Nitrite removal improves hydroxylamine analysis in aqueous solution by conversion with iron(III)
Annette Kock A B and Hermann W. Bange AA Forschungsbereich Marine Biogeochemie, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany. Email: hbange@geomar.de
B Corresponding author. Email: akock@geomar.de
Environmental Chemistry 10(1) 64-71 https://doi.org/10.1071/EN12141
Submitted: 19 September 2012 Accepted: 16 January 2013 Published: 12 March 2013
Environmental context. Nitrogen is an essential nutrient for marine organisms, and thus an understanding of the marine nitrogen cycle is a crucial factor in predicting the sensitivity of marine life to environmental change. Hydroxylamine is a short-lived intermediate in nitrogen transformation processes, and reliable detection of this compound in seawater can help to identify these processes within the marine nitrogen cycle.
Abstract. Dissolved hydroxylamine (NH2OH) is a short-lived compound produced in the oceanic environment during nitrification and dissimilatory reduction of nitrate to ammonium (DNRA). The ferric ammonium sulfate (FAS) conversion method is the only method available so far to determine dissolved NH2OH in nanomolar concentrations in seawater. We show that side reactions of dissolved nitrite (NO2–) can result in a significant bias in the NH2OH concentration measurements when applying the FAS conversion method. We propose to scavenge dissolved NO2– by addition of sulfanilamide to suppress effectively the undesired side reactions by NO2–. This modification of the FAS conversion method will allow a NH2OH determination even in oceanic regions with high NO2– concentrations. A reliable detection of NH2OH in seawater samples can give us a clue about the occurrence of active nitrification or DNRA in the ocean and, therefore, will provide further insights about the oceanic nitrogen cycle.
References
[1] J. A. Brandes, A. H. Devol, C. Deutsch, New developments in the marine nitrogen cycle. Chem. Rev. 2007, 107, 577.| New developments in the marine nitrogen cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Sqsrw%3D&md5=0c1e7fd3d72df4cb7a645a689e45d635CAS |
[2] M. S. M. Jetten, L. Van Niftik, M. Strous, B. Kartal, J. T. Keltjens, H. J. M. Op Den Camp, Biochemistry and molecular biology of anammox bacteria. Crit. Rev. Biochem. Mol. Biol. 2009, 44, 65.
| 1:CAS:528:DC%2BD1MXlslWiu7Y%3D&md5=f5329e1b53fa6f49ccaf4e8d28694d16CAS |
[3] B. Kartal, W. J. Maalcke, N. M. De Almeida, I. Cirpus, J. Gloerich, W. Geerts, H. den Camp, H. R. Harhangi, E. M. Janssen-Megens, K. J. Francoijs, H. G. Stunnenberg, J. T. Keltjens, Molecular mechanism of anaerobic ammonium oxidation. Nature 2011, 479, 127.
| Molecular mechanism of anaerobic ammonium oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GqsLvI&md5=ed9ff2a219b59cfef425661709683accCAS |
[4] A. Rajendran, V. K. Venugopalan, Hydroxylamine formation in laboratory experiments on marine nitrification. Mar. Chem. 1976, 4, 93.
| Hydroxylamine formation in laboratory experiments on marine nitrification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xhtlanu7o%3D&md5=890ca365368630584cd1f6357040fc89CAS |
[5] T. Yoshida, M. Alexander, Hydroxylamine formation by Nitrosomonas europaea. Can. J. Microbiol. 1964, 10, 923.
| Hydroxylamine formation by Nitrosomonas europaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXosVCmtw%3D%3D&md5=57255b67e98a5a71c18bb4d4d22c7d04CAS |
[6] C. R. Löscher, A. Kock, M. Könneke, J. Laroche, H. W. Bange, R. A. Schmitz, Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosciences 2012, 9, 2419.
| Production of oceanic nitrous oxide by ammonia-oxidizing archaea.Crossref | GoogleScholarGoogle Scholar |
[7] C. Wuchter, B. Abbas, M. J. L. Coolen, L. Herfort, J. Van Bleijswijk, P. Timmers, M. Strous, E. Teira, G. J. Herndl, J. J. Middelburg, S. Schouten, J. S. S. Damste, Archaeal nitrification in the ocean. Proc. Natl. Acad. Sci. USA 2006, 103, 12317.
| Archaeal nitrification in the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xos1Klsbg%3D&md5=4d9cb412cf0fdc9a5e728847df3bf366CAS |
[8] C. B. Walker, J. R. De La Torre, M. G. Klotz, H. Urakawa, N. Pinel, D. J. Arp, C. Brochier-Armanet, P. S. G. Chain, P. P. Chan, A. Gollabgir, J. Hemp, M. Hugler, E. A. Karr, M. Konneke, M. Shin, T. J. Lawton, W. Martens-Habbena, L. A. Sayavedra-Soto, D. Lang, S. M. Sievert, A. C. Rosenzweig, G. Manning, D. A. Stahl, Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl. Acad. Sci. USA 2010, 107, 8818.
| Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVOrt7Y%3D&md5=52b98dd0c438de5a83a1f0c93f0b8588CAS |
[9] A. J. Burgin, S. K. Hamilton, Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front. Ecol. Environ 2007, 5, 89.
| Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways.Crossref | GoogleScholarGoogle Scholar |
[10] J. M. Tiedje, Ecology of denitrification and dissimilatory nitrate reduction to ammonium, in Biology of Anearobic Microorganisms (Ed. A. J. B. Zehnder) 1988, pp. 179–244 (Wiley: New York).
[11] D. M. Yordy, K. L. Ruoff, Dissimilatory nitrate reduction to ammonia, in Denitrification, nitrification, and atmospheric nitrous oxide (Ed. C. C. Delwiche) 1981, pp. 171–190 (Wiley: New York).
[12] O. Einsle, A. Messerschmidt, R. Huber, P. M. H. Kroneck, F. Neese, Mechanism of the six-electron reduction of nitrite to ammonia by cytochrome-c nitrite reductase. J. Am. Chem. Soc. 2002, 124, 11737.
| Mechanism of the six-electron reduction of nitrite to ammonia by cytochrome-c nitrite reductase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslGnsbY%3D&md5=78b8a6f33e7c011720b8bee3195d125dCAS |
[13] J. H. Butler, L. I. Gordon, An improved gas-chromatographic method for the measurement of hydroxylamine in marine and fresh waters. Mar. Chem. 1986, 19, 229.
| An improved gas-chromatographic method for the measurement of hydroxylamine in marine and fresh waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XkvVCrsbg%3D&md5=c2b12f9e0fa1dcf8b781ef91131d1b40CAS |
[14] M. Fiadeiro, L. Solorzan, J. D. Strickla, Hydroxylamine in seawater. Limnol. Oceanogr. 1967, 12, 555.
| Hydroxylamine in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXnt1Wisw%3D%3D&md5=1878d8f9f439ce20fdaf6d7bbacfda0fCAS |
[15] M. N. Hughes, H. G. Nicklin, K. Shrimank, Autoxidation of hydroxylamine in alkaline solutions. 2. Kinetics acid dissociation constant of hydroxylamine. J. Chem. Soc. A – Inorg. Phys. Theor. 1971, 22, 3485.
| Autoxidation of hydroxylamine in alkaline solutions. 2. Kinetics acid dissociation constant of hydroxylamine.Crossref | GoogleScholarGoogle Scholar |
[16] L. L. Brown, J. S. Drury, Nitrogen isotope effects in reduction of nitrate, nitrite and hydroxylamine to ammonia. I. In sodium hydroxyde solution with FeII. J. Chem. Phys. 1967, 46, 2833.
| Nitrogen isotope effects in reduction of nitrate, nitrite and hydroxylamine to ammonia. I. In sodium hydroxyde solution with FeII.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXktFGgsbs%3D&md5=5d1e5f09ded3344c5c834427029b58f7CAS |
[17] G. Bengtsson, Kinetics and mechanism of reaction between vanadium(V) and hydroxylamine within hydrogen ion concentration range 0.005–0.2 m. Acta Chem. Scand. 1973, 27, 3053.
| Kinetics and mechanism of reaction between vanadium(V) and hydroxylamine within hydrogen ion concentration range 0.005–0.2 m.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXmsValsw%3D%3D&md5=018a4d1c97bf3e531374dbb1e3d355ecCAS |
[18] G. Bengtsson, S. Fronæus, L. Bengtsson-Kloo, The kinetics and mechanisms of oxidation of hydroxylamine by iron(III). J. Chem. Soc., Dalton Trans. 2002, 2548.
| The kinetics and mechanisms of oxidation of hydroxylamine by iron(III).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlGktr4%3D&md5=69dd562f1bda5b2ad175717443e7e22eCAS |
[19] M. N. Hughes, H. G. Nicklin, Autoxidation of hydroxylamine in alkaline solutions. J. Chem. Soc. A – Inorg. Phys. Theor. 1971, 1, 164.
| Autoxidation of hydroxylamine in alkaline solutions.Crossref | GoogleScholarGoogle Scholar |
[20] T. Kolasa, W. Wardenck, Quantitative determination of hydroxylamine. Talanta 1974, 21, 845.
| Quantitative determination of hydroxylamine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlvVSmtb0%3D&md5=acf44aece03a5722852e4dab7817815dCAS |
[21] M. T. Von Breymann, M. A. De Angelis, L. I. Gordon, Gas chromatography with electron capture detection for determination of hydroxylamine in seawater. Anal. Chem. 1982, 54, 1209.
