Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Contribution of organic arsenic species to total arsenic measurements using ferrihydrite-backed diffusive gradients in thin films (DGT)

Heléne Österlund A B C , Mikko Faarinen A , Johan Ingri B and Douglas C. Baxter A
+ Author Affiliations
- Author Affiliations

A ALS Laboratory Group, ALS Scandinavia AB, Aurorum 10, SE-977 75 Luleå, Sweden.

B Division of Geosciences and Environmental Engineering, Luleå University of Technology, SE-977 87 Luleå, Sweden.

C Corresponding author. Email address: helene.osterlund@ymail.com

Environmental Chemistry 9(1) 55-62 https://doi.org/10.1071/EN11057
Submitted: 28 April 2011  Accepted: 24 October 2011   Published: 31 January 2012

Environmental context. Both the mobility and toxicity of arsenic in natural waters are related to the aqueous species distribution. Passive sampling using ferrihydrite-backed diffusive gradients in thin films (DGT) devices has in previous studies been characterised to measure labile inorganic arsenic, and the possible contribution of organic species has been disregarded. This study shows that the two most prevalent organic arsenic species might be included in DGT measurements, which should be taken into consideration when evaluating DGT data in future studies.

Abstract. In previous publications discussing arsenic determination using ferrihydrite-backed diffusive gradients in thin films (DGT) devices, organic arsenic forms have been disregarded, even though it is known that the two most prevalent in natural waters, dimethylarsinate (DMA) and monomethylarsonate (MMA), may adsorb to ferrihydrite and thereby be included in the measurement. In this work the accumulation of DMA and MMA, as well as inorganic arsenite and arsenate, to ferrihydrite-backed DGT devices was investigated. It could be demonstrated that MMA, and under acidic conditions also DMA, adsorbed to the binding layer and might therefore contribute to the total mass of measured arsenic. Diffusion coefficients were measured for all four species to enable quantification of DGT-labile concentrations of organic and inorganic arsenic. Elution of the analytes from the ferrihydrite binding layer was performed using 1 mL of 1 M NaOH to facilitate arsenic speciation analysis using chromatographic separation. Average recovery rates were between 87 and 108 %. This study shows that the contribution of DMA and MMA to the total accumulated mass must be taken into consideration when evaluating DGT data in future studies.


References

[1]  K. W. Warnken, H. Zhang, W. Davison, In situ monitoring and dynamic speciation measurements in solution using DGT, in Passive Sampling Techniques in Environmental Monitoring (Eds R. Greenwood, Q. Mills, B. Vrana) 2007, Chapter 11 (Elsevier: Amsterdam, the Netherlands).

[2]  H. Hasegawa, M. A. Rahman, K. Kitahara, Y. Itaya, T. Maki, K. Ueda, Seasonal changes of arsenic speciation in lake waters in relation to eutrophication. Sci. Total Environ. 2010, 408, 1684.
Seasonal changes of arsenic speciation in lake waters in relation to eutrophication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFKju7c%3D&md5=e50c377941f03719d8d7aa62e6f020aaCAS |

[3]  W. R. Cullen, K. J. Reimer, Arsenic speciation in the environment. Chem. Rev. 1989, 89, 713.
Arsenic speciation in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktVaitbg%3D&md5=99b47f57cc819b4d91cab4a1a548b669CAS |

[4]  W. Baeyens, A. de Brauwere, N. Brion, M. D. Gieter, M. Leermakers, Arsenic speciation in the River Zenne, Belgium. Sci. Total Environ. 2007, 384, 409.
Arsenic speciation in the River Zenne, Belgium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsF2lsbg%3D&md5=bc7c09799c8a5533f3a6e3ae96d80481CAS |

[5]  H. Zhang, W. Davison, R. Gadi, T. Kobayashi, In situ measurement of dissolved phosphorus in natural waters using DGT. Anal. Chim. Acta 1998, 370, 29.
In situ measurement of dissolved phosphorus in natural waters using DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvFeqs78%3D&md5=0c26e2c1924ad9f97e675df442fd6b65CAS |

[6]  H. Österlund, S. Chlot, M. Faarinen, A. Widerlund, I. Rodushkin, J. Ingri, D. C. Baxter, Simultaneous measurements of As, Mo, Sb, V and W using a ferrihydrite diffusive gradients in thin films (DGT) device. Anal. Chim. Acta 2010, 682, 59.
Simultaneous measurements of As, Mo, Sb, V and W using a ferrihydrite diffusive gradients in thin films (DGT) device.Crossref | GoogleScholarGoogle Scholar |

