Characterisation of tracers for aging of α-pinene secondary organic aerosol using liquid chromatography/negative ion electrospray ionisation mass spectrometry
Farhat Yasmeen A D , Reinhilde Vermeylen A , Nicolas Maurin B , Emilie Perraudin B C , Jean-François Doussin B and Magda Claeys A EA Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium.
B LISA, Universités Paris-Est-Créteil et Paris Diderot, CNRS UMR 7583, 61 Avenue du Général de Gaulle, F-94010, Créteil, France.
C EPOC, University of Bordeaux, CNRS UMR 5805, 351 Cours de la Libération, F-33400 Talence, France.
D Present address: Chemistry Department, University of Engineering and Technology, G.T. Road, Lahore 54840, Pakistan.
E Corresponding author. Email: magda.claeys@ua.ac.be
Environmental Chemistry 9(3) 236-246 https://doi.org/10.1071/EN11148
Submitted: 1 December 2011 Accepted: 23 February 2012 Published: 3 May 2012
Journal Compilation © CSIRO Publishing 2012 Open Access CC BY-NC-ND
Environmental context. Ambient fine aerosol from forested sites contains secondary organic aerosol from the oxidation of monoterpenes that are emitted by the vegetation, mainly by conifers. These biogenic aerosols can have varying lifetimes in the atmosphere because they contain first-generation oxidation products of α-pinene as well as aged products formed through further photooxidation, fragmentation, hydrolysis, and dimerisation reactions. We focus on the structural characterisation of secondary organic aerosol products that are simulated in a smog chamber experiment and can serve as potential tracers for aging processes in biogenic aerosols.
Abstract. Secondary organic aerosol (SOA) from the oxidation of α-pinene is a very complex and dynamic mixture containing products with a different chemical nature and physicochemical properties that are dependent on chemical evolution or aging processes. In this study, we focus on the chemical characterisation of major products that are formed upon α-pinene ozonolysis SOA and subsequent aging through OH-initiated reactions in the absence of NOx, which include known as well as unknown tracers. The mass spectrometric data obtained for selected unknown compounds that show an increased relative abundance upon aging are interpreted in detail and tentative structures for them are proposed taking into account their formation through photooxidation of α-pinene. Known tracers for α-pinene SOA aging that were identified include norpinic acid, 10-hydroxypinonic acid, diaterpenylic acid acetate, and diesters formed by esterification of pinic acid with terpenylic acid or 10-hydroxypinonic acid. Novel tracers for α-pinene SOA aging that were tentatively identified include dinorpinic acid and 8-hydroxypinonic acid. In addition, reaction mechanisms are proposed to explain the formation of the observed α-pinene SOA tracers.
References
[1] J. H. Kroll, J. H. Seinfeld, Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 2008, 42, 3593.| Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Kksbs%3D&md5=e4081486255a7e6de6be34deb1620aecCAS |
[2] J. L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. H. Prévôt, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. D. Allan, H. Coe, N. L. Ng, A. C. Aiken, K. S. Docherty, I. M. Ulbrich, A. P. Grieshop, A. L. Robinson, J. Duplissy, J. D. Smith, K. R. Wilson, V. A. Lanz, C. Hueglin, Y. L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J. M. Tomlinson, D. R. Collins, M. J. Cubison, E. J. Dunlea, J. A. Huffman, T. B. Onasch, M. R. Alfarra, P. I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J. Y. Sun, Y. M. Zhang, K. Dzepina, J. R. Kimmel, D. Sueper, J. T. Jayne, S. C. Herndon, A. M. Trimborn, L. R. Williams, E. C. Wood, A. M. Middlebrook, C. E. Kolb, U. Baltensperger, D. R. Worsnop, Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525.
| Evolution of organic aerosols in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFensbjE&md5=d9c7580ed2340a3d184f8f5b2249b226CAS |
[3] J. H. Kroll, N. M. Donahue, J. L. Jimenez, S. H. Kessler, M. R. Canagaratna, K. R. Wilson, K. E. Altieri, L. R. Mazzoleni, A. S. Wozniak, H. Bluhm, E. R. Mysak, J. D. Smith, C. E. Kolb, D. R. Worsnop, Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem. 2011, 3, 133.
| Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVGhuw%3D%3D&md5=1dab8e3c16047688989051db2562c7a6CAS |
[4] J. D. Surratt, J. H. Kroll, T. E. Kleindienst, E. O. Edney, M. Claeys, A. Sorooshian, N. L. Ng, J. H. Offenberg, M. Lewandowski, M. Jaoui, R. C. Flagan, J. H. Seinfeld, Evidence for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 517.
| Evidence for organosulfates in secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OmsLzM&md5=3ba1496dcab5f18f744e84387c36ab24CAS |
[5] J. D. Surratt, Y. Gómez-González, A. W. H. Chan, R. Vermeylen, M. Shahgholi, T. E. Kleindienst, E. O. Edney, J. H. Offenberg, M. Lewandowski, M. Jaoui, W. Maenhaut, M. Claeys, R. C. Flagan, J. H. Seinfeld, Organosulfate formation in biogenic secondary organic aerosol. J. Phys. Chem. A 2008, 112, 8345.
| Organosulfate formation in biogenic secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFOgsrw%3D&md5=8ed1709bc00dac5ed4673e4b498bad19CAS |
[6] J. D. Surratt, A. W. H. Chan, N. C. Eddingsaas, M. N. Chan, C. L. Loza, A. J. Kwan, S. P. Hersey, R. C. Flagan, P. O. Wennberg, J. H. Seinfeld, Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci. USA 2010, 107, 6640.
| Reactive intermediates revealed in secondary organic aerosol formation from isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFSjsL0%3D&md5=0c09f16899742e34501fe30fbdaddb76CAS |
[7] Y. Iinuma, C. Müller, T. Berndt, O. Böge, M. Claeys, H. Herrmann, Evidence for the existence of organosulfates from beta-pinene ozonolysis in ambient secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 6678.
| Evidence for the existence of organosulfates from beta-pinene ozonolysis in ambient secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVCntLo%3D&md5=ee5b0887594bf9e8f467cab9f1b8db9bCAS |
[8] L. Müller, M.-C. Reinnig, J. Warnke, T. Hoffmann, Unambiguous identification of esters as oligomers in secondary organic aerosol formed from cyclohexene and cyclohexene/α-pinene ozonolysis. Atmos. Chem. Phys. 2008, 8, 1423.
| Unambiguous identification of esters as oligomers in secondary organic aerosol formed from cyclohexene and cyclohexene/α-pinene ozonolysis.Crossref | GoogleScholarGoogle Scholar |
[9] Y. Gao, W. A. Hall, M. V. Johnston, Molecular composition of monoterpene secondary organic aerosol at low mass loading. Environ. Sci. Technol. 2010, 44, 7897.
| Molecular composition of monoterpene secondary organic aerosol at low mass loading.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOksbbI&md5=0ddd3d291d2376e1af8dd4a80a9089e8CAS |
[10] F. Yasmeen, R. Vermeylen, R. Szmigielski, Y. Iinuma, O. Böge, H. Herrmann, W. Maenhaut, M. Claeys, Terpenylic acid and related compounds: precursors for dimers in secondary organic aerosol from the ozonolysis of α- and β-pinene. Atmos. Chem. Phys. 2010, 10, 9383.
| Terpenylic acid and related compounds: precursors for dimers in secondary organic aerosol from the ozonolysis of α- and β-pinene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ait7jM&md5=b1d18dbae61484d25a937b3e8c8def2eCAS |
[11] I. J. George, J. P. D. Abbatt, Chemical evolution of secondary organic aerosol from OH-initiated heterogeneous oxidation. Atmos. Chem. Phys. 2010, 10, 5551.
| Chemical evolution of secondary organic aerosol from OH-initiated heterogeneous oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCjsbzN&md5=4ebf61f7682e06ef89cd4881f47031a9CAS |
[12] R. Szmigielski, J. D. Surratt, Y. Gómez-González, P. Van der Veken, I. Kourtchev, R. Vermeylen, F. Blockhuys, M. Jaoui, T. E. Kleindienst, M. Lewandowski, J. H. Offenberg, E. O. Edney, J. H. Seinfeld, W. Maenhaut, M. Claeys, 3-methyl-1,2,3-butanetricarboxylic acid: an atmospheric tracer for terpene secondary organic aerosol. Geophys. Res. Lett. 2007, 34, L24811.
