Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
REVIEW (Open Access)

Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical review of the most recent advances

Alexander Laskin A D , Julia Laskin B and Sergey A. Nizkorodov C
+ Author Affiliations
- Author Affiliations

A Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA.

B Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA. Email: julia.laskin@pnnl.gov

C Department of Chemistry, University of California, Irvine, CA 92697, USA. Email: nizkorod@uci.edu

D Corresponding author. Email: alexander.laskin@pnnl.gov




Alexander Laskin is a Senior Research Scientist at Pacific Northwest National Laboratory (PNNL). He received his M.Sc. degree (physics) in 1991 from the Leningrad Polytechnical Institute, Russia, and Ph.D. degree (physical chemistry) in 1998 from the Hebrew University of Jerusalem, Israel. Following postdoctoral research appointments at the University of Delaware (1998–99) and PNNL (1999–2001), he became a permanent PNNL scientist in 2001. His present and past research interests include: physical and analytical chemistry of environmental aerosols, environmental and atmospheric effects of aerosols, combustion-related aerosols, combustion chemistry and chemical kinetics.



Julia Laskin is a Laboratory Fellow at PNNL. She received her M.Sc. degree in physics from the Leningrad Polytechnical Institute (1990) and her Ph.D. degree in physical chemistry from the Hebrew University of Jerusalem (1998). She was a postdoctoral fellow at the University of Delaware (1998–99) and PNNL (2000–2002). She became a research scientist at PNNL in 2002. Her research is focussed on understanding activation and dissociation following collisions of complex ions with surfaces, selective surface modification using ion beams and developing new approaches for characterisation of the chemical composition of organic aerosols and biological materials.



Sergey A. Nizkorodov is an Associate Professor at the University of California, Irvine. He received his M.Sc. degree in biochemistry from Novosibirsk State University, Russia (1993) and Ph.D. degree in chemical physics from Basel University, Switzerland (1997). After doing his postdoctoral research in chemical kinetics and reaction dynamics at the University of Colorado at Boulder and in atmospheric chemistry at the California Institute of Technology, he joined the faculty at the University of California, Irvine Chemistry Department in 2002. His current research interests include atmospheric photochemistry, air pollution in the outdoor and indoor environments and aerosol science.

Environmental Chemistry 9(3) 163-189 https://doi.org/10.1071/EN12052
Submitted: 4 April 2012  Accepted: 16 May 2012   Published: 29 June 2012

Journal Compilation © CSIRO Publishing 2012 Open Access CC BY-NC-ND

Environmental context. Atmospheric aerosols have profound effects on the environment through several physicochemical processes, such as absorption and scattering of sunlight, heterogeneous gas–particle reactions and adverse effects on the respiratory and cardiovascular systems. Understanding aerosol atmospheric chemistry and its environmental impact requires comprehensive characterisation of the physical and chemical properties of particles. Results from mass spectrometry provide important new insights into the origin of atmospheric aerosols, the evolution of their physicochemical properties, their reactivity and their effect on the environment.

Abstract. This manuscript presents an overview of the most recent instrument developments for the field and laboratory applications of mass spectrometry (MS) to investigate the chemistry and physics of atmospheric aerosols. A range of MS instruments, employing different sample introduction methods, ionisation and mass detection techniques are used both for ‘online’ and ‘offline’ characterisation of aerosols. Online MS techniques enable detection of individual particles with simultaneous measurement of particle size distributions and aerodynamic characteristics and are ideally suited for field studies that require high temporal resolution. Offline MS techniques provide a means for detailed molecular-level analysis of aerosol samples, which is essential to gain fundamental knowledge regarding aerosol chemistry, mechanisms of particle formation and atmospheric aging. Combined, complementary MS techniques provide comprehensive information on the chemical composition, size, morphology and phase of aerosols – data of key importance for evaluating hygroscopic and optical properties of particles, their health effects, understanding their origins and atmospheric evolution. Over the last few years, developments and applications of MS techniques in aerosol research have expanded remarkably as evident by skyrocketing publication statistics. The goal of this review is to present the most recent developments in the field of aerosol mass spectrometry for the time period of late 2010 to early 2012, which have not been conveyed in previous reviews.


References

[1]  S. Menon, N. Unger, D. Koch, J. Francis, T. Garrett, I. Sednev, D. Shindell, D. Streets, Aerosol climate effects and air quality impacts from 1980 to 2030. Environ. Res. Lett. 2008, 3, 024004.
Aerosol climate effects and air quality impacts from 1980 to 2030.Crossref | GoogleScholarGoogle Scholar |

[2]  U. Pöschl, Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 2005, 44, 7520.
Atmospheric aerosols: composition, transformation, climate and health effects.Crossref | GoogleScholarGoogle Scholar |

[3]  I. J. George, J. P. D. Abbatt, Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nat. Chem. 2010, 2, 713.
Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals.Crossref | GoogleScholarGoogle Scholar |

[4]  U. Pöschl, Gas-particle interactions of tropospheric aerosols: kinetic and thermodynamic perspectives of multiphase chemical reactions, amorphous organic substances, and the activation of cloud condensation nuclei. Atmos. Res. 2011, 101, 562.
Gas-particle interactions of tropospheric aerosols: kinetic and thermodynamic perspectives of multiphase chemical reactions, amorphous organic substances, and the activation of cloud condensation nuclei.Crossref | GoogleScholarGoogle Scholar |

[5]  W. L. Chang, P. V. Bhave, S. S. Brown, N. Riemer, J. Stutz, D. Dabdub, Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: a review. Aerosol Sci. Technol. 2011, 45, 665.
Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: a review.Crossref | GoogleScholarGoogle Scholar |

[6]  C. E. Kolb, R. A. Cox, J. P. D. Abbatt, M. Ammann, E. J. Davis, D. J. Donaldson, B. C. Garrett, C. George, P. T. Griffiths, D. R. Hanson, M. Kulmala, G. McFiggans, U. Pöschl, I. Riipinen, M. J. Rossi, Y. Rudich, P. E. Wagner, P. M. Winkler, D. R. Worsnop, C. D. O’Dowd, An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos. Chem. Phys. 2010, 10, 10 561.
An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds.Crossref | GoogleScholarGoogle Scholar |

[7]  D. Fowler, K. Pilegaard, M. A. Sutton, P. Ambus, M. Raivonen, J. Duyzer, D. Simpson, H. Fagerli, S. Fuzzi, J. K. Schjoerring, C. Granier, A. Neftel, I. S. A. Isaksen, P. Laj, M. Maione, P. S. Monks, J. Burkhardt, U. Daemmgen, J. Neirynck, E. Personne, R. Wichink-Kruit, K. Butterbach-Bahl, C. Flechard, J. P. Tuovinen, M. Coyle, G. Gerosa, B. Loubet, N. Altimir, L. Gruenhage, C. Ammann, S. Cieslik, E. Paoletti, T. N. Mikkelsen, H. Ro-Poulsen, P. Cellier, J. N. Cape, L. Horvath, F. Loreto, U. Niinemets, P. I. Palmer, J. Rinne, P. Misztal, E. Nemitz, D. Nilsson, S. Pryor, M. W. Gallagher, T. Vesala, U. Skiba, N. Brueggemann, S. Zechmeister-Boltenstern, J. Williams, C. O’Dowd, M. C. Facchini, G. de Leeuw, A. Flossman, N. Chaumerliac, J. W. Erisman, Atmospheric composition change: ecosystems–atmosphere interactions. Atmos. Environ. 2009, 43, 5193.
Atmospheric composition change: ecosystems–atmosphere interactions.Crossref | GoogleScholarGoogle Scholar |

[8]  S. Wu, L. J. Mickley, J. O. Kaplan, D. J. Jacob, Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century. Atmos. Chem. Phys. 2012, 12, 1597.
Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century.Crossref | GoogleScholarGoogle Scholar |

[9]  M. Chin, R. A. Kahn, S. E. Schwartz, Atmospheric Aerosol Properties and Climate Impacts 2009 (Aeronautics and Space Administration: Washington, DC).

[10]  S. J. Ghan, S. E. Schwartz, Aerosol properties and processes – a patha from field and laboratory measurements to global climate models. Bull. Am. Meteorol. Soc. 2007, 88, 1059.
Aerosol properties and processes – a patha from field and laboratory measurements to global climate models.Crossref | GoogleScholarGoogle Scholar |

[11]  A. Nel, Air pollution-related illness: effects of particles. Science 2005, 308, 804.
Air pollution-related illness: effects of particles.Crossref | GoogleScholarGoogle Scholar |

[12]  R. Zimmermann, Ambient aerosols and human health: working towards a combined analytical and toxicological approach. Anal. Bioanal. Chem. 2011, 401, 3041.
Ambient aerosols and human health: working towards a combined analytical and toxicological approach.Crossref | GoogleScholarGoogle Scholar |

[13]  IPCC, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, in Climate Change 2007: The Physical Scientific Basis (Eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller) 2007 (Cambridge University Press: Cambridge, UK, and New York).

[14]  R. D. Brook, S. Rajagopalan, C. A. Pope, J. R. Brook, A. Bhatnagar, A. V. Diez-Roux, F. Holguin, Y. L. Hong, R. V. Luepker, M. A. Mittleman, A. Peters, D. Siscovick, S. C. Smith, L. Whitsel, J. D. Kaufman, Particulate matter air pollution and cardiovascular disease an update to the scientific statement from the American heart association. Circulation 2010, 121, 2331.
Particulate matter air pollution and cardiovascular disease an update to the scientific statement from the American heart association.Crossref | GoogleScholarGoogle Scholar |

[15]  L. T. Molina, M. J. Molina, Air Quality in the Mexico Megacity: An Integrated Assessment 2002 (Kluwer Academic Publishers: Dordrecht, the Netherlands).

[16]  M. G. Lawrence, T. M. Butler, J. Steinkamp, B. R. Gurjar, J. Lelieveld, Regional pollution potentials of megacities and other major population centers. Atmos. Chem. Phys. 2007, 7, 3969.
Regional pollution potentials of megacities and other major population centers.Crossref | GoogleScholarGoogle Scholar |

[17]  M. Hallquist, J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, J. F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M. E. Jenkin, J. L. Jimenez, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, T. F. Mentel, A. Monod, A. S. H. Prevot, J. H. Seinfeld, J. D. Surratt, R. Szmigielski, J. Wildt, The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155.
The formation, properties and impact of secondary organic aerosol: current and emerging issues.Crossref | GoogleScholarGoogle Scholar |

[18]  L. T. Molina, S. Madronich, J. S. Gaffney, E. Apel, B. de Foy, J. Fast, R. Ferrare, S. Herndon, J. L. Jimenez, B. Lamb, A. R. Osornio-Vargas, P. Russell, J. J. Schauer, P. S. Stevens, R. Volkamer, M. Zavala, An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmos. Chem. Phys. 2010, 10, 8697.
An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation.Crossref | GoogleScholarGoogle Scholar |

[19]  R. A. Zaveri, W. J. Shaw, D. J. Cziczo, B. Schmid, R. A. Ferrare, M. L. Alexander, M. Alexandrov, W. P. Arnott, D. Atkinson, J. C. Barnard, L. K. Berg, J. Beranek, F. Brechtel, J. F. Cahill, B. Cairns, C. D. Cappa, S. China, J. Comstock, M. K. Dubey, R. C. Easter, M. H. Erickson, J. D. Fast, C. Floerchinger, B. A. Flowers, E. Fortner, J. S. Gaffney, M. K. Gilles, K. Gorkowski, W. I. Gustafson, M. Gyawali, J. Hair, J. W. Harworth, S. C. Herndon, C. Hostetler, J. M. Hubbe, J. T. Jayne, H. Jeong, B. T. Jobson, E. Kassianov, L. I. Kleinman, K. R. Kolesar, C. Kluzek, B. Knighton, A. Kubátová, C. Kuang, A. Laskin, N. Laulainen, C. Mazzoleni, F. Mei, R. C. Moffet, D. Nelson, M. Obland, T. B. Onasch, M. Ottaviani, M. Pekour, K. A. Prather, J. G. Radney, A. Sedlacek, G. I. Senum, A. Setyan, J. E. Shilling, M. Shrivastava, C. Song, S. R. Springston, R. Subramanian, K. Suski, J. Tomlinson, H. W. Wallace, J. Wang, D. R. Worsnop, A. Zelenyuk, Q. Zhang, Overview of the 2010 carbonaceous aerosols and radiative effects study (CARES). Atmos. Chem. Phys. Discuss. 2012, 12, 1299.
Overview of the 2010 carbonaceous aerosols and radiative effects study (CARES).Crossref | GoogleScholarGoogle Scholar |

[20]  R. C. Moffet, Y. Desyaterik, R. J. Hopkins, A. V. Tivanski, M. K. Gilles, Y. Wang, V. Shutthanandan, L. T. Molina, R. G. Abraham, K. S. Johnson, V. Mugica, M. J. Molina, A. Laskin, K. A. Prather, Characterization of aerosols containing Zn, Pb, and Cl from an industrial region of Mexico City. Environ. Sci. Technol. 2008, 42, 7091.
Characterization of aerosols containing Zn, Pb, and Cl from an industrial region of Mexico City.Crossref | GoogleScholarGoogle Scholar |

[21]  R. C. Moffet, T. R. Henn, A. V. Tivanski, R. J. Hopkins, Y. Desyaterik, A. L. D. Kilcoyne, T. Tyliszczak, J. Fast, J. Barnard, V. Shutthanandan, S. S. Cliff, K. D. Perry, A. Laskin, M. K. Gilles, Microscopic characterization of carbonaceous aerosol particle aging in the outflow from Mexico City. Atmos. Chem. Phys. 2010, 10, 961.
Microscopic characterization of carbonaceous aerosol particle aging in the outflow from Mexico City.Crossref | GoogleScholarGoogle Scholar |

[22]  A. Laskin, R. C. Moffet, M. K. Gilles, J. D. Fast, R. A. Zaveri, B. Wang, J. Shutthanandan, Tropospheric chemistry of internally mixed sea salt and organic particles: surprising reactivity of NaCl with weak organic acids. J. Geophys. Res. – Atmos. 2012, in press
Tropospheric chemistry of internally mixed sea salt and organic particles: surprising reactivity of NaCl with weak organic acids.Crossref | GoogleScholarGoogle Scholar |