[7]  J. Luo, H. Zhang, J. Santner, W. Davison, Performance characteristics of diffusive gradients in thin films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(V), selenium(VI), vanadium(V) and antimony(V). Anal. Chem. 2010, 82, 8903.
Performance characteristics of diffusive gradients in thin films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(V), selenium(VI), vanadium(V) and antimony(V).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OgsrvF&md5=12133eb1f69635f329296cdaaaa85d82CAS |

[8]  J. G. Panther, K. P. Stillwell, K. J. Powell, A. J. Downard, Development and application of the diffusive gradients in thin films technique for the measurement of total dissolved inorganic arsenic in waters. Anal. Chim. Acta 2008, 622, 133.
Development and application of the diffusive gradients in thin films technique for the measurement of total dissolved inorganic arsenic in waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFamsLs%3D&md5=d3700de6c34c32efce70f615af9e8152CAS |

[9]  J. G. Panther, K. P. Stillwell, K. J. Powell, A. J. Downard, Perfluorosulfonated ionomer-modified diffusive gradients in thin films: tool for inorganic arsenic speciation analysis. Anal. Chem. 2008, 80, 9806.
Perfluorosulfonated ionomer-modified diffusive gradients in thin films: tool for inorganic arsenic speciation analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCqtbvE&md5=5c39bc983230b4b8ca6d23ab4faf0b8fCAS |

[10]  H. Hasegawa, M. A. Rahman, T. Matsuda, T. Kitahara, T. Maki, K. Ueda, Effect of eutrophication on the distribution of arsenic species in eutrophic and mesotrophic lakes. Sci. Total Environ. 2009, 407, 1418.
Effect of eutrophication on the distribution of arsenic species in eutrophic and mesotrophic lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOmsrrE&md5=3a2093d366346e5f770c3aa455c5c47bCAS |

[11]  L. C. D. Anderson, K. W. Bruland, Biogeochemistry of arsenic in natural waters: the importance of methylated species. Environ. Sci. Technol. 1991, 25, 420.
Biogeochemistry of arsenic in natural waters: the importance of methylated species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXovVWmsA%3D%3D&md5=1e4b4d68b0d1e5f3a1e5b4af67a74c15CAS |

[12]  P. Pinel-Raffaitin, I. Le Hecho, D. Amouroux, M. Potin-Gautier, Distribution and fate of inorganic and organic arsenic species in landfill leachates and biogases. Environ. Sci. Technol. 2007, 41, 4536.
Distribution and fate of inorganic and organic arsenic species in landfill leachates and biogases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvFSnsbg%3D&md5=65dcbaf08defbd993b5c8ca2c139d797CAS |

[13]  A. McKnight-Whitford, B. Chen, H. Naranmandura, C. Zhu, X. C. Le, New method and detection of high concentrations of monomethylarsonous acid detected in contaminated groundwater. Environ. Sci. Technol. 2010, 44, 5875.
New method and detection of high concentrations of monomethylarsonous acid detected in contaminated groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVers78%3D&md5=b0b73faf015fa7ea8ef3cef218c0d76fCAS |

[14]  L. Orero Iserte, A. F. Roig-Navarro, F. Hernández, Simultaneous determination of arsenic and selenium species in phosphoric acid extracts of sediment samples by HPLC-ICP-MS. Anal. Chim. Acta 2004, 527, 97.
Simultaneous determination of arsenic and selenium species in phosphoric acid extracts of sediment samples by HPLC-ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslKqsL0%3D&md5=f8c12b13647c9d054d57a2da49af7da3CAS |

[15]  B. J. Lafferty, R. H. Loeppert, Methyl arsenic adsorption and desorption behavior on iron oxides. Environ. Sci. Technol. 2005, 39, 2120.
Methyl arsenic adsorption and desorption behavior on iron oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtl2nsL8%3D&md5=797b13b67d5b87725481affbc360d803CAS |

[16]  J. L. Gómez-Ariza, D. Sánchez-Rodas, I. Giráldez, E. Morales, A comparison between ICP-MS and AFS detection for arsenic speciation in environmental samples. Talanta 2000, 51, 257.
A comparison between ICP-MS and AFS detection for arsenic speciation in environmental samples.Crossref | GoogleScholarGoogle Scholar |

[17]  L. S. Zhang, S. M. Combs, Using the installed spray chamber as a gas-liquid separator for the determination of germanium, arsenic, selenium, tin, antimony, tellurium and bismuth by hydride generation inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 1996, 11, 1043.
Using the installed spray chamber as a gas-liquid separator for the determination of germanium, arsenic, selenium, tin, antimony, tellurium and bismuth by hydride generation inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVKkurc%3D&md5=12b106b94d29ad5e46412475c3c8bec3CAS |