| 3-methyl-1,2,3-butanetricarboxylic acid: an atmospheric tracer for terpene secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |
[13] N. L. Ng, P. S. Chhabra, A. W. H. Chan, J. D. Surratt, J. H. Kroll, A. J. Kwan, D. C. McCabe, P. O. Wennberg, A. Sorooshian, S. M. Murphy, N. F. Dalleska, R. C. Flagan, J. H. Seinfeld, Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmos. Chem. Phys. 2007, 7, 5159.
| Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOnsrvL&md5=da8699ff1c75702b18eda2c0655cd695CAS |
[14] L. Müller, M.-C. Reinnig, K. H. Naumann, H. Saathoff, T. F. Mentel, N. Donahue, T. Hoffmann, Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid – a mass spectrometric study of SOA aging. Atmos. Chem. Phys. 2012, 12, 1483.
| Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid – a mass spectrometric study of SOA aging.Crossref | GoogleScholarGoogle Scholar |
[15] M. Hallquist, J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, J. F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M. E. Jenkin, J. L. Jimenez, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, Th. F. Mentel, A. Monod, A. S. H. Prévôt, J. H. Seinfeld, J. D. Surratt, R. Szmigielski, J. Wildt, The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155.
| The formation, properties and impact of secondary organic aerosol: current and emerging issues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhs77M&md5=0437ae491e64eca2afaa26d3b70e085eCAS |
[16] Y. Y. Zhang, L. Müller, R. Winterhalter, G. K. Moortgat, T. Hoffmann, U. Pöschl, Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter. Atmos. Chem. Phys. 2010, 10, 7859.
| Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWls7nN&md5=98e7b8c58cf9949e4e19be9222480710CAS |
[17] Y. Gómez-González, W. Wang, R. Vermeylen, X. Chi, J. Neirynck, I. A. Janssens, W. Maenhaut, M. Claeys, Chemical characterization of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes, time series, diel variations, and temperature dependences. Atmos. Chem. Phys. 2012, 12, 125.
| Chemical characterization of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes, time series, diel variations, and temperature dependences.Crossref | GoogleScholarGoogle Scholar |
[18] J. Lelieveld, T. M. Butler, J. N. Crowley, T. J. Dillon, H. Fischer, L. Ganzeveld, H. Harder, M. G. Lawrence, M. Martinez, D. Taraborrelli, J. Williams, Atmospheric oxidation capacity sustained by a tropical forest. Nature 2008, 452, 737.
| Atmospheric oxidation capacity sustained by a tropical forest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFSisrc%3D&md5=82b80e6866bf8e3505279f816a8c1510CAS |
[19] D. J. Douglas, A. J. Frank, D. Mao, Linear ion traps in mass spectrometry. Mass Spectrom. Rev. 2005, 24, 1.
| Linear ion traps in mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFWlsA%3D%3D&md5=6591423835e95e43feb4c3669c8b6573CAS |
[20] Y. Gómez-González, J. D. Surratt, F. Cuyckens, R. Szmigielski, R. Vermeylen, M. Jaoui, M. Lewandowski, J. H. Offenberg, T. E. Kleindienst, E. O. Edney, F. Blockhuys, C. Van Alsenoy, W. Maenhaut, M. Claeys, Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(–)electrospray ionization mass spectrometry. J. Mass Spectrom. 2008, 43, 371.
| Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(–)electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar |
[21] M. Claeys, Y. Iinuma, R. Szmigielski, J. D. Surratt, F. Blockhuys, C. Van Alsenoy, O. Böge, B. Sierau, Y. Gómez-González, R. Vermeylen, P. Van der Veken, M. Shahgholi, A. W. H. Chan, H. Herrmann, J. H. Seinfeld, W. Maenhaut, Terpenylic acid and related compounds from the oxidation of α-pinene: implications for new particle formation and growth above forest. Environ. Sci. Technol. 2009, 43, 6976.
| Terpenylic acid and related compounds from the oxidation of α-pinene: implications for new particle formation and growth above forest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSis7nK&md5=d924fad936ba357434e464138d5e8905CAS |
[22] F. Yasmeen, R. Szmigielski, R. Vermeylen, Y. Gómez-González, J. D. Surratt, A. W. H. Chan, J. H. Seinfeld, W. Maenhaut, M. Claeys, Mass spectrometric characterization of isomeric terpenoic acids from the oxidation of α-pinene, β-pinene, d-limonene, and Δ3-carene in fine forest aerosol. J. Mass Spectrom. 2011, 46, 425.