[23]  C. Arsene, D. Vione, N. Grinberg, R. I. Olariu, GC × GC-MS hyphenated techniques for the analysis of volatile organic compounds in air. J. Liquid Chromatogr. Relat. Technol. 2011, 34, 1077.
GC × GC-MS hyphenated techniques for the analysis of volatile organic compounds in air.Crossref | GoogleScholarGoogle Scholar |

[24]  R. Duarte, A. C. Duarte, A critical review of advanced analytical techniques for water-soluble organic matter from atmospheric aerosols. TRAC – Trends in Analytical Chemistry 2011, 30, 1659.
A critical review of advanced analytical techniques for water-soluble organic matter from atmospheric aerosols.Crossref | GoogleScholarGoogle Scholar |

[25]  M. D. Hays, R. J. Lavrich, Developments in direct thermal extraction gas chromatography-mass spectrometry of fine aerosols. TRAC – Trends in Analytical Chemistry 2007, 26, 88.
Developments in direct thermal extraction gas chromatography-mass spectrometry of fine aerosols.Crossref | GoogleScholarGoogle Scholar |

[26]  S. A. Nizkorodov, J. Laskin, A. Laskin, Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry. Phys. Chem. Chem. Phys. 2011, 13, 3612.
Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[27]  T. Reemtsma, Determination of molecular formulas of natural organic matter molecules by (ultra-) high-resolution mass spectrometry: status and needs. J. Chromatogr. A 2009, 1216, 3687.
Determination of molecular formulas of natural organic matter molecules by (ultra-) high-resolution mass spectrometry: status and needs.Crossref | GoogleScholarGoogle Scholar |

[28]  B. Zielinska, S. Samy, Analysis of nitrated polycyclic aromatic hydrocarbons. Anal. Bioanal. Chem. 2006, 386, 883.
Analysis of nitrated polycyclic aromatic hydrocarbons.Crossref | GoogleScholarGoogle Scholar |

[29]  M. R. Canagaratna, J. T. Jayne, J. L. Jimenez, J. D. Allan, M. R. Alfarra, Q. Zhang, T. B. Onasch, F. Drewnick, H. Coe, A. Middlebrook, A. Delia, L. R. Williams, A. M. Trimborn, M. J. Northway, P. F. DeCarlo, C. E. Kolb, P. Davidovits, D. R. Worsnop, Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 2007, 26, 185.
Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer.Crossref | GoogleScholarGoogle Scholar |

[30]  K. Hartonen, T. Laitinen, M. L. Riekkola, Current instrumentation for aerosol mass spectrometry. TRAC – Trends in Analytical Chemistry 2011, 30, 1486.
Current instrumentation for aerosol mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[31]  M. V. Johnston, Sampling and analysis of individual particles by aerosol mass spectrometry. J. Mass Spectrom. 2000, 35, 585.
Sampling and analysis of individual particles by aerosol mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[32]  D. M. Murphy, P. K. Hudson, D. J. Cziczo, S. Gallavardin, K. D. Froyd, M. V. Johnston, A. M. Middlebrook, M. S. Reinard, D. S. Thomson, T. Thornberry, A. S. Wexler, Distribution of lead in single atmospheric particles. Atmos. Chem. Phys. 2007, 7, 3195.
Distribution of lead in single atmospheric particles.Crossref | GoogleScholarGoogle Scholar |

[33]  D. G. Nash, T. Baer, M. V. Johnston, Aerosol mass spectrometry: an introductory review. Int. J. Mass Spectrom. 2006, 258, 2.
Aerosol mass spectrometry: an introductory review.Crossref | GoogleScholarGoogle Scholar |

[34]  C. A. Noble, K. A. Prather, Real-time single particle mass spectrometry: a historical review of a quarter century of the chemical analysis of aerosols. Mass Spectrom. Rev. 2000, 19, 248.
Real-time single particle mass spectrometry: a historical review of a quarter century of the chemical analysis of aerosols.Crossref | GoogleScholarGoogle Scholar |

[35]  J. Zahardis, S. Geddes, G. A. Petrucci, Improved understanding of atmospheric organic aerosols via innovations in soft ionization aerosol mass spectrometry. Anal. Chem. 2011, 83, 2409.
Improved understanding of atmospheric organic aerosols via innovations in soft ionization aerosol mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[36]  A. Zelenyuk, D. Imre, Beyond single particle mass spectrometry: multidimensional characterisation of individual aerosol particles. Int. Rev. Phys. Chem. 2009, 28, 309.
Beyond single particle mass spectrometry: multidimensional characterisation of individual aerosol particles.Crossref | GoogleScholarGoogle Scholar |

[37]  K. A. Pratt, K. A. Prather, Mass spectrometry of atmospheric aerosols. Recent developments and applications – Part I. Off-line mass spectrometry techniques. Mass Spectrom. Rev. 2012, 31, 1.
Mass spectrometry of atmospheric aerosols. Recent developments and applications – Part I. Off-line mass spectrometry techniques.Crossref | GoogleScholarGoogle Scholar |

[38]  K. A. Pratt, K. A. Prather, Mass spectrometry of atmospheric aerosols. Recent developments and applications – Part II. On-line mass spectrometry techniques. Mass Spectrom. Rev. 2012, 31, 17.
Mass spectrometry of atmospheric aerosols. Recent developments and applications – Part II. On-line mass spectrometry techniques.Crossref | GoogleScholarGoogle Scholar |

[39]  M. Brands, M. Kamphus, T. Bottger, J. Schneider, F. Drewnick, A. Roth, J. Curtius, C. Voigt, A. Borbon, M. Beekmann, A. Bourdon, T. Perrin, S. Borrmann, Characterization of a newly developed aircraft-based laser ablation aerosol mass spectrometer (ALABAMA) and first field deployment in urban pollution plumes over Paris during MEGAPOLI 2009. Aerosol Sci. Technol. 2011, 45, 46.
Characterization of a newly developed aircraft-based laser ablation aerosol mass spectrometer (ALABAMA) and first field deployment in urban pollution plumes over Paris during MEGAPOLI 2009.Crossref | GoogleScholarGoogle Scholar |

[40]  L. Li, Z. X. Huang, J. G. Dong, M. Li, W. Gao, H. Q. Nian, Z. Fu, G. H. Zhang, X. H. Bi, P. Cheng, Z. Zhou, Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles. Int. J. Mass Spectrom. 2011, 303, 118.
Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles.Crossref | GoogleScholarGoogle Scholar |

[41]  P. T. Steele, G. R. Farquar, A. N. Martin, K. R. Coffee, V. J. Riot, S. I. Martin, D. P. Fergenson, E. E. Gard, M. Frank, Autonomous, broad-spectrum detection of hazardous aerosols in seconds. Anal. Chem. 2008, 80, 4583.
Autonomous, broad-spectrum detection of hazardous aerosols in seconds.Crossref | GoogleScholarGoogle Scholar |

[42]  T. D. Vaden, D. Imre, J. Beranek, A. Zelenyuk, Extending the capabilities of single particle mass spectrometry: I. Measurements of aerosol number concentration, size distribution, and asphericity. Aerosol Sci. Technol. 2011, 45, 113.
Extending the capabilities of single particle mass spectrometry: I. Measurements of aerosol number concentration, size distribution, and asphericity.Crossref | GoogleScholarGoogle Scholar |

[43]  T. D. Vaden, D. Imre, J. Beranek, A. Zelenyuk, Extending the capabilities of single particle mass spectrometry: II. Measurements of aerosol particle density without DMA. Aerosol Sci. Technol. 2011, 45, 125.
Extending the capabilities of single particle mass spectrometry: II. Measurements of aerosol particle density without DMA.Crossref | GoogleScholarGoogle Scholar |

[44]  J. Beranek, A. Imre, A. Zelenyuk, Real-time shape-based particle separation and detailed in situ particle shape characterization. Anal. Chem. 2012, 84, 1459.
Real-time shape-based particle separation and detailed in situ particle shape characterization.Crossref | GoogleScholarGoogle Scholar |

[45]  M. Oster, M. Elsasser, J. Schnelle-Kreis, R. Zimmermann, First field application of a thermal desorption resonance-enhanced multiphoton-ionisation single particle time-of-flight mass spectrometer for the on-line detection of particle-bound polycyclic aromatic hydrocarbons. Anal. Bioanal. Chem. 2011, 401, 3173.
First field application of a thermal desorption resonance-enhanced multiphoton-ionisation single particle time-of-flight mass spectrometer for the on-line detection of particle-bound polycyclic aromatic hydrocarbons.Crossref | GoogleScholarGoogle Scholar |

[46]  T. W. Adam, R. Chirico, M. Clairotte, M. Elsasser, U. Manfredi, G. Martini, M. Sklorz, T. Streibel, M. F. Heringa, P. F. DeCarlo, U. Baltensperger, G. De Santi, A. Krasenbrink, R. Zimmermann, A. S. H. Prevot, C. Astorga, Application of modern online instrumentation for chemical analysis of gas and particulate phases of exhaust at the European commission heavy-duty vehicle emission laboratory. Anal. Chem. 2011, 83, 67.
Application of modern online instrumentation for chemical analysis of gas and particulate phases of exhaust at the European commission heavy-duty vehicle emission laboratory.Crossref | GoogleScholarGoogle Scholar |

[47]  J. Grabowsky, T. Streibel, M. Sklorz, J. C. Chow, J. G. Watson, A. Mamakos, R. Zimmermann, Hyphenation of a carbon analyzer to photo-ionization mass spectrometry to unravel the organic composition of particulate matter on a molecular level. Anal. Bioanal. Chem. 2011, 401, 3153.
Hyphenation of a carbon analyzer to photo-ionization mass spectrometry to unravel the organic composition of particulate matter on a molecular level.Crossref | GoogleScholarGoogle Scholar |

[48]  W. Z. Fang, L. Gong, X. B. Shan, F. Y. Liu, Z. Y. Wang, L. S. Sheng, Thermal desorption/tunable vacuum-ultraviolet time-of-flight photoionization aerosol mass spectrometry for investigating secondary organic aerosols in chamber experiments. Anal. Chem. 2011, 83, 9024.
Thermal desorption/tunable vacuum-ultraviolet time-of-flight photoionization aerosol mass spectrometry for investigating secondary organic aerosols in chamber experiments.Crossref | GoogleScholarGoogle Scholar |

[49]  W. Z. Fang, L. Gong, X. B. Shan, Y. J. Zhao, F. Y. Liu, Z. Y. Wang, L. S. Sheng, Photoionization and dissociation of the monoterpene limonene: mass spectrometric and computational investigation. J. Mass Spectrom. 2011, 46, 1152.
Photoionization and dissociation of the monoterpene limonene: mass spectrometric and computational investigation.Crossref | GoogleScholarGoogle Scholar |

[50]  C. B. Robinson, J. R. Kimmel, D. E. David, J. T. Jayne, A. Trimborn, D. R. Worsnop, J. L. Jimenez, Thermal desorption metastable atom bombardment ionization aerosol mass spectrometer. Int. J. Mass Spectrom. 2011, 303, 164.
Thermal desorption metastable atom bombardment ionization aerosol mass spectrometer.Crossref | GoogleScholarGoogle Scholar |

[51]  A. M. Middlebrook, R. Bahreini, J. L. Jimenez, M. R. Canagaratna, Evaluation of composition-dependent collection efficiencies for the Aerodyne aerosol mass spectrometer using field data. Aerosol Sci. Technol. 2012, 46, 258.
Evaluation of composition-dependent collection efficiencies for the Aerodyne aerosol mass spectrometer using field data.Crossref | GoogleScholarGoogle Scholar |

[52]  N. L. Ng, M. R. Canagaratna, J. L. Jimenez, P. S. Chhabra, J. H. Seinfeld, D. R. Worsnop, Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmos. Chem. Phys. 2011, 11, 6465.
Changes in organic aerosol composition with aging inferred from aerosol mass spectra.Crossref | GoogleScholarGoogle Scholar |

[53]  N. L. Ng, M. R. Canagaratna, J. L. Jimenez, Q. Zhang, I. M. Ulbrich, D. R. Worsnop, Real-time methods for estimating organic component mass concentrations from aerosol mass spectrometer data. Environ. Sci. Technol. 2011, 45, 910.
Real-time methods for estimating organic component mass concentrations from aerosol mass spectrometer data.Crossref | GoogleScholarGoogle Scholar |

[54]  A. A. Mensah, A. Buchholz, T. F. Mentel, R. Tillmann, A. Kiendler-Scharr, Aerosol mass spectrometric measurements of stable crystal hydrates of oxalates and inferred relative ionization efficiency of water. J. Aerosol Sci. 2011, 42, 11.
Aerosol mass spectrometric measurements of stable crystal hydrates of oxalates and inferred relative ionization efficiency of water.Crossref | GoogleScholarGoogle Scholar |

[55]  N. L. Ng, S. C. Herndon, A. Trimborn, M. R. Canagaratna, P. L. Croteau, T. B. Onasch, D. Sueper, D. R. Worsnop, Q. Zhang, Y. L. Sun, J. T. Jayne, An aerosol chemical speciation monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient aerosol. Aerosol Sci. Technol. 2011, 45, 780.
An aerosol chemical speciation monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient aerosol.Crossref | GoogleScholarGoogle Scholar |

[56]  J. R. Kimmel, D. K. Farmer, M. J. Cubison, D. Sueper, C. Tanner, E. Nemitz, D. R. Worsnop, M. Gonin, J. L. Jimenez, Real-time aerosol mass spectrometry with millisecond resolution. Int. J. Mass Spectrom. 2011, 303, 15.
Real-time aerosol mass spectrometry with millisecond resolution.Crossref | GoogleScholarGoogle Scholar |

[57]  D. K. Farmer, J. R. Kimmel, G. Phillips, K. S. Docherty, D. R. Worsnop, D. Sueper, E. Nemitz, J. L. Jimenez, Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes. Atmos. Meas. Tech. 2011, 4, 1275.
Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes.Crossref | GoogleScholarGoogle Scholar |

