reactions of OH radicals with the keto/enol tautomers of 2,4-pentanedione and 3-methyl-2,4-pentanedione, allyl alcohol and methyl vinyl ketone using the enols and methyl nitrite as photolytic sources of OH. J. Photochem. Photobiol. Chem. 2005, 176, 183.
Rate coefficients for the reactions of OH radicals with the keto/enol tautomers of 2,4-pentanedione and 3-methyl-2,4-pentanedione, allyl alcohol and methyl vinyl ketone using the enols and methyl nitrite as photolytic sources of OH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ahsbjI&md5=4efb963263caa8bcaa980ecdcebf828cCAS |

[24]  R. Atkinson, J. Arey, Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605.
Atmospheric degradation of volatile organic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVChtrs%3D&md5=fef3fb034520ef1e5691a65da2ee5a53CAS | 14664626PubMed |

[25]  E. S. C. Kwok, R. Atkinson, Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure–reactivity relationship: an update. Atmos. Environ. 1995, 29, 1685.
Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure–reactivity relationship: an update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvFCms70%3D&md5=fb28d7e29756c5f9a16e407c80314a3fCAS |

[26]  H. L. Bethel, R. Atkinson, J. Arey, Kinetics and products of the reactions of selected diols with the OH radical. Int. J. Chem. Kinet. 2001, 33, 310.
Kinetics and products of the reactions of selected diols with the OH radical.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFKju74%3D&md5=32d4c51e79d76c12142b636a5e3e0bffCAS |

[27]  J. J. Orlando, B. Nozière, G. S. Tyndall, G. Orzechowska, S. E. Paulson, Y. Rudich, Product studies of the OH- and ozone-initiated oxidation of some monoterpenes. J. Geophys. Res. 2000, 105, 11561.
Product studies of the OH- and ozone-initiated oxidation of some monoterpenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVegtbo%3D&md5=b8b52a0de3ce5f1745c1c0bdffb789bdCAS |

[28]  J. Peeters, L. Vereecken, G. Fantechi, The detailed mechanism of the OH-initiated atmospheric oxidation of α-pinene: a theoretical study. Phys. Chem. Chem. Phys. 2001, 3, 5489.
The detailed mechanism of the OH-initiated atmospheric oxidation of α-pinene: a theoretical study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt12rs7o%3D&md5=587cdf57fdcd9cf9db86b840cecf9175CAS |

[29]  S. M. Aschmann, E. C. Tuazon, J. Arey, R. Atkinson, Products and mechanisms of the gas-phase reactions of OH radicals with 1-octene and 7-tetradecene in the presence of NO. Environ. Sci. Technol. 2010, 44, 3825.
Products and mechanisms of the gas-phase reactions of OH radicals with 1-octene and 7-tetradecene in the presence of NO.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Wrt7k%3D&md5=0dda8a00317c4ce64c2f054e6e1e70bcCAS | 20420450PubMed |

[30]  R. Atkinson, Rate constants for the atmospheric reactions of alkoxy radicals: an updated estimation method. Atmos. Environ. 2007, 41, 8468.
Rate constants for the atmospheric reactions of alkoxy radicals: an updated estimation method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOjtLvF&md5=216c3894a6b1dcd36557f8a641bd4541CAS |