| Mass spectrometric characterization of isomeric terpenoic acids from the oxidation of α-pinene, β-pinene, d-limonene, and Δ3-carene in fine forest aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVWmsbc%3D&md5=56ccfd37a3596772b619d7fbac668451CAS |
[23] J. Wang, J.-F. Doussin, S. Perrier, E. Perraudin, Y. Katrib, E. Pangui, B. Picquet-Varrault, Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research. Atmos. Meas. Tech. 2011, 4, 2465.
| Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Wltrw%3D&md5=dcace131f6d2aefeb609d6f241caa2d7CAS |
[24] R. Winterhalter, R. Van Dingenen, B. R. Larsen, N. R. Jensen, J. Hjorth, LC-MS analysis of aerosol particles from the oxidation of α-pinene by ozone and OH-radicals. Atmos. Chem. Phys. Discuss. 2003, 3, 1.
| LC-MS analysis of aerosol particles from the oxidation of α-pinene by ozone and OH-radicals.Crossref | GoogleScholarGoogle Scholar |
[25] T. S. Christoffersen, J. Hjorth, O. Horie, N. R. Jensen, D. Kotzias, L. Molander, P. Neeb, L. Ruppert, R. Winterhalter, A. Virkkula, K. Wirtz, B. R. Larsen, cis-Pinic acid, a possible precursor for organic aerosol formation from ozonolysis of α-pinene. Atmos. Environ. 1998, 32, 1657.
| cis-Pinic acid, a possible precursor for organic aerosol formation from ozonolysis of α-pinene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1WqsLY%3D&md5=0fd990a41cbd47b1afd2844e9cc66ce3CAS |
[26] J. Z. Yu, D. R. Cocker, R. J. Griffin, R. C. Flagan, J. H. Seinfeld, Gas-phase ozone oxidation of monoterpenes: gaseous and particulate products. J. Atmos. Chem. 1999, 34, 207.
| Gas-phase ozone oxidation of monoterpenes: gaseous and particulate products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt1ens7w%3D&md5=b5781d7c99e3f0d5cc0d30f8fead703eCAS |
[27] M. Glasius, M. Duane, B. R. Larsen, Determination of polar terpene oxidation products in aerosols by liquid chromatography-ion trap mass spectrometry. J. Chromatogr. A 1999, 833, 121.
| Determination of polar terpene oxidation products in aerosols by liquid chromatography-ion trap mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1OhurY%3D&md5=f6167afb8dab659bc5a547c62e8db314CAS |
[28] S. Hatakeyama, K. Izumi, T. Fukuyama, H. Akimoto, Reactions of ozone with alpha-pinene and beta-pinene in air – yields of gaseous and particulate products. J. Geophys. Res.–Atmos. 1989, 94, 13013.
| Reactions of ozone with alpha-pinene and beta-pinene in air – yields of gaseous and particulate products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtVKhsr8%3D&md5=57747d5d0cad5dd2793aaa296f4aed51CAS |
[29] T. Hoffmann, J. R. Odum, F. Bowman, D. Collins, D. Klockow, R. C. Flagan, J. H. Seinfeld, Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J. Atmos. Chem. 1997, 26, 189.
| Formation of organic aerosols from the oxidation of biogenic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvVKmsLg%3D&md5=205688de84956f44aeb070d75650cee9CAS |
[30] T. Hoffmann, R. Bandur, U. Marggraf, M. Linscheid, Molecular composition of organic aerosols formed in the α-pinene/O3 reaction: implications for new particle formation processes. J. Geophys. Res.–Atmos. 1998, 103, 25569.
| Molecular composition of organic aerosols formed in the α-pinene/O3 reaction: implications for new particle formation processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFSku7g%3D&md5=9f1b23c4529005440214637a15a71d38CAS |
[31] J. Z. Yu, R. C. Flagan, J. H. Seinfeld, Identification of products containing –COOH, –OH, and –C=O in atmospheric oxidation of hydrocarbons. Environ. Sci. Technol. 1998, 32, 2357.