[58]  M. Müller, C. George, B. D’Anna, Enhanced spectral analysis of C-TOF aerosol mass spectrometer data: iterative residual analysis and cumulative peak fitting. Int. J. Mass Spectrom. 2011, 306, 1.
Enhanced spectral analysis of C-TOF aerosol mass spectrometer data: iterative residual analysis and cumulative peak fitting.Crossref | GoogleScholarGoogle Scholar |

[59]  M. D. Zauscher, M. J. K. Moore, G. S. Lewis, S. V. Hering, K. A. Prather, Approach for measuring the chemistry of individual particles in the size range critical for cloud formation. Anal. Chem. 2011, 83, 2271.
Approach for measuring the chemistry of individual particles in the size range critical for cloud formation.Crossref | GoogleScholarGoogle Scholar |

[60]  S. Y. Wang, C. A. Zordan, M. V. Johnston, Chemical characterization of individual, airborne sub-10-nm particles and molecules. Anal. Chem. 2006, 78, 1750.
Chemical characterization of individual, airborne sub-10-nm particles and molecules.Crossref | GoogleScholarGoogle Scholar |

[61]  C. A. Zordan, M. R. Pennington, M. V. Johnston, Elemental composition of nanoparticles with the nano aerosol mass spectrometer. Anal. Chem. 2010, 82, 8034.
Elemental composition of nanoparticles with the nano aerosol mass spectrometer.Crossref | GoogleScholarGoogle Scholar |

[62]  J. P. Klems, C. A. Zordan, M. R. Pennington, M. V. Johnston, Chemical composition of ambient nanoparticles on a particle-by-particle basis. Anal. Chem. 2012, 84, 2253.
Chemical composition of ambient nanoparticles on a particle-by-particle basis.Crossref | GoogleScholarGoogle Scholar |

[63]  B. L. Yoder, J. H. Litman, P. W. Forysinski, J. L. Corbett, R. Signorell, Sizer for neutral weakly bound ultrafine aerosol particles based on sodium doping and mass spectrometric detection. J. Phys. Chem. Lett. 2011, 2, 2623.
Sizer for neutral weakly bound ultrafine aerosol particles based on sodium doping and mass spectrometric detection.Crossref | GoogleScholarGoogle Scholar |

[64]  N. J. D. González, A. K. Borg-Karlson, J. P. Redeby, B. Noziere, R. Krejci, Y. X. Pei, J. Dommen, A. S. H. Prevot, New method for resolving the enantiomeric composition of 2-methyltetrols in atmospheric organic aerosols. J. Chromatogr. A 2011, 1218, 9288.
New method for resolving the enantiomeric composition of 2-methyltetrols in atmospheric organic aerosols.Crossref | GoogleScholarGoogle Scholar |

[65]  J. Schnelle-Kreis, J. Orasche, G. Abbaszade, K. Schafer, D. P. Harlos, A. D. A. Hansen, R. Zimmermann, Application of direct thermal desorption gas chromatography time-of-flight mass spectrometry for determination of nonpolar organics in low-volume samples from ambient particulate matter and personal samplers. Anal. Bioanal. Chem. 2011, 401, 3083.
Application of direct thermal desorption gas chromatography time-of-flight mass spectrometry for determination of nonpolar organics in low-volume samples from ambient particulate matter and personal samplers.Crossref | GoogleScholarGoogle Scholar |

[66]  J. Orasche, J. Schnelle-Kreis, G. Abbaszade, R. Zimmermann, Technical Note: In-situ derivatization thermal desorption GC-TOFMS for direct analysis of particle-bound non-polar and polar organic species. Atmos. Chem. Phys. 2011, 11, 8977.
Technical Note: In-situ derivatization thermal desorption GC-TOFMS for direct analysis of particle-bound non-polar and polar organic species.Crossref | GoogleScholarGoogle Scholar |

[67]  K. Kowalewski, T. Gierczak, Multistep derivatization method for the determination of multifunctional oxidation products from the reaction of α-pinene with ozone. J. Chromatogr. A 2011, 1218, 7264.
Multistep derivatization method for the determination of multifunctional oxidation products from the reaction of α-pinene with ozone.Crossref | GoogleScholarGoogle Scholar |

[68]  M. Z. Özel, J. F. Hamilton, A. C. Lewis, New sensitive and quantitative analysis method for organic nitrogen compounds in urban aerosol samples. Environ. Sci. Technol. 2011, 45, 1497.
New sensitive and quantitative analysis method for organic nitrogen compounds in urban aerosol samples.Crossref | GoogleScholarGoogle Scholar |

[69]  D. R. Hanson, P. H. McMurry, J. Jiang, D. Tanner, L. G. Huey, Ambient pressure proton transfer mass spectrometry: detection of amines and ammonia. Environ. Sci. Technol. 2011, 45, 8881.
Ambient pressure proton transfer mass spectrometry: detection of amines and ammonia.Crossref | GoogleScholarGoogle Scholar |

[70]  Z. Kitanovski, I. Grgic, M. Veber, Characterization of carboxylic acids in atmospheric aerosols using hydrophilic interaction liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 4417.
Characterization of carboxylic acids in atmospheric aerosols using hydrophilic interaction liquid chromatography tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[71]  C. J. Kampf, B. Bonn, T. Hoffmann, Development and validation of a selective HPLC-ESI-MS/MS method for the quantification of glyoxal and methylglyoxal in atmospheric aerosols (PM2.5). Anal. Bioanal. Chem. 2011, 401, 3115.
Development and validation of a selective HPLC-ESI-MS/MS method for the quantification of glyoxal and methylglyoxal in atmospheric aerosols (PM2.5).Crossref | GoogleScholarGoogle Scholar |

[72]  S. Samy, J. Robinson, M. D. Hays, An advanced LC-MS (Q-TOF) technique for the detection of amino acids in atmospheric aerosols. Anal. Bioanal. Chem. 2011, 401, 3103.
An advanced LC-MS (Q-TOF) technique for the detection of amino acids in atmospheric aerosols.Crossref | GoogleScholarGoogle Scholar |

[73]  E. A. Bruns, V. Perraud, J. Greaves, B. J. Finlayson-Pitts, Atmospheric solids analysis probe mass spectrometry: a new approach for airborne particle analysis. Anal. Chem. 2010, 82, 5922.
Atmospheric solids analysis probe mass spectrometry: a new approach for airborne particle analysis.Crossref | GoogleScholarGoogle Scholar |

[74]  J. Laskin, A. Laskin, P. J. Roach, G. W. Slysz, G. A. Anderson, S. A. Nizkorodov, D. L. Bones, L. Q. Nguyen, High-resolution desorption electrospray ionization mass spectrometry for chemical characterization of organic aerosols. Anal. Chem. 2010, 82, 2048.
High-resolution desorption electrospray ionization mass spectrometry for chemical characterization of organic aerosols.Crossref | GoogleScholarGoogle Scholar |

[75]  P. J. Roach, J. Laskin, A. Laskin, Molecular characterization of organic aerosols using nanospray desorption/electrospray ionization mass spectrometry. Anal. Chem. 2010, 82, 7979.
Molecular characterization of organic aerosols using nanospray desorption/electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[76]  P. J. Roach, J. Laskin, A. Laskin, Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst (Lond.) 2010, 135, 2233.
Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[77]  T. B. Nguyen, P. B. Lee, K. M. Updyke, D. L. Bones, J. Laskin, A. Laskin, S. A. Nizkorodov, Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols. J. Geophys. Res. – Atmos. 2012, 117, D01207.
Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols.Crossref | GoogleScholarGoogle Scholar |

[78]  T. B. Nguyen, P. J. Roach, J. Laskin, A. Laskin, S. A. Nizkorodov, Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol. Atmos. Chem. Phys. 2011, 11, 6931.
Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[79]  B. J. Tyler, S. Dambach, S. Galla, R. E. Peterson, H. F. Arlinghaus, Investigation of the utility of laser-secondary neutral mass spectrometry for the detection of polyaromatic hydrocarbons in individual atmospheric aerosol particles. Anal. Chem. 2012, 84, 76.
Investigation of the utility of laser-secondary neutral mass spectrometry for the detection of polyaromatic hydrocarbons in individual atmospheric aerosol particles.Crossref | GoogleScholarGoogle Scholar |

[80]  P. Brender, R. Gadiou, J.-C. Rietsch, P. Fioux, J. Dentzer, A. Ponche, C. Vix-Guterl, Characterization of carbon surface chemistry by combined temperature programmed desorption with in situ X-ray photoelectron spectrometry and temperature programmed desorption with mass spectrometry analysis. Anal. Chem. 2012, 84, 2147.
Characterization of carbon surface chemistry by combined temperature programmed desorption with in situ X-ray photoelectron spectrometry and temperature programmed desorption with mass spectrometry analysis.Crossref | GoogleScholarGoogle Scholar |

[81]  S.-H. Lee, H. C. Allen, Analytical measurements of atmospheric urban aerosol. Anal. Chem. 2012, 84, 1196.
Analytical measurements of atmospheric urban aerosol.Crossref | GoogleScholarGoogle Scholar |

[82]  Q. Zhang, J. L. Jimenez, M. R. Canagaratna, I. M. Ulbrich, N. L. Ng, D. R. Worsnop, Y. L. Sun, Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Anal. Bioanal. Chem. 2011, 401, 3045.
Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review.Crossref | GoogleScholarGoogle Scholar |

[83]  I. M. Ulbrich, M. R. Canagaratna, M. J. Cubison, Q. Zhang, N. L. Ng, A. C. Aiken, J. L. Jimenez, Three-dimensional factorization of size-resolved organic aerosol mass spectra from Mexico City. Atmos. Meas. Tech. 2012, 5, 195.
Three-dimensional factorization of size-resolved organic aerosol mass spectra from Mexico City.Crossref | GoogleScholarGoogle Scholar |

[84]  L. Y. He, X. F. Huang, L. Xue, M. Hu, Y. Lin, J. Zheng, R. Y. Zhang, Y. H. Zhang, Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry. J. Geophys. Res. – Atmos. 2011, 116, D12304.
Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[85]  S. P. Hersey, J. S. Craven, K. A. Schilling, A. R. Metcalf, A. Sorooshian, M. N. Chan, R. C. Flagan, J. H. Seinfeld, The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles basin aerosol. Atmos. Chem. Phys. 2011, 11, 7417.
The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles basin aerosol.Crossref | GoogleScholarGoogle Scholar |

[86]  D. Liu, J. Allan, B. Corris, M. Flynn, E. Andrews, J. Ogren, K. Beswick, K. Bower, R. Burgess, T. Choularton, J. Dorsey, W. Morgan, P. I. Williams, H. Coe, Carbonaceous aerosols contributed by traffic and solid fuel burning at a polluted rural site in Northwestern England. Atmos. Chem. Phys. 2011, 11, 1603.
Carbonaceous aerosols contributed by traffic and solid fuel burning at a polluted rural site in Northwestern England.Crossref | GoogleScholarGoogle Scholar |

[87]  C. Mohr, R. Richter, P. F. DeCarlo, A. S. H. Prevot, U. Baltensperger, Spatial variation of chemical composition and sources of submicron aerosol in Zurich during wintertime using mobile aerosol mass spectrometer data. Atmos. Chem. Phys. 2011, 11, 7465.
Spatial variation of chemical composition and sources of submicron aerosol in Zurich during wintertime using mobile aerosol mass spectrometer data.Crossref | GoogleScholarGoogle Scholar |

[88]  A. Richard, M. F. D. Gianini, C. Mohr, M. Furger, N. Bukowiecki, M. C. Minguillon, P. Lienemann, U. Flechsig, K. Appel, P. F. DeCarlo, M. F. Heringa, R. Chirico, U. Baltensperger, A. S. H. Prevot, Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland. Atmos. Chem. Phys. 2011, 11, 8945.
Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland.Crossref | GoogleScholarGoogle Scholar |

[89]  J. G. Slowik, J. Brook, R. Y. W. Chang, G. J. Evans, K. Hayden, C. H. Jeong, S. M. Li, J. Liggio, P. S. K. Liu, M. McGuire, C. Mihele, S. Sjostedt, A. Vlasenko, J. P. D. Abbatt, Photochemical processing of organic aerosol at nearby continental sites: contrast between urban plumes and regional aerosol. Atmos. Chem. Phys. 2011, 11, 2991.
Photochemical processing of organic aerosol at nearby continental sites: contrast between urban plumes and regional aerosol.Crossref | GoogleScholarGoogle Scholar |

[90]  Y. L. Sun, Q. Zhang, J. J. Schwab, K. L. Demerjian, W. N. Chen, M. S. Bae, H. M. Hung, O. Hogrefe, B. Frank, O. V. Rattigan, Y. C. Lin, Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer. Atmos. Chem. Phys. 2011, 11, 1581.
Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer.Crossref | GoogleScholarGoogle Scholar |

[91]  L. Hildebrandt, E. Kostenidou, V. A. Lanz, A. S. H. Prevot, U. Baltensperger, N. Mihalopoulos, A. Laaksonen, N. M. Donahue, S. N. Pandis, Sources and atmospheric processing of organic aerosol in the Mediterranean: insights from aerosol mass spectrometer factor analysis. Atmos. Chem. Phys. 2011, 11, 12 499.
Sources and atmospheric processing of organic aerosol in the Mediterranean: insights from aerosol mass spectrometer factor analysis.Crossref | GoogleScholarGoogle Scholar |

[92]  X. F. Huang, L. Y. He, M. Hu, M. R. Canagaratna, J. H. Kroll, N. L. Ng, Y. H. Zhang, Y. Lin, L. Xue, T. L. Sun, X. G. Liu, M. Shao, J. T. Jayne, D. R. Worsnop, Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an Aerodyne high-resolution aerosol mass spectrometer. Atmos. Chem. Phys. 2011, 11, 1865.
Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an Aerodyne high-resolution aerosol mass spectrometer.Crossref | GoogleScholarGoogle Scholar |

[93]  Y. L. Sun, Q. Zhang, M. Zheng, X. Ding, E. S. Edgerton, X. M. Wang, Characterization and source apportionment of water-soluble organic matter in atmospheric fine particles (PM2.5) with high-resolution aerosol mass spectrometry and GC-MS. Environ. Sci. Technol. 2011, 45, 4854.
Characterization and source apportionment of water-soluble organic matter in atmospheric fine particles (PM2.5) with high-resolution aerosol mass spectrometry and GC-MS.Crossref | GoogleScholarGoogle Scholar |