| Gas chromatography with electron capture detection for determination of hydroxylamine in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XitVGjtb0%3D&md5=ea7f60ebc6c81936e1cf7967bb421e4dCAS |
[22] J. H. Butler, L. I. Gordon, Rates of nitrous oxide production in the oxidation of hydroxylamine by iron(III). Inorg. Chem. 1986, 25, 4573.
| Rates of nitrous oxide production in the oxidation of hydroxylamine by iron(III).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXpslCk&md5=ebe2b63b46f3ae01b85f24687921ed3aCAS |
[23] S. E. Bari, V. T. Amorebieta, M. M. Gutierrez, J. A. Olabe, F. Doctorovich, Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds. J. Inorg. Biochem. 2010, 104, 30.
| Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKhurjO&md5=9c78b6c33db5e319e3cc0fcd9290c9f5CAS |
[24] J. H. Butler, L. I. Gordon. Hydroxylamine and nitrous oxide over the Cariaco Trench, West Basin, 14–17 March 1986: Report for R/V Columbus Iselin Cruise CI 8601, Leg 2 1986 (Cooperative Institute for Research in Environmental Sciences, University of Colorado and NOAA: Boulder, CO).
[25] J. H. Butler, R. D. Jones, J. H. Garber, L. I. Gordon, Seasonal distribution and turnover of reduced trace gases and hydroxylamine in Yaquina Bay, Oregon. Geochim. Cosmochim. Acta 1987, 51, 697.
| Seasonal distribution and turnover of reduced trace gases and hydroxylamine in Yaquina Bay, Oregon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhvVahsbc%3D&md5=bda315790d580af24cae3bdd60540cf3CAS |
[26] J. H. Butler, J. E. Pequegnat, L. I. Gordon, R. D. Jones, Cycling of methane, carbon monoxide, nitrous oxide and hydroxylamine in a meromictic, coastal lagoon. Estuar. Coast. Shelf Sci. 1988, 27, 181.
| Cycling of methane, carbon monoxide, nitrous oxide and hydroxylamine in a meromictic, coastal lagoon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtlWktA%3D%3D&md5=f5c596b1c090815c0c3cd7308fc27661CAS |
[27] S. Gebhardt, S. Walter, G. Nausch, H. W. Bange, Hydroxylamine (NH2OH) in the Baltic Sea. Biogeosciences Discuss. 2004, 1, 709.
| Hydroxylamine (NH2OH) in the Baltic Sea.Crossref | GoogleScholarGoogle Scholar |
[28] B. Schweiger, H. P. Hansen, H. W. Bange, A time series of hydroxylamine (NH2OH) in the southwestern Baltic Sea. Geophys. Res. Lett. 2007, 34, L24608.
| A time series of hydroxylamine (NH2OH) in the southwestern Baltic Sea.Crossref | GoogleScholarGoogle Scholar |
[29] J. Chlistunoff, K. J. Ziegler, L. Lasdon, K. P. Johnston, Nitric/nitrous acid equilibria in supercritical water. J. Phys. Chem. A 1999, 103, 1678.
| Nitric/nitrous acid equilibria in supercritical water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlCqtrY%3D&md5=2ae2ddb893faa4908e1df0a3b424a858CAS |
[30] O. van Cleemput, Subsoils: chemo- and biological denitrification, N2O and N2 emissions. Nutr. Cycl. Agroecosyst. 1998, 52, 187.
| Subsoils: chemo- and biological denitrification, N2O and N2 emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsVSmtLo%3D&md5=82940b19d15cf57b5f7b36e13e2a9457CAS |
[31] D. Kamykowski, S. J. Zentara, Spatiotemporal and process-oriented views of nitrite in the world oceans as recorded in the historical data set. Deep-Sea Res. A, Oceanogr. Res. Pap. 1991, 38, 445.
| Spatiotemporal and process-oriented views of nitrite in the world oceans as recorded in the historical data set.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltF2ls70%3D&md5=5d69b9d8ce391321adb0c6df9cdad356CAS |
[32] D. W. Nelson, J. M. Bremner, Gaseous products of nitrite decomposition in soils. Soil Biol. Biochem. 1970, 2, 203.
| Gaseous products of nitrite decomposition in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXltF2ksL4%3D&md5=6e80feb3e0256a37eabe5ea3fd889594CAS |
[33] D. W. Nelson, J. M. Bremner, Role of soil minerals and metallic cations in nitrite decomposition and chemodenitrification in soils. Soil Biol. Biochem. 1970, 2, 1.
| Role of soil minerals and metallic cations in nitrite decomposition and chemodenitrification in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXktlChsbY%3D&md5=37b2ce8a1fe55d6cb331d1217cb52782CAS |
[34] Bothner-By A.Friedman L.,
[35] M. N. Hughes, G. Stedman, Kinetics and mechanism of reaction between nitrous acid and hydroxylamine. 1. J. Chem. Soc. 1963, 2824.
| Kinetics and mechanism of reaction between nitrous acid and hydroxylamine. 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXktVSntL0%3D&md5=901f228041848a225f021c2a80a539d6CAS |
[36] H. A. David, Further applications of range to analysis of variance. Biometrika 1951, 38, 393.