| Identification of products containing –COOH, –OH, and –C=O in atmospheric oxidation of hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksFSrurk%3D&md5=be5ef5f6b2e38846b7d01ea5d7f87c70CAS |
[32] M. Glasius, M. Lahaniati, A. Calogirou, D. Di Bella, N. R. Jensen, J. Hjorth, M. Duane, D. Kotzias, B. R. Larsen, Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone. Environ. Sci. Technol. 2000, 34, 1001.
| Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlyntA%3D%3D&md5=47e40f45cc0b573b20e087f2b2c00bd4CAS |
[33] B. R. Larsen, M. Lahaniati, A. Calogirou, D. Kotzias, Atmospheric oxidation products of terpenes: a new nomenclature. Chemosphere 1998, 37, 1207.
| Atmospheric oxidation products of terpenes: a new nomenclature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlt1ehs7w%3D&md5=b3a94bb81b0da3382060ac0d3e1768b2CAS |
[34] K. A. Harrison, K. L. Clay, R. C. Murphy, Negative ion electrospray and tandem mass spectrometric analysis of platelet activating factor (PAF) (1-hexadecyl-2-acetyl-glycerophosphocholine). J. Mass Spectrom. 1999, 34, 330.
| Negative ion electrospray and tandem mass spectrometric analysis of platelet activating factor (PAF) (1-hexadecyl-2-acetyl-glycerophosphocholine).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislGktL8%3D&md5=167e264137b69233190756ad8dcbbee6CAS |
[35] B. R. Larsen, D. Di Bella, M. Glasius, R. Winterhalter, N. R. Jensen, J. Hjorth, Gas-phase OH oxidation of monoterpenes: gaseous and particulate products. J. Atmos. Chem. 2001, 38, 231.
| Gas-phase OH oxidation of monoterpenes: gaseous and particulate products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVaiurw%3D&md5=633b15f22db88d1b9d7377356b85ff78CAS |
[36] Y. Iinuma, O. Böge, M. Keywood, T. Gnauk, H. Herrrmann, Diaterebic acid acetate and diaterpenylic acid acetate: atmospheric tracers for secondary organic aerosol formation from 1,8-cineole oxidation. Environ. Sci. Technol. 2009, 43, 280.
| Diaterebic acid acetate and diaterpenylic acid acetate: atmospheric tracers for secondary organic aerosol formation from 1,8-cineole oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2rtbrF&md5=4626458ec6c531af85d525abd5da2ebcCAS |
[37] A. Lee, A. H. Goldstein, M. D. Keywood, S. Gao, V. Varutbangkul, R. Bahreini, N. L. Ng, R. C. Flagan, J. H. Seinfeld, Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes. J. Geophys. Res.–Atmos. 2006, 111, D07302.
| Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes.Crossref | GoogleScholarGoogle Scholar |
[38] Y. Yu, M. J. Ezell, A. Zelenyuk, D. Imre, L. Alexander, J. Ortega, B. D’Anna, C. W. Harmon, S. N. Johnson, B. J. Finlayson-Pitts, Photooxidation of α-pinene at high relative humidity in the presence of increasing concentrations of NOx. Atmos. Environ. 2008, 42, 5044.
| Photooxidation of α-pinene at high relative humidity in the presence of increasing concentrations of NOx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFGluro%3D&md5=bbd2eda78f05035c8a700fcc3d5f9930CAS |
[39] M. Bilde, S. N. Pandis, Evaporation rates and vapor pressures of individual aerosol species formed in the atmospheric oxidation of alpha- and beta-pinene. Environ. Sci. Technol. 2001, 35, 3344.
| Evaporation rates and vapor pressures of individual aerosol species formed in the atmospheric oxidation of alpha- and beta-pinene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltF2lu7o%3D&md5=9893500782d9b13a13dd55c3cfebd234CAS |
[40] L. Vereecken, J. Peeters, Enhanced H-atom abstraction from pinonaldehyde, pinonic acid, pinic acid, and related compounds: theoretical study of C–H bond strengths. Phys. Chem. Chem. Phys. 2002, 4, 467.
| Enhanced H-atom abstraction from pinonaldehyde, pinonic acid, pinic acid, and related compounds: theoretical study of C–H bond strengths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmtlehtg%3D%3D&md5=385993e1ec742b168fcc743bd5235ccdCAS |