[94]  S. M. Li, J. Liggio, L. Graham, G. Lu, J. Brook, C. Stroud, J. Zhang, P. Makar, M. D. Moran, Condensational uptake of semivolatile organic compounds in gasoline engine exhaust onto pre-existing inorganic particles. Atmos. Chem. Phys. 2011, 11, 10 157.
Condensational uptake of semivolatile organic compounds in gasoline engine exhaust onto pre-existing inorganic particles.Crossref | GoogleScholarGoogle Scholar |

[95]  M. A. Miracolo, C. J. Hennigan, M. Ranjan, N. T. Nguyen, T. D. Gordon, E. M. Lipsky, A. A. Presto, N. M. Donahue, A. L. Robinson, Secondary aerosol formation from photochemical aging of aircraft exhaust in a smog chamber. Atmos. Chem. Phys. 2011, 11, 4135.
Secondary aerosol formation from photochemical aging of aircraft exhaust in a smog chamber.Crossref | GoogleScholarGoogle Scholar |

[96]  S. Nakao, M. Shrivastava, A. Nguyen, H. J. Jung, D. Cocker, Interpretation of secondary organic aerosol formation from diesel exhaust photooxidation in an environmental chamber. Aerosol Sci. Technol. 2011, 45, 964.
Interpretation of secondary organic aerosol formation from diesel exhaust photooxidation in an environmental chamber.Crossref | GoogleScholarGoogle Scholar |

[97]  A. A. Presto, N. T. Nguyen, M. Ranjan, A. J. Reeder, E. M. Lipsky, C. J. Hennigan, M. A. Miracolo, D. D. Riemer, A. L. Robinson, Fine particle and organic vapor emissions from staged tests of an in-use aircraft engine. Atmos. Environ. 2011, 45, 3603.
Fine particle and organic vapor emissions from staged tests of an in-use aircraft engine.Crossref | GoogleScholarGoogle Scholar |

[98]  M. Ranjan, A. A. Presto, A. A. May, A. L. Robinson, Temperature dependence of gas-particle partitioning of primary organic aerosol emissions from a small diesel engine. Aerosol Sci. Technol. 2012, 46, 13.
Temperature dependence of gas-particle partitioning of primary organic aerosol emissions from a small diesel engine.Crossref | GoogleScholarGoogle Scholar |

[99]  L. E. Hatch, J. M. Creamean, A. P. Ault, J. D. Surratt, M. N. Chan, J. H. Seinfeld, E. S. Edgerton, Y. X. Su, K. A. Prather, Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry – Part 1. Single particle atmospheric observations in Atlanta. Environ. Sci. Technol. 2011, 45, 5105.
Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry – Part 1. Single particle atmospheric observations in Atlanta.Crossref | GoogleScholarGoogle Scholar |

[100]  L. E. Hatch, J. M. Creamean, A. P. Ault, J. D. Surratt, M. N. Chan, J. H. Seinfeld, E. S. Edgerton, Y. X. Su, K. A. Prather, Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry – Part 2. Temporal variability and formation Mechanisms. Environ. Sci. Technol. 2011, 45, 8648.
Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry – Part 2. Temporal variability and formation Mechanisms.Crossref | GoogleScholarGoogle Scholar |

[101]  P. J. G. Rehbein, C. H. Jeong, M. L. McGuire, X. H. Yao, J. C. Corbin, G. J. Evans, Cloud and fog processing enhanced gas-to-particle partitioning of trimethylamine. Environ. Sci. Technol. 2011, 45, 4346.
Cloud and fog processing enhanced gas-to-particle partitioning of trimethylamine.Crossref | GoogleScholarGoogle Scholar |

[102]  S. K. Tao, X. N. Wang, H. Chen, X. Yang, M. Li, L. Li, Z. Zhou, Single particle analysis of ambient aerosols in Shanghai during the World Exposition, 2010: two case studies. Front. Environ. Sci. Eng. China 2011, 5, 391.
Single particle analysis of ambient aerosols in Shanghai during the World Exposition, 2010: two case studies.Crossref | GoogleScholarGoogle Scholar |

[103]  M. L. McGuire, C. H. Jeong, J. G. Slowik, R. Y. W. Chang, J. C. Corbin, G. Lu, C. Mihele, P. J. G. Rehbein, D. M. L. Sills, J. P. D. Abbatt, J. R. Brook, G. J. Evans, Elucidating determinants of aerosol composition through particle_type-based receptor modeling. Atmos. Chem. Phys. 2011, 11, 8133.
Elucidating determinants of aerosol composition through particle_type-based receptor modeling.Crossref | GoogleScholarGoogle Scholar |

[104]  X. H. Yao, P. J. G. Rehbein, C. J. Lee, G. J. Evans, J. Corbin, C. H. Jeong, A study on the extent of neutralization of sulphate aerosol through laboratory and field experiments using an ATOFMS and a GPIC. Atmos. Environ. 2011, 45, 6251.
A study on the extent of neutralization of sulphate aerosol through laboratory and field experiments using an ATOFMS and a GPIC.Crossref | GoogleScholarGoogle Scholar |

[105]  J. H. Xing, K. Takahashi, A. Yabushita, T. Kinugawa, T. Nakayama, Y. Matsumi, K. Tonokura, A. Takami, T. Imamura, K. Sato, M. Kawasaki, T. Hikida, A. Shimono, Characterization of aerosol particles in the Tokyo metropolitan area using two different particle mass spectrometers. Aerosol Sci. Technol. 2011, 45, 315.
Characterization of aerosol particles in the Tokyo metropolitan area using two different particle mass spectrometers.Crossref | GoogleScholarGoogle Scholar |

[106]  E. Barbaro, R. Zangrando, I. Moret, C. Barbante, P. Cescon, A. Gambaro, Free amino acids in atmospheric particulate matter of Venice, Italy. Atmos. Environ. 2011, 45, 5050.
Free amino acids in atmospheric particulate matter of Venice, Italy.Crossref | GoogleScholarGoogle Scholar |

[107]  M. S. Callén, J. M. López, A. M. Mastral, Characterization of PM10-bound polycyclic aromatic hydrocarbons in the ambient air of Spanish urban and rural areas. J. Environ. Monit. 2011, 13, 319.
Characterization of PM10-bound polycyclic aromatic hydrocarbons in the ambient air of Spanish urban and rural areas.Crossref | GoogleScholarGoogle Scholar |

[108]  H. Yu, S. H. Lee, Development of chemical ionization mass spectrometry for the measurement of atmospheric amines. Environ. Chem. 2012, 9, 190.
Development of chemical ionization mass spectrometry for the measurement of atmospheric amines.Crossref | GoogleScholarGoogle Scholar |

[109]  M. Zheng, Y. Cheng, L. M. Zeng, Y. H. Zhang, Developing chemical signatures of particulate air pollution in the Pearl River Delta region, China. J. Environ. Sci. (China) 2011, 23, 1143.
Developing chemical signatures of particulate air pollution in the Pearl River Delta region, China.Crossref | GoogleScholarGoogle Scholar |

[110]  M. Zheng, F. Wang, G. S. W. Hagler, X. M. Hou, M. Bergin, Y. A. Cheng, L. G. Salmon, J. J. Schauer, P. K. K. Louie, L. M. Zeng, Y. H. Zhang, Sources of excess urban carbonaceous aerosol in the Pearl River Delta Region, China. Atmos. Environ. 2011, 45, 1175.
Sources of excess urban carbonaceous aerosol in the Pearl River Delta Region, China.Crossref | GoogleScholarGoogle Scholar |

[111]  S. Szidat, Radiocarbon analysis of carbonaceous aerosols: recent developments. Chimia (Aarau) 2009, 63, 157.
Radiocarbon analysis of carbonaceous aerosols: recent developments.Crossref | GoogleScholarGoogle Scholar |

[112]  M. R. Heal, P. Naysmith, G. T. Cook, S. Xu, T. R. Duran, R. M. Harrison, Application of 14C analyses to source apportionment of carbonaceous PM2.5 in the UK. Atmos. Environ. 2011, 45, 2341.
Application of 14C analyses to source apportionment of carbonaceous PM2.5 in the UK.Crossref | GoogleScholarGoogle Scholar |

[113]  I. El Haddad, N. Marchand, B. Temime-Roussel, H. Wortham, C. Piot, J. L. Besombes, C. Baduel, D. Voisin, A. Armengaud, J. L. Jaffrezo, Insights into the secondary fraction of the organic aerosol in a Mediterranean urban area: Marseille. Atmos. Chem. Phys. 2011, 11, 2059.
Insights into the secondary fraction of the organic aerosol in a Mediterranean urban area: Marseille.Crossref | GoogleScholarGoogle Scholar |

[114]  I. El Haddad, N. Marchand, H. Wortham, C. Piot, J. L. Besombes, J. Cozic, C. Chauvel, A. Armengaud, D. Robin, J. L. Jaffrezo, Primary sources of PM2.5 organic aerosol in an industrial Mediterranean city, Marseille. Atmos. Chem. Phys. 2011, 11, 2039.
Primary sources of PM2.5 organic aerosol in an industrial Mediterranean city, Marseille.Crossref | GoogleScholarGoogle Scholar |

[115]  M. Glasius, A. la Cour, C. Lohse, Fossil and nonfossil carbon in fine particulate matter: a study of five European cities. J. Geophys. Res. – Atmos. 2011, 116, D11302.
Fossil and nonfossil carbon in fine particulate matter: a study of five European cities.Crossref | GoogleScholarGoogle Scholar |

[116]  A. S. Wozniak, J. E. Bauer, R. M. Dickhut, Characteristics of water-soluble organic carbon associated with aerosol particles in the eastern United States. Atmos. Environ. 2012, 46, 181.
Characteristics of water-soluble organic carbon associated with aerosol particles in the eastern United States.Crossref | GoogleScholarGoogle Scholar |

[117]  A. A. Frossard, P. M. Shaw, L. M. Russell, J. H. Kroll, M. R. Canagaratna, D. R. Worsnop, P. K. Quinn, T. S. Bates, Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources. J. Geophys. Res. – Atmos. 2011, 116, D05205.
Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources.Crossref | GoogleScholarGoogle Scholar |

[118]  H. Furutani, J. Y. Jung, K. Miura, A. Takami, S. Kato, Y. Kajii, M. Uematsu, Single-particle chemical characterization and source apportionment of iron-containing atmospheric aerosols in Asian outflow. J. Geophys. Res. – Atmos. 2011, 116, D18204.
Single-particle chemical characterization and source apportionment of iron-containing atmospheric aerosols in Asian outflow.Crossref | GoogleScholarGoogle Scholar |

[119]  B. Quennehen, A. Schwarzenboeck, J. Schmale, J. Schneider, H. Sodemann, A. Stohl, G. Ancellet, S. Crumeyrolle, K. S. Law, Physical and chemical properties of pollution aerosol particles transported from North America to Greenland as measured during the POLARCAT summer campaign. Atmos. Chem. Phys. 2011, 11, 10947.
Physical and chemical properties of pollution aerosol particles transported from North America to Greenland as measured during the POLARCAT summer campaign.Crossref | GoogleScholarGoogle Scholar |

[120]  D. R. Worton, A. H. Goldstein, D. K. Farmer, K. S. Docherty, J. L. Jimenez, J. B. Gilman, W. C. Kuster, J. de Gouw, B. J. Williams, N. M. Kreisberg, S. V. Hering, G. Bench, M. McKay, K. Kristensen, M. Glasius, J. D. Surratt, J. H. Seinfeld, Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California. Atmos. Chem. Phys. 2011, 11, 10 219.
Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California.Crossref | GoogleScholarGoogle Scholar |

[121]  C. A. Alves, A. Vicente, C. Monteiro, C. Gonçalves, M. Evtyugina, C. Pio, Emission of trace gases and organic components in smoke particles from a wildfire in a mixed-evergreen forest in Portugal. Sci. Total Environ. 2011, 409, 1466.
Emission of trace gases and organic components in smoke particles from a wildfire in a mixed-evergreen forest in Portugal.Crossref | GoogleScholarGoogle Scholar |

[122]  M. J. Cubison, A. M. Ortega, P. L. Hayes, D. K. Farmer, D. Day, M. J. Lechner, W. H. Brune, E. Apel, G. S. Diskin, J. A. Fisher, H. E. Fuelberg, A. Hecobian, D. J. Knapp, T. Mikoviny, D. Riemer, G. W. Sachse, W. Sessions, R. J. Weber, A. J. Weinheimer, A. Wisthaler, J. L. Jimenez, Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmos. Chem. Phys. 2011, 11, 12049.
Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies.Crossref | GoogleScholarGoogle Scholar |

[123]  A. Wonaschütz, S. P. Hersey, A. Sorooshian, J. S. Craven, A. R. Metcalf, R. C. Flagan, J. H. Seinfeld, Impact of a large wildfire on water-soluble organic aerosol in a major urban area: the 2009 Station Fire in Los Angeles County. Atmos. Chem. Phys. 2011, 11, 8257.
Impact of a large wildfire on water-soluble organic aerosol in a major urban area: the 2009 Station Fire in Los Angeles County.Crossref | GoogleScholarGoogle Scholar |

[124]  A. L. Chang-Graham, L. T. M. Profeta, T. J. Johnson, R. J. Yokelson, A. Laskin, J. Laskin, Case study of water-soluble metal containing organic constituents of biomass burning aerosol. Environ. Sci. Technol. 2011, 45, 1257.
Case study of water-soluble metal containing organic constituents of biomass burning aerosol.Crossref | GoogleScholarGoogle Scholar |

[125]  C. Gonçalves, C. Alves, A. P. Fernandes, C. Monteiro, L. Tarelho, M. Evtyugina, C. Pio, Organic compounds in PM2.5 emitted from fireplace and woodstove combustion of typical Portuguese wood species. Atmos. Environ. 2011, 45, 4533.
Organic compounds in PM2.5 emitted from fireplace and woodstove combustion of typical Portuguese wood species.Crossref | GoogleScholarGoogle Scholar |