[37] H. W. Bange, A. Dale, H. P. Hansen, J. Karstensen, F. Malien, C. Petereit, K. Laß, G. Friedrichs, Boknis Eck Time Series Station (SW Baltic Sea): measurements from 1957 to 2010. Inprint 2011, 1, 16.
[38] H. P. Hansen, H. C. Giesenhagen, G. Behrends, Seasonal and long-term control of bottom water oxygen deficiency in a stratified shallow-coastal system. ICES J. Mar. Sci. 1999, 56, 65.
| Seasonal and long-term control of bottom water oxygen deficiency in a stratified shallow-coastal system.Crossref | GoogleScholarGoogle Scholar |
[39] A. Kock, J. Schafstall, M. Dengler, P. Brandt, H. W. Bange, Sea-to-air and diapycnal nitrous oxide fluxes in the eastern tropical North Atlantic Ocean. Biogeosciences 2012, 9, 957.
| Sea-to-air and diapycnal nitrous oxide fluxes in the eastern tropical North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Gks7zJ&md5=cc8cfae9a0e429c6aa6341c0c47c35a8CAS |
[40] S. Walter, H. W. Bange, U. Breitenbach, D. W. R. Wallace, Nitrous oxide in the North Atlantic Ocean. Biogeosciences 2006, 3, 607.
| Nitrous oxide in the North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivF2htrk%3D&md5=7e1156f38e9145f5c1fc992864e7745bCAS |
[41] M. W. Lomas, F. Lipschultz, Forming the primary nitrite maximum: nitrifiers or phytoplankton? Limnol. Oceanogr. 2006, 51, 2453.
| Forming the primary nitrite maximum: nitrifiers or phytoplankton?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOisr7P&md5=89268f18ea0c56d1d25fdf63ca01f4ccCAS |
[42] H. P. Hansen, F. Koroleff, Determination of nutrients, in Methods of Seawater Analysis (Eds K. Grasshoff, K. Kremling, M. Ehrhardt) 1999, pp. 159–228 (Wiley-VCH: Weinheim, Germany).
[43] E. D. Hughes, C. K. Ingold, J. H. Ridd, Nitrosation, diazotisation and deamination. 1. Principles, background and method for the kinetic study of diazotisation. J. Chem. Soc. 1958, 1958, 58.
| Nitrosation, diazotisation and deamination. 1. Principles, background and method for the kinetic study of diazotisation.Crossref | GoogleScholarGoogle Scholar |
[44] B. F. Rider, M. G. Mellon, Colorimetric determination of nitrites. Ind. Eng. Chem. 1946, 18, 96.
| 1:CAS:528:DyaH28XpslOh&md5=d2d5535b73f4dc14c698f135cb49fff9CAS |
[45] T. Inoue, Influence of reagent concentration and reaction rate on colorimetry of nitrite ion by Saltman Method. Bunseki Kagaku 2010, 59, 35.
| Influence of reagent concentration and reaction rate on colorimetry of nitrite ion by Saltman Method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslKmtg%3D%3D&md5=6bb347ca5c14cd5c929105177b6ca306CAS |
[46] P. Lam, M. M. Jensen, A. Kock, K. A. Lettmann, Y. Plancherel, G. Lavik, H. W. Bange, M. M. Kuypers, Origin and fate of the secondary nitrite maximum in the Arabian Sea. Biogeosciences 2011, 8, 1565.
| Origin and fate of the secondary nitrite maximum in the Arabian Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12rt7bK&md5=b37460c8227cec96c8053cf8cf741606CAS |
[47] L. A. Codispoti, G. E. Friederich, T. T. Packard, H. E. Glover, P. J. Kelly, R. W. Spinrad, R. T. Barber, J. W. Elkins, B. B. Ward, F. Lipschultz, N. Lostaunau, High nitrite levels off northern Peru: a signal of instability in the marine denitrification rate. Science 1986, 233, 1200.
| High nitrite levels off northern Peru: a signal of instability in the marine denitrification rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlsFygtbc%3D&md5=9c780e9f82dcccaec43f312ee426a072CAS |