[18]  Y. Arslan, E. Yildirim, M. Gholami, S. Bakirdere, Lower limits of detection in speciation analysis by coupling high-performance liquid chromatography and chemical-vapor generation. Trends Anal. Chem. 2011, 30, 569.
Lower limits of detection in speciation analysis by coupling high-performance liquid chromatography and chemical-vapor generation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvV2nt7c%3D&md5=9837ed1646440038b5607ef9f8717d05CAS |

[19]  S. Scally, W. Davison, H. Zhang, Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films. Anal. Chim. Acta 2006, 558, 222.
Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFygtw%3D%3D&md5=0fb760c892c4443b28eebf4d1c1dea84CAS |

[20]  I. Rodushkin, E. Engström, D. C. Baxter, Sources of contamination and remedial strategies in the multi-elemental trace analysis laboratory. Anal. Bioanal. Chem. 2010, 396, 365.
Sources of contamination and remedial strategies in the multi-elemental trace analysis laboratory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVygsbbI&md5=d6ac334dec5c689d392dbe57cb88016eCAS |

[21]  H. Zhang, W. Davison, Diffusional characteristics of hydrogels used in DGT and DET techniques. Anal. Chim. Acta 1999, 398, 329.
Diffusional characteristics of hydrogels used in DGT and DET techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFeqtLk%3D&md5=4b258c91e60376e3c73b902e9e6083edCAS |

[22]  P. W. Atkins, Physical Chemistry, 4th edn, 1990, Chapter 26. (Oxford University Press, Suffolk).

[23]  J. G. Panther, P. R. Teasdale, W. W. Bennett, D. T. Welsh, H. Zhao, Comparing dissolved reactive phosphorus measured by DGT with ferrihydrite and titanium dioxide adsorbents: anionic interferences, adsorbent capacity and deployment time. Anal. Chim. Acta 2011, 698, 20.
Comparing dissolved reactive phosphorus measured by DGT with ferrihydrite and titanium dioxide adsorbents: anionic interferences, adsorbent capacity and deployment time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFCqtb8%3D&md5=564a80505537ae617ceeefafe80f5ab5CAS |

[24]  H. Zhang, W. Davison, Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal. Chem. 1995, 67, 3391.
Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnslKgtrc%3D&md5=bb9658e99f6d0c6ad7950f14c6e2b63dCAS |

[25]  W. W. Bennett, P. R. Teasdale, J. G. Panther, D. T. Welsh, D. F. Jolley, New diffusive gradients in a thin film technique for measuring inorganic arsenic and selenium(IV) using a titanium dioxide based adsorbent. Anal. Chem. 2010, 82, 7401.
New diffusive gradients in a thin film technique for measuring inorganic arsenic and selenium(IV) using a titanium dioxide based adsorbent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVGmt78%3D&md5=bc72c1d7ea066722ca200c1dfbb6d5fdCAS |

[26]  W. J. Fitz, W. W. Wenzel, H. Zhang, J. Nurmi, K. Štipek, Z. Fischerova, P. Schweiger, G. Köllensperger, L. Q. Ma, G. Stingeder, Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environ. Sci. Technol. 2003, 37, 5008.
Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVakurs%3D&md5=975d779398331369256ddd9c3dcc3cedCAS |

[27]  Y.-H. Li, S. Gregory, Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 1974, 38, 703.
Diffusion of ions in sea water and in deep-sea sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXltVyqsrY%3D&md5=5f9ab2f8a734393351f2d4089ab2fad1CAS |

[28]  T. Wällstedt, L. Björkvald, J. P. Gustafsson, Increasing concentrations of arsenic and vanadium in (southern) Swedish streams. Appl. Geochem. 2010, 25, 1162.
Increasing concentrations of arsenic and vanadium in (southern) Swedish streams.Crossref | GoogleScholarGoogle Scholar |

[29]  G. Liu, A. Fernandez, Y. Cai, Complexation of arsenite with humic acid in the presence of ferric iron. Environ. Sci. Technol. 2011, 45, 3210.
Complexation of arsenite with humic acid in the presence of ferric iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVShtbo%3D&md5=a08e978e57866e881e2fa0576ada28e1CAS |

[30]  D. Sánchez-Rodas, J. L. Gómez-Ariza, I. Giráldez, A. Velasco, E. Morales, Arsenic speciation in river and estuarine waters from southwest Spain. Sci. Total Environ. 2005, 345, 207.
Arsenic speciation in river and estuarine waters from southwest Spain.Crossref | GoogleScholarGoogle Scholar |