[126]  C. Gonçalves, M. Evtyugina, C. Alves, C. Monteiro, C. Pio, M. Tomé, Organic particulate emissions from field burning of garden and agriculture residues. Atmos. Res. 2011, 101, 666.
Organic particulate emissions from field burning of garden and agriculture residues.Crossref | GoogleScholarGoogle Scholar |

[127]  C. J. Hennigan, M. A. Miracolo, G. J. Engelhart, A. A. May, A. A. Presto, T. Lee, A. P. Sullivan, G. R. McMeeking, H. Coe, C. E. Wold, W. M. Hao, J. B. Gilman, W. C. Kuster, J. de Gouw, B. A. Schichtel, J. L. Collett, S. M. Kreidenweis, A. L. Robinson, Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber. Atmos. Chem. Phys. 2011, 11, 7669.
Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber.Crossref | GoogleScholarGoogle Scholar |

[128]  M. D. Hays, B. Gullett, C. King, J. Robinson, W. Preston, A. Touati, Characterization of carbonaceous aerosols emitted from outdoor wood boilers. Energy Fuels 2011, 25, 5632.
Characterization of carbonaceous aerosols emitted from outdoor wood boilers.Crossref | GoogleScholarGoogle Scholar |

[129]  M. F. Heringa, P. F. DeCarlo, R. Chirico, T. Tritscher, J. Dommen, E. Weingartner, R. Richter, G. Wehrle, A. S. H. Prevot, U. Baltensperger, Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer. Atmos. Chem. Phys. 2011, 11, 5945.
Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer.Crossref | GoogleScholarGoogle Scholar |

[130]  A. P. Bateman, S. A. Nizkorodov, J. Laskin, A. Laskin, High-resolution electrospray ionization mass spectrometry analysis of water-soluble organic aerosols collected with a particle into liquid sampler. Anal. Chem. 2010, 82, 8010.
High-resolution electrospray ionization mass spectrometry analysis of water-soluble organic aerosols collected with a particle into liquid sampler.Crossref | GoogleScholarGoogle Scholar |

[131]  Y. Iinuma, O. Boge, R. Grafe, H. Herrmann, Methyl-nitrocatechols: atmospheric tracer compounds for biomass burning secondary organic aerosols. Environ. Sci. Technol. 2010, 44, 8453.
Methyl-nitrocatechols: atmospheric tracer compounds for biomass burning secondary organic aerosols.Crossref | GoogleScholarGoogle Scholar |

[132]  S. J. Sjostedt, J. G. Slowik, J. R. Brook, R. Y. W. Chang, C. Mihele, C. A. Stroud, A. Vlasenko, J. P. D. Abbatt, Diurnally resolved particulate and VOC measurements at a rural site: indication of significant biogenic secondary organic aerosol formation. Atmos. Chem. Phys. 2011, 11, 5745.
Diurnally resolved particulate and VOC measurements at a rural site: indication of significant biogenic secondary organic aerosol formation.Crossref | GoogleScholarGoogle Scholar |

[133]  M. Gordon, R. M. Staebler, J. Liggio, A. Vlasenko, S. M. Li, K. Hayden, Aerosol flux measurements above a mixed forest at Borden, Ontario. Atmos. Chem. Phys. 2011, 11, 6773.
Aerosol flux measurements above a mixed forest at Borden, Ontario.Crossref | GoogleScholarGoogle Scholar |

[134]  K. Kristensen, M. Glasius, Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in North West Europe during spring. Atmos. Environ. 2011, 45, 4546.
Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in North West Europe during spring.Crossref | GoogleScholarGoogle Scholar |

[135]  W. R. Leaitch, A. M. Macdonald, P. C. Brickell, J. Liggio, S. J. Sjostedt, A. Vlasenko, J. W. Bottenheim, L. Huang, S. M. Li, P. S. K. Liu, D. Toom-Sauntry, K. A. Hayden, S. Sharma, N. C. Shantz, H. A. Wiebe, W. D. Zhang, J. P. D. Abbatt, J. G. Slowik, R. Y. W. Chang, L. M. Russell, R. E. Schwartz, S. Takahama, J. T. Jayne, N. L. Ng, Temperature response of the submicron organic aerosol from temperate forests. Atmos. Environ. 2011, 45, 6696.
Temperature response of the submicron organic aerosol from temperate forests.Crossref | GoogleScholarGoogle Scholar |

[136]  N. H. Robinson, J. F. Hamilton, J. D. Allan, B. Langford, D. E. Oram, Q. Chen, K. Docherty, D. K. Farmer, J. L. Jimenez, M. W. Ward, C. N. Hewitt, M. H. Barley, M. E. Jenkin, A. R. Rickard, S. T. Martin, G. McFiggans, H. Coe, Evidence for a significant proportion of secondary organic aerosol from isoprene above a maritime tropical forest. Atmos. Chem. Phys. 2011, 11, 1039.
Evidence for a significant proportion of secondary organic aerosol from isoprene above a maritime tropical forest.Crossref | GoogleScholarGoogle Scholar |

[137]  J. Schneider, F. Freutel, S. R. Zorn, Q. Chen, D. K. Farmer, J. L. Jimenez, S. T. Martin, P. Artaxo, A. Wiedensohler, S. Borrmann, Mass- spectrometric identification of primary biological particle markers and application to pristine submicron aerosol measurements in Amazonia. Atmos. Chem. Phys. 2011, 11, 11 415.
Mass- spectrometric identification of primary biological particle markers and application to pristine submicron aerosol measurements in Amazonia.Crossref | GoogleScholarGoogle Scholar |

[138]  F. Yasmeen, R. Szmigielski, R. Vermeylen, Y. Gómez-González, J. D. Surratt, A. W. H. Chan, J. H. Seinfeld, W. Maenhaut, M. Claeys, Mass spectrometric characterization of isomeric terpenoic acids from the oxidation of α-pinene, β-pinene, d-limonene, and Δ3-carene in fine forest aerosol. J. Mass Spectrom. 2011, 46, 425.
Mass spectrometric characterization of isomeric terpenoic acids from the oxidation of α-pinene, β-pinene, d-limonene, and Δ3-carene in fine forest aerosol.Crossref | GoogleScholarGoogle Scholar |

[139]  S. Decesari, E. Finessi, M. Rinaldi, M. Paglione, S. Fuzzi, E. G. Stephanou, T. Tziaras, A. Spyros, D. Ceburnis, C. O’Dowd, M. Dall’Osto, R. M. Harrison, J. Allan, H. Coe, M. C. Facchini, Primary and secondary marine organic aerosols over the North Atlantic Ocean during the MAP experiment. J. Geophys. Res. – Atmos. 2011, 116, D22210.
Primary and secondary marine organic aerosols over the North Atlantic Ocean during the MAP experiment.Crossref | GoogleScholarGoogle Scholar |

[140]  P. Q. Fu, K. Kawamura, K. Miura, Molecular characterization of marine organic aerosols collected during a round-the-world cruise. J. Geophys. Res. – Atmos. 2011, 116,
Molecular characterization of marine organic aerosols collected during a round-the-world cruise.Crossref | GoogleScholarGoogle Scholar |

[141]  C. J. Gaston, H. Furutani, S. A. Guazzotti, K. R. Coffee, T. S. Bates, P. K. Quinn, L. I. Aluwihare, B. G. Mitchell, K. A. Prather, Unique ocean-derived particles serve as a proxy for changes in ocean chemistry. J. Geophys. Res. – Atmos. 2011, 116, D18310.
Unique ocean-derived particles serve as a proxy for changes in ocean chemistry.Crossref | GoogleScholarGoogle Scholar |

[142]  J. Ovadnevaite, C. O’Dowd, M. Dall’Osto, D. Ceburnis, D. R. Worsnop, H. Berresheim, Detecting high contributions of primary organic matter to marine aerosol: a case study. Geophys. Res. Lett. 2011, 38, L02807.
Detecting high contributions of primary organic matter to marine aerosol: a case study.Crossref | GoogleScholarGoogle Scholar |

[143]  Y. Gómez-González, W. Wang, R. Vermeylen, X. Chi, J. Neirynck, I. A. Janssens, W. Maenhaut, M. Claeys, Chemical characterisation of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes of biogenic secondary organic aerosol. Atmos. Chem. Phys. 2012, 12, 125.
Chemical characterisation of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes of biogenic secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[144]  K. E. Yttri, D. Simpson, J. K. Nojgaard, K. Kristensen, J. Genberg, K. Stenstrom, E. Swietlicki, R. Hillamo, M. Aurela, H. Bauer, J. H. Offenberg, M. Jaoui, C. Dye, S. Eckhardt, J. F. Burkhart, A. Stohl, M. Glasius, Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites. Atmos. Chem. Phys. 2011, 11, 13 339.
Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites.Crossref | GoogleScholarGoogle Scholar |

[145]  V. P. Kanawade, B. T. Jobson, A. B. Guenther, M. E. Erupe, S. N. Pressley, S. N. Tripathi, S. H. Lee, Isoprene suppression of new particle formation in a mixed deciduous forest. Atmos. Chem. Phys. 2011, 11, 6013.
Isoprene suppression of new particle formation in a mixed deciduous forest.Crossref | GoogleScholarGoogle Scholar |

[146]  K. Lehtipalo, M. Sipila, H. Junninen, M. Ehn, T. Berndt, M. K. Kajos, D. R. Worsnop, T. Petaja, M. Kulmala, Observations of nano-CN in the nocturnal boreal forest. Aerosol Sci. Technol. 2011, 45, 499.
Observations of nano-CN in the nocturnal boreal forest.Crossref | GoogleScholarGoogle Scholar |

[147]  J. Zhao, J. N. Smith, F. L. Eisele, M. Chen, C. Kuang, P. H. McMurry, Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements. Atmos. Chem. Phys. 2011, 11, 10 823.
Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements.Crossref | GoogleScholarGoogle Scholar |

[148]  A. Kiendler-Scharr, J. Wildt, M. Dal Maso, T. Hohaus, E. Kleist, T. F. Mentel, R. Tillmann, R. Uerlings, U. Schurr, A. Wahner, New particle formation in forests inhibited by isoprene emissions. Nature 2009, 461, 381.
New particle formation in forests inhibited by isoprene emissions.Crossref | GoogleScholarGoogle Scholar |

[149]  H. Junninen, M. Ehn, T. Petäjä, L. Luosujärvi, T. Kotiaho, R. Kostiainen, U. Rohner, M. Gonin, K. Fuhrer, M. Kulmala, D. R. Worsnop, A high-resolution mass spectrometer to measure atmospheric ion composition. Atmos. Meas. Tech. 2010, 3, 1039.
A high-resolution mass spectrometer to measure atmospheric ion composition.Crossref | GoogleScholarGoogle Scholar |

[150]  J. M. Creamean, A. P. Ault, J. E. Ten Hoeve, M. Z. Jacobson, G. C. Roberts, K. A. Prather, Measurements of aerosol chemistry during new particle formation events at a remote rural mountain site. Environ. Sci. Technol. 2011, 45, 8208.
Measurements of aerosol chemistry during new particle formation events at a remote rural mountain site.Crossref | GoogleScholarGoogle Scholar |

[151]  T. Laitinen, M. Ehn, H. Junninen, J. Ruiz-Jimenez, J. Parshintsev, K. Hartonen, M. L. Riekkola, D. R. Worsnop, M. Kulmala, Characterization of organic compounds in 10-to 50-nm aerosol particles in boreal forest with laser desorption-ionization aerosol mass spectrometer and comparison with other techniques. Atmos. Environ. 2011, 45, 3711.
Characterization of organic compounds in 10-to 50-nm aerosol particles in boreal forest with laser desorption-ionization aerosol mass spectrometer and comparison with other techniques.Crossref | GoogleScholarGoogle Scholar |

[152]  B. R. Bzdek, C. A. Zordan, G. W. Luther, M. V. Johnston, Nanoparticle chemical composition during new particle formation. Aerosol Sci. Technol. 2011, 45, 1041.
Nanoparticle chemical composition during new particle formation.Crossref | GoogleScholarGoogle Scholar |

[153]  M. D. Petters, S. M. Kreidenweis, A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 2007, 7, 1961.
A single parameter representation of hygroscopic growth and cloud condensation nucleus activity.Crossref | GoogleScholarGoogle Scholar |

[154]  A. Asa-Awuku, R. H. Moore, A. Nenes, R. Bahreini, J. S. Holloway, C. A. Brock, A. M. Middlebrook, T. B. Ryerson, J. L. Jimenez, P. F. DeCarlo, A. Hecobian, R. J. Weber, R. Stickel, D. J. Tanner, L. G. Huey, Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study. J. Geophys. Res. – Atmos. 2011, 116, D11201.
Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study.Crossref | GoogleScholarGoogle Scholar |

[155]  K. M. Cerully, T. Raatikainen, S. Lance, D. Tkacik, P. Tiitta, T. Petaja, M. Ehn, M. Kulmala, D. R. Worsnop, A. Laaksonen, J. N. Smith, A. Nenes, Aerosol hygroscopicity and CCN activation kinetics in a boreal forest environment during the 2007 EUCAARI campaign. Atmos. Chem. Phys. 2011, 11, 12 369.
Aerosol hygroscopicity and CCN activation kinetics in a boreal forest environment during the 2007 EUCAARI campaign.Crossref | GoogleScholarGoogle Scholar |

[156]  S. S. Gunthe, D. Rose, H. Su, R. M. Garland, P. Achtert, A. Nowak, A. Wiedensohler, M. Kuwata, N. Takegawa, Y. Kondo, M. Hu, M. Shao, T. Zhu, M. O. Andreae, U. Pöschl, Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing. Atmos. Chem. Phys. 2011, 11, 11 023.
Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing.Crossref | GoogleScholarGoogle Scholar |

[157]  C. L. Martin, J. D. Allan, J. Crosier, T. W. Choularton, H. Coe, M. W. Gallagher, Seasonal variation of fine particulate composition in the centre of a UK city. Atmos. Environ. 2011, 45, 4379.
Seasonal variation of fine particulate composition in the centre of a UK city.Crossref | GoogleScholarGoogle Scholar |

[158]  M. Martin, R. Y. W. Chang, B. Sierau, S. Sjogren, E. Swietlicki, J. P. D. Abbatt, C. Leck, U. Lohmann, Cloud condensation nuclei closure study on summer arctic aerosol. Atmos. Chem. Phys. 2011, 11, 11 335.
Cloud condensation nuclei closure study on summer arctic aerosol.Crossref | GoogleScholarGoogle Scholar |

[159]  R. H. Moore, R. Bahreini, C. A. Brock, K. D. Froyd, J. Cozic, J. S. Holloway, A. M. Middlebrook, D. M. Murphy, A. Nenes, Hygroscopicity and composition of Alaskan Arctic CCN during April 2008. Atmos. Chem. Phys. 2011, 11, 11 807.
Hygroscopicity and composition of Alaskan Arctic CCN during April 2008.Crossref | GoogleScholarGoogle Scholar |

[160]  D. Rose, S. S. Gunthe, H. Su, R. M. Garland, H. Yang, M. Berghof, Y. F. Cheng, B. Wehner, P. Achtert, A. Nowak, A. Wiedensohler, N. Takegawa, Y. Kondo, M. Hu, Y. Zhang, M. O. Andreae, U. Pöschl, Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 2. Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles. Atmos. Chem. Phys. 2011, 11, 2817.
Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 2. Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles.Crossref | GoogleScholarGoogle Scholar |

[161]  C. M. Berkowitz, L. K. Berg, X. Y. Yu, M. L. Alexander, A. Laskin, R. A. Zaveri, B. T. Jobson, E. Andrews, J. A. Ogren, The influence of fog and airmass history on aerosol optical, physical and chemical properties at Pt. Reyes National Seashore. Atmos. Environ. 2011, 45, 2559.
The influence of fog and airmass history on aerosol optical, physical and chemical properties at Pt. Reyes National Seashore.Crossref | GoogleScholarGoogle Scholar |

[162]  T. Mihara, M. Mochida, Characterization of solvent-extractable organics in urban aerosols based on mass spectrum analysis and hygroscopic growth measurement. Environ. Sci. Technol. 2011, 45, 9168.
Characterization of solvent-extractable organics in urban aerosols based on mass spectrum analysis and hygroscopic growth measurement.Crossref | GoogleScholarGoogle Scholar |

[163]  J. G. Slowik, D. J. Cziczo, J. P. D. Abbatt, Analysis of cloud condensation nuclei composition and growth kinetics using a pumped counterflow virtual impactor and aerosol mass spectrometer. Atmos. Meas. Tech. 2011, 4, 1677.
Analysis of cloud condensation nuclei composition and growth kinetics using a pumped counterflow virtual impactor and aerosol mass spectrometer.Crossref | GoogleScholarGoogle Scholar |

[164]  A. Zelenyuk, D. Imre, M. Earle, R. Easter, A. Korolev, R. Leaitch, P. Liu, A. M. Macdonald, M. Ovchinnikov, W. Strapp, In situ characterization of cloud condensation nuclei, interstitial, and background particles using the single particle mass spectrometer, SPLAT II. Anal. Chem. 2010, 82, 7943.
In situ characterization of cloud condensation nuclei, interstitial, and background particles using the single particle mass spectrometer, SPLAT II.Crossref | GoogleScholarGoogle Scholar |

[165]  G. R. McMeeking, W. T. Morgan, M. Flynn, E. J. Highwood, K. Turnbull, J. Haywood, H. Coe, Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom. Atmos. Chem. Phys. 2011, 11, 9037.
Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom.Crossref | GoogleScholarGoogle Scholar |

[166]  T. W. Chan, J. R. Brook, G. J. Smallwood, G. Lu, Time-resolved measurements of black carbon light absorption enhancement in urban and near-urban locations of southern Ontario, Canada. Atmos. Chem. Phys. 2011, 11, 10 407.
Time-resolved measurements of black carbon light absorption enhancement in urban and near-urban locations of southern Ontario, Canada.Crossref | GoogleScholarGoogle Scholar |

[167]  Y. Cai, D. C. Montague, T. Deshler, Comparison of measured and calculated scattering from surface aerosols with an average, a size-dependent, and a time-dependent refractive index. J. Geophys. Res. – Atmos. 2011, 116, D02202.
Comparison of measured and calculated scattering from surface aerosols with an average, a size-dependent, and a time-dependent refractive index.Crossref | GoogleScholarGoogle Scholar |

[168]  D. Brus, K. Neitola, A. P. Hyvarinen, T. Petaja, J. Vanhanen, M. Sipila, P. Paasonen, M. Kulmala, H. Lihavainen, Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions. Atmos. Chem. Phys. 2011, 11, 5277.
Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions.Crossref | GoogleScholarGoogle Scholar |

[169]  D. R. Benson, J. H. Yu, A. Markovich, S. H. Lee, Ternary homogeneous nucleation of H2SO4, NH3, and H2O under conditions relevant to the lower troposphere. Atmos. Chem. Phys. 2011, 11, 4755.
Ternary homogeneous nucleation of H2SO4, NH3, and H2O under conditions relevant to the lower troposphere.Crossref | GoogleScholarGoogle Scholar |

[170]  J. Kirkby, J. Curtius, J. Almeida, E. Dunne, J. Duplissy, S. Ehrhart, A. Franchin, S. Gagné, L. Ickes, A. Kürten, A. Kupc, A. Metzger, F. Riccobono, L. Rondo, S. Schobesberger, G. Tsagkogeorgas, D. Wimmer, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, J. Dommen, A. Downard, M. Ehn, R. C. Flagan, S. Haider, A. Hansel, D. Hauser, W. Jud, H. Junninen, F. Kreissl, A. Kvashin, A. Laaksonen, K. Lehtipalo, J. Lima, E. R. Lovejoy, V. Makhmutov, S. Mathot, J. Mikkilä, P. Minginette, S. Mogo, T. Nieminen, A. Onnela, P. Pereira, T. Petaja, R. Schnitzhofer, J. H. Seinfeld, M. Sipilä, Y. Stozhkov, F. Stratmann, A. Tomé, J. Vanhanen, Y. Viisanen, A. Vrtala, P. E. Wagner, H. Walther, E. Weingartner, H. Wex, P. M. Winkler, K. S. Carslaw, D. R. Worsnop, U. Baltensperger, M. Kulmala, Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 2011, 476, 429.
Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation.Crossref | GoogleScholarGoogle Scholar |

[171]  B. R. Bzdek, D. P. Ridge, M. V. Johnston, Amine reactivity with charged sulfuric acid clusters. Atmos. Chem. Phys. 2011, 11, 8735.
Amine reactivity with charged sulfuric acid clusters.Crossref | GoogleScholarGoogle Scholar |

[172]  B. R. Bzdek, D. P. Ridge, M. V. Johnston, Reactivity of methanesulfonic acid salt clusters relevant to marine air. J. Geophys. Res. – Atmos. 2011, 116, D03301.
Reactivity of methanesulfonic acid salt clusters relevant to marine air.Crossref | GoogleScholarGoogle Scholar |

[173]  M. E. Erupe, A. A. Viggiano, S. H. Lee, The effect of trimethylamine on atmospheric nucleation involving H2SO4. Atmos. Chem. Phys. 2011, 11, 4767.
The effect of trimethylamine on atmospheric nucleation involving H2SO4.Crossref | GoogleScholarGoogle Scholar |

[174]  C. Qiu, L. Wang, V. Lal, A. F. Khalizov, R. Y. Zhang, Heterogeneous reactions of alkylamines with ammonium sulfate and ammonium bisulfate. Environ. Sci. Technol. 2011, 45, 4748.
Heterogeneous reactions of alkylamines with ammonium sulfate and ammonium bisulfate.Crossref | GoogleScholarGoogle Scholar |

[175]  L. Wang, W. Xu, A. F. Khalizov, J. Zheng, C. Qiu, R. Y. Zhang, Laboratory investigation on the role of organics in atmospheric nanoparticle growth. J. Phys. Chem. A 2011, 115, 8940.
Laboratory investigation on the role of organics in atmospheric nanoparticle growth.Crossref | GoogleScholarGoogle Scholar |

[176]  A. M. Booth, W. J. Montague, M. H. Barley, D. O. Topping, G. McFiggans, A. Garforth, C. J. Percival, Solid state and sub-cooled liquid vapour pressures of cyclic aliphatic dicarboxylic acids. Atmos. Chem. Phys. 2011, 11, 655.
Solid state and sub-cooled liquid vapour pressures of cyclic aliphatic dicarboxylic acids.Crossref | GoogleScholarGoogle Scholar |

[177]  G. Isaacman, D. R. Worton, N. M. Kreisberg, C. J. Hennigan, A. P. Teng, S. V. Hering, A. L. Robinson, N. M. Donahue, A. H. Goldstein, Understanding evolution of product composition and volatility distribution through in-situ GC × GC analysis: a case study of longifolene ozonolysis. Atmos. Chem. Phys. 2011, 11, 5335.
Understanding evolution of product composition and volatility distribution through in-situ GC × GC analysis: a case study of longifolene ozonolysis.Crossref | GoogleScholarGoogle Scholar |

[178]  K. Salo, M. Hallquist, Å. M. Jonsson, H. Saathoff, K. H. Naumann, C. Spindler, R. Tillmann, H. Fuchs, B. Bohn, F. Rubach, T. F. Mentel, L. Müller, M. Reinnig, T. Hoffmann, N. M. Donahue, Volatility of secondary organic aerosol during OH radical induced ageing. Atmos. Chem. Phys. 2011, 11, 11 055.
Volatility of secondary organic aerosol during OH radical induced ageing.Crossref | GoogleScholarGoogle Scholar |

[179]  C. D. Cappa, K. R. Wilson, Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior. Atmos. Chem. Phys. 2011, 11, 1895.
Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior.Crossref | GoogleScholarGoogle Scholar |

[180]  T. D. Vaden, D. Imre, J. Beranek, M. Shrivastava, A. Zelenyuk, Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol. Proc. Natl. Acad. Sci. USA 2011, 108, 2190.
Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[181]  T. D. Vaden, C. Song, R. A. Zaveri, D. Imre, A. Zelenyuk, Morphology of mixed primary and secondary organic particles and the adsorption of spectator organic gases during aerosol formation. Proc. Natl. Acad. Sci. USA 2010, 107, 6658.
Morphology of mixed primary and secondary organic particles and the adsorption of spectator organic gases during aerosol formation.Crossref | GoogleScholarGoogle Scholar |

[182]  T. Koop, J. Bookhold, M. Shiraiwa, U. Pöschl, Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 2011, 13, 19 238.
Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere.Crossref | GoogleScholarGoogle Scholar |

[183]  T. B. Nguyen, A. P. Bateman, D. L. Bones, S. A. Nizkorodov, J. Laskin, A. Laskin, High-resolution mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene. Atmos. Environ. 2010, 44, 1032.
High-resolution mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene.Crossref | GoogleScholarGoogle Scholar |

[184]  T. B. Nguyen, J. Laskin, A. Laskin, S. A. Nizkorodov, Nitrogen-containing organic compounds and oligomers in secondary organic aerosol formed by photooxidation of isoprene. Environ. Sci. Technol. 2011, 45, 6908.

[185]  H. Zhang, J. D. Surratt, Y. H. Lin, J. Bapat, R. M. Kamens, Effect of relative humidity on SOA formation from isoprene/NO photooxidation: enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions. Atmos. Chem. Phys. 2011, 11, 6411.
Effect of relative humidity on SOA formation from isoprene/NO photooxidation: enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions.Crossref | GoogleScholarGoogle Scholar |

[186]  M. M. Galloway, A. J. Huisman, L. D. Yee, A. W. H. Chan, C. L. Loza, J. H. Seinfeld, F. N. Keutsch, Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of isoprene, methyl vinyl ketone, and methacrolein under high-NOx conditions. Atmos. Chem. Phys. 2011, 11, 10 779.
Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of isoprene, methyl vinyl ketone, and methacrolein under high-NOx conditions.Crossref | GoogleScholarGoogle Scholar |

[187]  H. F. Zhang, W. Rattanavaraha, Y. Zhou, J. Bapat, E. P. Rosen, K. G. Sexton, R. M. Kamens, A new gas-phase condensed mechanism of isoprene-NOx photooxidation. Atmos. Environ. 2011, 45, 4507.
A new gas-phase condensed mechanism of isoprene-NOx photooxidation.Crossref | GoogleScholarGoogle Scholar |

[188]  W. A. Hall, M. V. Johnston, Oligomer content of α-pinene secondary organic aerosol. Aerosol Sci. Technol. 2011, 45, 37.
Oligomer content of α-pinene secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[189]  A. L. Putman, J. H. Offenberg, R. Fisseha, S. Kundu, T. A. Rahn, L. R. Mazzoleni, Ultrahigh-resolution FT-ICR mass spectrometry characterization of α-pinene ozonolysis SOA. Atmos. Environ. 2012, 46, 164.
Ultrahigh-resolution FT-ICR mass spectrometry characterization of α-pinene ozonolysis SOA.Crossref | GoogleScholarGoogle Scholar |

[190]  M. N. Chan, J. D. Surratt, A. W. H. Chan, K. Schilling, J. H. Offenberg, M. Lewandowski, E. O. Edney, T. E. Kleindienst, M. Jaoui, E. S. Edgerton, R. L. Tanner, S. L. Shaw, M. Zheng, E. M. Knipping, J. H. Seinfeld, Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene. Atmos. Chem. Phys. 2011, 11, 1735.
Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene.Crossref | GoogleScholarGoogle Scholar |

[191]  Y. J. Li, Q. Chen, M. I. Guzman, C. K. Chan, S. T. Martin, Second-generation products contribute substantially to the particle-phase organic material produced by β-caryophyllene ozonolysis. Atmos. Chem. Phys. 2011, 11, 121.
Second-generation products contribute substantially to the particle-phase organic material produced by β-caryophyllene ozonolysis.Crossref | GoogleScholarGoogle Scholar |

[192]  J. F. Hamilton, M. R. Alfarra, K. P. Wyche, M. W. Ward, A. C. Lewis, G. B. McFiggans, N. Good, P. S. Monks, T. Carr, I. R. White, R. M. Purvis, Investigating the use of secondary organic aerosol as seed particles in simulation chamber experiments. Atmos. Chem. Phys. 2011, 11, 5917.
Investigating the use of secondary organic aerosol as seed particles in simulation chamber experiments.Crossref | GoogleScholarGoogle Scholar |

[193]  F. Yasmeen, R. Vermeylen, R. Szmigielski, Y. Iinuma, O. Boge, H. Herrmann, W. Maenhaut, M. Claeys, Terpenylic acid and related compounds: precursors for dimers in secondary organic aerosol from the ozonolysis of α- and β-pinene. Atmos. Chem. Phys. 2010, 10, 9383.
Terpenylic acid and related compounds: precursors for dimers in secondary organic aerosol from the ozonolysis of α- and β-pinene.Crossref | GoogleScholarGoogle Scholar |

[194]  M. Claeys, Y. Iinuma, R. Szmigielski, J. D. Surratt, F. Blockhuys, C. Van Alsenoy, O. Boge, B. Sierau, Y. Gómez-González, R. Vermeylen, P. Van der Veken, M. Shahgholi, A. W. H. Chan, H. Herrmann, J. H. Seinfeld, W. Maenhaut, Terpenylic acid and related compounds from the oxidation of α-pinene: implications for new particle formation and growth above forests. Environ. Sci. Technol. 2009, 43, 6976.
Terpenylic acid and related compounds from the oxidation of α-pinene: implications for new particle formation and growth above forests.Crossref | GoogleScholarGoogle Scholar |

[195]  S. Nakao, C. Clark, P. Tang, K. Sato, D. Cocker, Secondary organic aerosol formation from phenolic compounds in the absence of NOx. Atmos. Chem. Phys. 2011, 11, 10 649.
Secondary organic aerosol formation from phenolic compounds in the absence of NOx.Crossref | GoogleScholarGoogle Scholar |

[196]  J. Ofner, H. U. Kruger, H. Grothe, P. Schmitt-Kopplin, K. Whitmore, C. Zetzsch, Physico-chemical characterization of SOA derived from catechol and guaiacol – a model substance for the aromatic fraction of atmospheric HULIS. Atmos. Chem. Phys. 2011, 11, 1.
Physico-chemical characterization of SOA derived from catechol and guaiacol – a model substance for the aromatic fraction of atmospheric HULIS.Crossref | GoogleScholarGoogle Scholar |

[197]  A. Gratien, S. N. Johnson, M. J. Ezell, M. L. Dawson, R. Bennett, B. J. Finlayson-Pitts, Surprising formation of p-cymene in the oxidation of α-pinene in air by the atmospheric oxidants OH, O3, and NO3. Environ. Sci. Technol. 2011, 45, 2755.
Surprising formation of p-cymene in the oxidation of α-pinene in air by the atmospheric oxidants OH, O3, and NO3.Crossref | GoogleScholarGoogle Scholar |

[198]  P. J. Ziemann, Effects of molecular structure on the chemistry of aerosol formation from the OH-radical-initiated oxidation of alkanes and alkenes. Int. Rev. Phys. Chem. 2011, 30, 161.
Effects of molecular structure on the chemistry of aerosol formation from the OH-radical-initiated oxidation of alkanes and alkenes.Crossref | GoogleScholarGoogle Scholar |

[199]  S. H. Kessler, T. Nah, A. Carrasquillo, J. T. Jayne, D. R. Worsnop, K. R. Wilson, J. H. Kroll, Formation of secondary organic aerosol from the direct photolytic generation of organic radicals. J. Phys. Chem. Lett. 2011, 2, 1295.
Formation of secondary organic aerosol from the direct photolytic generation of organic radicals.Crossref | GoogleScholarGoogle Scholar |

[200]  H. J. Chacon-Madrid, N. M. Donahue, Fragmentation vs. functionalization: chemical aging and organic aerosol formation. Atmos. Chem. Phys. 2011, 11, 10 553.
Fragmentation vs. functionalization: chemical aging and organic aerosol formation.Crossref | GoogleScholarGoogle Scholar |

[201]  I. Gensch, W. Laumer, O. Stein, B. Kammer, T. Hohaus, H. Saathoff, R. Wegener, A. Wahner, A. Kiendler-Scharr, Temperature dependence of the kinetic isotope effect in β-pinene ozonolysis. J. Geophys. Res. – Atmos. 2011, 116, D20301.
Temperature dependence of the kinetic isotope effect in β-pinene ozonolysis.Crossref | GoogleScholarGoogle Scholar |

[202]  S. Moukhtar, M. Saccon, A. Kornilova, S. Irei, L. Huang, J. Rudolph, Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric particulate matter. Atmos. Meas. Tech. 2011, 4, 2453.
Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric particulate matter.Crossref | GoogleScholarGoogle Scholar |

[203]  J. Auld, D. R. Hastie, Investigation of organic nitrate product formation during hydroxyl radical initiated photo-oxidation of β-pinene. Atmos. Environ. 2011, 45, 26.
Investigation of organic nitrate product formation during hydroxyl radical initiated photo-oxidation of β-pinene.Crossref | GoogleScholarGoogle Scholar |

[204]  J. L. Fry, A. Kiendler-Scharr, A. W. Rollins, T. Brauers, S. S. Brown, H. P. Dorn, W. P. Dube, H. Fuchs, A. Mensah, F. Rohrer, R. Tillmann, A. Wahner, P. J. Wooldridge, R. C. Cohen, SOA from limonene: role of NO3 in its generation and degradation. Atmos. Chem. Phys. 2011, 11, 3879.
SOA from limonene: role of NO3 in its generation and degradation.Crossref | GoogleScholarGoogle Scholar |

[205]  A. I. Darer, N. C. Cole-Filipiak, A. E. O’Connor, M. J. Elrod, Formation and stability of atmospherically relevant isoprene-derived organosulfates and organonitrates. Environ. Sci. Technol. 2011, 45, 1895.
Formation and stability of atmospherically relevant isoprene-derived organosulfates and organonitrates.Crossref | GoogleScholarGoogle Scholar |

[206]  K. S. Hu, A. I. Darer, M. J. Elrod, Thermodynamics and kinetics of the hydrolysis of atmospherically relevant organonitrates and organosulfates. Atmos. Chem. Phys. 2011, 11, 8307.
Thermodynamics and kinetics of the hydrolysis of atmospherically relevant organonitrates and organosulfates.Crossref | GoogleScholarGoogle Scholar |

[207]  C. N. Olson, M. M. Galloway, G. Yu, C. J. Hedman, M. R. Lockett, T. Yoon, E. A. Stone, L. M. Smith, F. N. Keutsch, Hydroxycarboxylic acid-derived organosulfates: synthesis, stability, and quantification in ambient aerosol. Environ. Sci. Technol. 2011, 45, 6468.
Hydroxycarboxylic acid-derived organosulfates: synthesis, stability, and quantification in ambient aerosol.Crossref | GoogleScholarGoogle Scholar |

[208]  B. Ervens, B. J. Turpin, R. J. Weber, Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos. Chem. Phys. 2011, 11, 11 069.
Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies.Crossref | GoogleScholarGoogle Scholar |

[209]  A. K. Y. Lee, P. Herckes, W. R. Leaitch, A. M. Macdonald, J. P. D. Abbatt, Aqueous OH oxidation of ambient organic aerosol and cloud water organics: formation of highly oxidized products. Geophys. Res. Lett. 2011, 38, L11805.
Aqueous OH oxidation of ambient organic aerosol and cloud water organics: formation of highly oxidized products.Crossref | GoogleScholarGoogle Scholar |

[210]  A. K. Y. Lee, R. Zhao, S. S. Gao, J. P. D. Abbatt, Aqueous-phase OH oxidation of glyoxal: application of a novel analytical approach employing aerosol mass spectrometry and complementary off-line techniques. J. Phys. Chem. A 2011, 115, 10517.

[211]  A. P. Bateman, S. A. Nizkorodov, J. Laskin, A. Laskin, Photolytic processing of secondary organic aerosols dissolved in cloud droplets. Phys. Chem. Chem. Phys. 2011, 13, 12 199.
Photolytic processing of secondary organic aerosols dissolved in cloud droplets.Crossref | GoogleScholarGoogle Scholar |

[212]  S. S. Gao, J. P. D. Abbatt, Kinetics and mechanism of OH oxidation of small organic dicarboxylic acids in ice: comparison to behavior in aqueous solution. J. Phys. Chem. A 2011, 115, 9977.
Kinetics and mechanism of OH oxidation of small organic dicarboxylic acids in ice: comparison to behavior in aqueous solution.Crossref | GoogleScholarGoogle Scholar |

[213]  Y. B. Lim, Y. Tan, M. J. Perri, S. P. Seitzinger, B. J. Turpin, Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. Atmos. Chem. Phys. 2010, 10, 10 521.
Aqueous chemistry and its role in secondary organic aerosol (SOA) formation.Crossref | GoogleScholarGoogle Scholar |

[214]  B. Ervens, R. Volkamer, Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles. Atmos. Chem. Phys. 2010, 10, 8219.
Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles.Crossref | GoogleScholarGoogle Scholar |

[215]  D. O. De Haan, L. N. Hawkins, J. A. Kononenko, J. J. Turley, A. L. Corrigan, M. A. Tolbert, J. L. Jimenez, Formation of nitrogen-containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets. Environ. Sci. Technol. 2011, 45, 984.
Formation of nitrogen-containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets.Crossref | GoogleScholarGoogle Scholar |

[216]  M. M. Galloway, C. L. Loza, P. S. Chhabra, A. W. H. Chan, L. D. Yee, J. H. Seinfeld, F. N. Keutsch, Analysis of photochemical and dark glyoxal uptake: implications for SOA formation. Geophys. Res. Lett. 2011, 38, L17811.
Analysis of photochemical and dark glyoxal uptake: implications for SOA formation.Crossref | GoogleScholarGoogle Scholar |

[217]  M. Trainic, A. A. Riziq, A. Lavi, J. M. Flores, Y. Rudich, The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols. Atmos. Chem. Phys. 2011, 11, 9697.
The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols.Crossref | GoogleScholarGoogle Scholar |

[218]  C. L. Heald, J. H. Kroll, J. L. Jimenez, K. S. Docherty, P. F. DeCarlo, A. C. Aiken, Q. Chen, S. T. Martin, D. K. Farmer, P. Artaxo, A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophys. Res. Lett. 2010, 37, L08803.
A simplified description of the evolution of organic aerosol composition in the atmosphere.Crossref | GoogleScholarGoogle Scholar |

[219]  J. H. Kroll, N. M. Donahue, J. L. Jimenez, S. H. Kessler, M. R. Canagaratna, K. R. Wilson, K. E. Altieri, L. R. Mazzoleni, A. S. Wozniak, H. Bluhm, E. R. Mysak, J. D. Smith, C. E. Kolb, D. R. Worsnop, Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem. 2011, 3, 133.
Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[220]  P. S. Chhabra, N. L. Ng, M. R. Canagaratna, A. L. Corrigan, L. M. Russell, D. R. Worsnop, R. C. Flagan, J. H. Seinfeld, Elemental composition and oxidation of chamber organic aerosol. Atmos. Chem. Phys. 2011, 11, 8827.
Elemental composition and oxidation of chamber organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[221]  Q. Chen, Y. J. Liu, N. M. Donahue, J. E. Shilling, S. T. Martin, Particle-phase chemistry of secondary organic material: modeled compared to measured O:C and H:C elemental ratios provide constraints. Environ. Sci. Technol. 2011, 45, 4763.
Particle-phase chemistry of secondary organic material: modeled compared to measured O:C and H:C elemental ratios provide constraints.Crossref | GoogleScholarGoogle Scholar |

[222]  S. Net, E. G. Alvarez, S. Gligorovski, H. Wortham, Heterogeneous reactions of ozone with methoxyphenols, in presence and absence of light. Atmos. Environ. 2011, 45, 3007.
Heterogeneous reactions of ozone with methoxyphenols, in presence and absence of light.Crossref | GoogleScholarGoogle Scholar |

[223]  J. J. Nájera, R. Wamsley, D. J. Last, K. E. Leather, C. J. Percival, A. B. Horn, Heterogeneous oxidation reaction of gas-phase ozone with anthracene in thin films and on aerosols by infrared spectroscopic methods. Int. J. Chem. Kinet. 2011, 43, 694.
Heterogeneous oxidation reaction of gas-phase ozone with anthracene in thin films and on aerosols by infrared spectroscopic methods.Crossref | GoogleScholarGoogle Scholar |

[224]  N. W. Oldridge, J. P. D. Abbatt, Formation of gas-phase bromine from interaction of ozone with frozen and liquid NaCl/NaBr solutions: quantitative separation of surficial chemistry from bulk-phase reaction. J. Phys. Chem. A 2011, 115, 2590.
Formation of gas-phase bromine from interaction of ozone with frozen and liquid NaCl/NaBr solutions: quantitative separation of surficial chemistry from bulk-phase reaction.Crossref | GoogleScholarGoogle Scholar |

[225]  P. J. Gallimore, P. Achakulwisut, F. D. Pope, J. F. Davies, D. R. Spring, M. Kalberer, Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol. Atmos. Chem. Phys. 2011, 11, 12 181.
Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol.Crossref | GoogleScholarGoogle Scholar |

[226]  T. Kinugawa, S. Enami, A. Yabushita, M. Kawasaki, M. R. Hoffmann, A. J. Colussi, Conversion of gaseous nitrogen dioxide to nitrate and nitrite on aqueous surfactants. Phys. Chem. Chem. Phys. 2011, 13, 5144.
Conversion of gaseous nitrogen dioxide to nitrate and nitrite on aqueous surfactants.Crossref | GoogleScholarGoogle Scholar |

[227]  D. A. Knopf, S. M. Forrester, J. H. Slade, Heterogeneous oxidation kinetics of organic biomass burning aerosol surrogates by O3, NO2, N2O5, and NO3. Phys. Chem. Chem. Phys. 2011, 13, 21 050.
Heterogeneous oxidation kinetics of organic biomass burning aerosol surrogates by O3, NO2, N2O5, and NO3.Crossref | GoogleScholarGoogle Scholar |

[228]  Z. J. Zhao, S. Husainy, C. T. Stoudemayer, G. D. Smith, Reactive uptake of NO3 radicals by unsaturated fatty acid particles. Phys. Chem. Chem. Phys. 2011, 13, 17 809.
Reactive uptake of NO3 radicals by unsaturated fatty acid particles.Crossref | GoogleScholarGoogle Scholar |

[229]  C. L. Liu, J. D. Smith, D. L. Che, M. Ahmed, S. R. Leone, K. R. Wilson, The direct observation of secondary radical chain chemistry in the heterogeneous reaction of chlorine atoms with submicron squalane droplets. Phys. Chem. Chem. Phys. 2011, 13, 8993.
The direct observation of secondary radical chain chemistry in the heterogeneous reaction of chlorine atoms with submicron squalane droplets.Crossref | GoogleScholarGoogle Scholar |

[230]  S. Xiao, A. K. Bertram, Reactive uptake kinetics of NO3 on multicomponent and multiphase organic mixtures containing unsaturated and saturated organics. Phys. Chem. Chem. Phys. 2011, 13, 6628.
Reactive uptake kinetics of NO3 on multicomponent and multiphase organic mixtures containing unsaturated and saturated organics.Crossref | GoogleScholarGoogle Scholar |

[231]  C. G. Liu, J. Gan, Y. Zhang, M. Liang, X. Shu, J. N. Shu, B. Yang, Heterogeneous reaction of suspended phosmet particles with NO3 radicals. J. Phys. Chem. A 2011, 115, 10 744.
Heterogeneous reaction of suspended phosmet particles with NO3 radicals.Crossref | GoogleScholarGoogle Scholar |

[232]  B. Yang, J. W. Meng, Y. Zhang, C. G. Liu, J. Gan, J. N. Shu, Experimental studies on the heterogeneous reaction of NO3 radicals with suspended carbaryl particles. Atmos. Environ. 2011, 45, 2074.
Experimental studies on the heterogeneous reaction of NO3 radicals with suspended carbaryl particles.Crossref | GoogleScholarGoogle Scholar |

[233]  Y. Zhang, B. Yang, J. Gan, C. G. Liu, X. Shu, J. N. Shu, Nitration of particle-associated PAHs and their derivatives (nitro-, oxy-, and hydroxy-PAHs) with NO3 radicals. Atmos. Environ. 2011, 45, 2515.
Nitration of particle-associated PAHs and their derivatives (nitro-, oxy-, and hydroxy-PAHs) with NO3 radicals.Crossref | GoogleScholarGoogle Scholar |

[234]  Z. Liu, M. F. Ge, W. G. Wang, S. Yin, S. R. Tong, The uptake of 2-methyl-3-buten-2-ol into aqueous mixed solutions of sulfuric acid and hydrogen peroxide. Phys. Chem. Chem. Phys. 2011, 13, 2069.
The uptake of 2-methyl-3-buten-2-ol into aqueous mixed solutions of sulfuric acid and hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar |

[235]  Z. Liu, L. Y. Wu, T. H. Wang, M. F. Ge, W. G. Wang, Uptake of methacrolein into aqueous solutions of sulfuric acid and hydrogen peroxide. J. Phys. Chem. A 2012, 116, 437.
Uptake of methacrolein into aqueous solutions of sulfuric acid and hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar |

[236]  L. P. Chan, C. K. Chan, Enhanced reactive uptake of nonanal by acidic aerosols in the presence of particle-phase organics. Aerosol Sci. Technol. 2011, 45, 872.
Enhanced reactive uptake of nonanal by acidic aerosols in the presence of particle-phase organics.Crossref | GoogleScholarGoogle Scholar |

[237]  G. J. Engelhart, R. H. Moore, A. Nenes, S. N. Pandis, Cloud condensation nuclei activity of isoprene secondary organic aerosol. J. Geophys. Res. – Atmos. 2011, 116, D02207.
Cloud condensation nuclei activity of isoprene secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[238]  M. Frosch, M. Bilde, P. F. DeCarlo, Z. Juranyi, T. Tritscher, J. Dommen, N. M. Donahue, M. Gysel, E. Weingartner, U. Baltensperger, Relating cloud condensation nuclei activity and oxidation level of alpha-pinene secondary organic aerosols. J. Geophys. Res. – Atmos. 2011, 116, D22212.
Relating cloud condensation nuclei activity and oxidation level of alpha-pinene secondary organic aerosols.Crossref | GoogleScholarGoogle Scholar |

[239]  M. Kuwata, Q. Chen, S. T. Martin, Cloud condensation nuclei (CCN) activity and oxygen-to-carbon elemental ratios following thermodenuder treatment of organic particles grown by alpha-pinene ozonolysis. Phys. Chem. Chem. Phys. 2011, 13, 14 571.
Cloud condensation nuclei (CCN) activity and oxygen-to-carbon elemental ratios following thermodenuder treatment of organic particles grown by alpha-pinene ozonolysis.Crossref | GoogleScholarGoogle Scholar |

[240]  A. T. Lambe, T. B. Onasch, P. Massoli, D. R. Croasdale, J. P. Wright, A. T. Ahern, L. R. Williams, D. R. Worsnop, W. H. Brune, P. Davidovits, Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA). Atmos. Chem. Phys. 2011, 11, 8913.
Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA).Crossref | GoogleScholarGoogle Scholar |

[241]  A. T. Lambe, A. T. Ahern, L. R. Williams, J. G. Slowik, J. P. S. Wong, J. P. D. Abbatt, W. H. Brune, N. L. Ng, J. P. Wright, D. R. Croasdale, D. R. Worsnop, P. Davidovits, T. B. Onasch, Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements. Atmos. Meas. Tech. 2011, 4, 445.
Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements.Crossref | GoogleScholarGoogle Scholar |

[242]  E. Kang, D. W. Toohey, W. H. Brune, Dependence of SOA oxidation on organic aerosol mass concentration and OH exposure: experimental PAM chamber studies. Atmos. Chem. Phys. 2011, 11, 1837.
Dependence of SOA oxidation on organic aerosol mass concentration and OH exposure: experimental PAM chamber studies.Crossref | GoogleScholarGoogle Scholar |

[243]  A. N. Schwier, N. Sareen, T. L. Lathem, A. Nenes, V. F. McNeill, Ozone oxidation of oleic acid surface films decreases aerosol cloud condensation nuclei activity. J. Geophys. Res. – Atmos. 2011, 116, D16202.
Ozone oxidation of oleic acid surface films decreases aerosol cloud condensation nuclei activity.Crossref | GoogleScholarGoogle Scholar |

[244]  B. Friedman, G. Kulkarni, J. Beranek, A. Zelenyuk, J. A. Thornton, D. J. Cziczo, Ice nucleation and droplet formation by bare and coated soot particles. J. Geophys. Res. – Atmos. 2011, 116, D17203.
Ice nucleation and droplet formation by bare and coated soot particles.Crossref | GoogleScholarGoogle Scholar |

[245]  P. Reitz, C. Spindler, T. F. Mentel, L. Poulain, H. Wex, K. Mildenberger, D. Niedermeier, S. Hartmann, T. Clauss, F. Stratmann, R. C. Sullivan, P. J. DeMott, M. D. Petters, B. Sierau, J. Schneider, Surface modification of mineral dust particles by sulphuric acid processing: implications for ice nucleation abilities. Atmos. Chem. Phys. 2011, 11, 7839.
Surface modification of mineral dust particles by sulphuric acid processing: implications for ice nucleation abilities.Crossref | GoogleScholarGoogle Scholar |

[246]  L. Ladino, O. Stetzer, B. Hattendorf, D. Gunther, B. Croft, U. Lohmann, Experimental study of collection efficiencies between submicron aerosols and cloud droplets. J. Atmos. Sci. 2011, 68, 1853.
Experimental study of collection efficiencies between submicron aerosols and cloud droplets.Crossref | GoogleScholarGoogle Scholar |

[247]  C. D. Cappa, D. L. Che, S. H. Kessler, J. H. Kroll, K. R. Wilson, Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation. J. Geophys. Res. – Atmos. 2011, 116, D15204.
Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation.Crossref | GoogleScholarGoogle Scholar |

[248]  H. Redmond, J. E. Thompson, Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA). Phys. Chem. Chem. Phys. 2011, 13, 6872.
Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA).Crossref | GoogleScholarGoogle Scholar |

[249]  J. Duplissy, P. F. DeCarlo, J. Dommen, M. R. Alfarra, A. Metzger, I. Barmpadimos, A. S. H. Prevot, E. Weingartner, T. Tritscher, M. Gysel, A. C. Aiken, J. L. Jimenez, M. R. Canagaratna, D. R. Worsnop, D. R. Collins, J. Tomlinson, U. Baltensperger, Relating hygroscopicity and composition of organic aerosol particulate matter. Atmos. Chem. Phys. 2011, 11, 1155.
Relating hygroscopicity and composition of organic aerosol particulate matter.Crossref | GoogleScholarGoogle Scholar |

[250]  T. Tritscher, J. Dommen, P. F. DeCarlo, M. Gysel, P. B. Barmet, A. P. Praplan, E. Weingartner, A. S. H. Prevot, I. Riipinen, N. M. Donahue, U. Baltensperger, Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber. Atmos. Chem. Phys. 2011, 11, 11 477.
Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber.Crossref | GoogleScholarGoogle Scholar |

[251]  J. W. Lu, J. M. Flores, A. Lavi, A. Abo-Riziq, Y. Rudich, Changes in the optical properties of benzo a pyrene-coated aerosols upon heterogeneous reactions with NO2 and NO3. Phys. Chem. Chem. Phys. 2011, 13, 6484.
Changes in the optical properties of benzo a pyrene-coated aerosols upon heterogeneous reactions with NO2 and NO3.Crossref | GoogleScholarGoogle Scholar |

[252]  M. Zhong, M. Jang, Light absorption coefficient measurement of SOA using a UV-visible spectrometer connected with an integrating sphere. Atmos. Environ. 2011, 45, 4263.
Light absorption coefficient measurement of SOA using a UV-visible spectrometer connected with an integrating sphere.Crossref | GoogleScholarGoogle Scholar |

[253]  M. L. Smith, M. Kuwata, S. T. Martin, Secondary organic material produced by the dark ozonolysis of alpha-pinene minimally affects the deliquescence and efflorescence of ammonium sulfate. Aerosol Sci. Technol. 2011, 45, 244.
Secondary organic material produced by the dark ozonolysis of alpha-pinene minimally affects the deliquescence and efflorescence of ammonium sulfate.Crossref | GoogleScholarGoogle Scholar |

[254]  M. Claeys, R. Vermeylen, F. Yasmeen, Y. Gómez-González, X. Chi, W. Maenhaut, T. Meszaros, I. Salma, Chemical characterization of humic-like substances from urban, rural and tropical locations using liquid chromatography in combination with UV/vis photodiode array detection and electrospray ionization mass spectrometry. Environ. Chem. 2012, 9, 273.
Chemical characterization of humic-like substances from urban, rural and tropical locations using liquid chromatography in combination with UV/vis photodiode array detection and electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[255]  H. Zhang, Y.-H. Lin, Z. Zhang, X. Znang, S. L. Shaw, E. M. Knipping, R. J. Weber, A. Gold, R. M. Kamens, J. D. Surratt, Secondary organic aerosol formation from methacrolein photooxidation: roles of NOx levels and relative humidity. Environ. Chem. 2012, 9, 247.
Secondary organic aerosol formation from methacrolein photooxidation: roles of NOx levels and relative humidity.Crossref | GoogleScholarGoogle Scholar |

[256]  F. Yasmeen, R. Vermeylen, N. Maurin, E. Perraudin, J.-F. Doussin, M. Claeys, Characterisation of tracers for ageing of α-pinene secondary organic aerosol using liquid chromatography/negative ion electrospray ionisation mass spectrometry. Environ. Chem. 2012, 9, 236.
Characterisation of tracers for ageing of α-pinene secondary organic aerosol using liquid chromatography/negative ion electrospray ionisation mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[257]  E. A. Stone, T. T. Nguyen, B. B. Pradhan, P. M. Dangol, Assessment of biogenic secondary organic aerosol in the Kathmandu Valley, Nepal. Environ. Chem. 2012, 9, 263.
Assessment of biogenic secondary organic aerosol in the Kathmandu Valley, Nepal.Crossref | GoogleScholarGoogle Scholar |

[258]  Y. Huang, H. Chen, L. Wang, X. Yang, J. Chen, Single particle analysis of amines in ambient aerosol in Shanghai. Environ. Chem. 2012, 9, 202.
Single particle analysis of amines in ambient aerosol in Shanghai.Crossref | GoogleScholarGoogle Scholar |

[259]  J. H. Kroll, J. D. Smith, D. R. Worsnop, K. R. Wilson, Characterization of lightly oxidized organic aerosol formed from the photochemical aging of diesel exhaust particles. Environ. Chem. 2012, 9, 211.
Characterization of lightly oxidized organic aerosol formed from the photochemical aging of diesel exhaust particles.Crossref | GoogleScholarGoogle Scholar |

[260]  X. Ge, Q. Zhang, Y. Sun, C. R. Ruehl, Effect of aqueous-phase processing on aerosol chemistry in Fresno, California, during wintertime. Environ. Chem. 2012, 9, 221.
Effect of aqueous-phase processing on aerosol chemistry in Fresno, California, during wintertime.Crossref | GoogleScholarGoogle Scholar |

[261]  L. R. Mazzoleni, P. Saranjampour, M. M. Dalbec, V. Samburova, A. G. Hallar, B. Zielinska, D. Lowenthal, S. Kohl, Identification of water-soluble organic carbon in nonurban aerosols using ultra-high resolution FT-ICR mass spectrometry: organic anions. Environ. Chem. 2012, 9, 285.
Identification of water-soluble organic carbon in nonurban aerosols using ultra-high resolution FT-ICR mass spectrometry: organic anions.Crossref | GoogleScholarGoogle Scholar |

[262]  A. G. Rincón, A. I. Calvo, M. Dietzel, M. Kalberer, Seasonal differences of urban organic aerosol composition – an ultra-high resolution mass spectrometry study. Environ. Chem. 2012, 9, 298.
Seasonal differences of urban organic aerosol composition – an ultra-high resolution mass spectrometry study.Crossref | GoogleScholarGoogle Scholar |