Capillary electrophoresis characterisation of humic acids: application to diverse forest soil samples
Michael Tatzber A C , Franz Mutsch B , Axel Mentler A , Ernst Leitgeb B , Michael Englisch B and Martin H. Gerzabek AA Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Applied Life Sciences, Peter Jordan Strasse 82, A-1190 Vienna, Austria.
B Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Seckendorff-Gudent-Weg 8, A-1131 Vienna, Austria.
C Corresponding author. Email: michael.tatzber@boku.ac.at
Environmental Chemistry 8(6) 589-601 https://doi.org/10.1071/EN11054
Submitted: 22 April 2011 Accepted: 27 September 2011 Published: 23 November 2011
Environmental context. Analysis of soil organic matter is important for understanding turnover and stabilisation processes of organic carbon in soils. Capillary electrophoresis is used here to investigate humic acids from soils of diverse forest sites, and show that the patterns of signals are indicative of soil characteristics. The method provides useful information of soil types and complements the existing set of methods for humic acid characterisation.
Abstract. Analyses of humic substances provide very useful information about turnover characteristics and stabilisation processes of soil organic matter in environmental soil samples. The present study investigates 113 samples of forest soils from three different layers (undecomposed litter (L), if present, mixed samples of F (intermediate decomposed) and H (highly decomposed) organic matter (FH) and upper mineral soil layers (Ah horizon) from 0 to 5 cm) by extracting humic acids (HAs) and recording electropherograms. Five signals of these electropherograms were evaluated and correlated with basic parameters from soil (organic carbon, Corg, and total nitrogen, Nt, and extraction yields of HAs) and HAs (total carbon, Ct, and Nt), and with signals from photometry, mid-infrared and fluorescence spectroscopy. The developed method was able to separate HAs from different soil layers by calculating a discriminant function based on the five evaluated electrophoretic signals. The dataset of this work opened the opportunity to correlate the observed electrophoretic signals with the other determined soil parameters and spectroscopic signals. This can be seen as a very important step in the direction to assignments of the obtained electrophoretic signals. Soil characteristics were reflected quite well by this method and, combined with the other approaches, it is suitable for applications in further studies.
References
[1] J. Chen, B. Gu, E. J. LeBoeuf, H. Pan, S. Dai, Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere 2002, 48, 59.| Spectroscopic characterization of the structural and functional properties of natural organic matter fractions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVGjtb0%3D&md5=8094b73bc81936a0cd8f3cac7b6fddecCAS |
[2] S. Kang, B. Xing, Phenanthrene sorption to sequentially extracted soil humic acids and humans. Environ. Sci. Technol. 2005, 39, 134.
| Phenanthrene sorption to sequentially extracted soil humic acids and humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSmtLzJ&md5=80d6f23d3ee0cd41dbd1fef3b5470736CAS |
[3] H. Knicker, F. J. González-Vila, O. Polvillo, J. A. González, G. Almendros, Fire-induced transformation of C- and N- forms in different organic soil fractions from a Dystric Cambisol under a Mediterranean pine forest (Pinus pinaster). Soil Biol. Biochem. 2005, 37, 701.
| Fire-induced transformation of C- and N- forms in different organic soil fractions from a Dystric Cambisol under a Mediterranean pine forest (Pinus pinaster).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFyhtQ%3D%3D&md5=dade5be49b812048469147902a555288CAS |
[4] Ph. Schmitt, A. W. Garrison, D. Freitag, A. Kettrup, Capillary isoelectric focusing (CIEF) for the characterization of humic substances. Water Res. 1997, 31, 2037.
| Capillary isoelectric focusing (CIEF) for the characterization of humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktlSmuro%3D&md5=4a026abdabb62f1a21df6fb14895dd38CAS |
[5] P. Schmitt-Kopplin, J. Junkers, Capillary zone electrophoresis of natural organic matter. J. Chromatogr. A 2003, 998, 1.
| Capillary zone electrophoresis of natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1yisL8%3D&md5=49b78db8c4b13a5fa4f51be01332964cCAS |
[6] Ph. Schmitt-Kopplin, N. Hertkorn, A. W. Garrison, D. Freitag, A. Kettrup, Influence of borate buffers on the electrophoretic behavior of humic substances in capillary zone electrophoresis. Anal. Chem. 1998, 70, 3798.
| Influence of borate buffers on the electrophoretic behavior of humic substances in capillary zone electrophoresis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFejsrw%3D&md5=7b828d7a6bccd20e92878eb83a193d15CAS |
[7] A. W. Garrison, P. Schmitt, A. Kettrup, Capillary electrophoresis for the characterization of humic substances. Water Res. 1995, 29, 2149.
| Capillary electrophoresis for the characterization of humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvFagtbs%3D&md5=18abd9870923315a85ce5799eff7489cCAS |
[8] O. A. Trubetskoj, O. E. Trubetskaya, G. V. Afanas’eva, O. I. Reznikova, C. Saiz-Jimenez, Polyacrylamide gel electrophoresis of soil humic acid fractionated by size-exclusion chromatography and ultrafiltration. J. Chromatogr. A 1997, 767, 285.
| Polyacrylamide gel electrophoresis of soil humic acid fractionated by size-exclusion chromatography and ultrafiltration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisF2itb8%3D&md5=c9f58c12de60ea83695de0beda91bc0aCAS |
[9] O. A. Trubetskoj, P. G. Hatcher, O. E. Trubetskaya, 1H-NMR and 13C-NMR spectroscopy of chernozem soil humic acid fractionated by combined size-exclusion chromatography and electrophoresis. Chem. Ecol. 2010, 26, 315.
| 1H-NMR and 13C-NMR spectroscopy of chernozem soil humic acid fractionated by combined size-exclusion chromatography and electrophoresis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1ansb8%3D&md5=9154811f78bf40e581c70244efcd605aCAS |
[10] O. Trubetskoj, O. Trubetskaya, O. Reznikova, G. Afanas’eva, Weight and optical differences between soil humic acids fractions obtained by coupling SEC-PAGE. Geoderma 1999, 93, 277.
| Weight and optical differences between soil humic acids fractions obtained by coupling SEC-PAGE.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns12n&md5=15fc974aade4efd89439f3fa6553e607CAS |
[11] O. Trubetskaya, O. Trubetskoj, G. Guyot, F. Andreux, C. Richard, Fluorescence of soil humic acids and their fractions obtained by tandem size exclusion chromatography-polyacrylamide gel electrophoresis. Org. Geochem. 2002, 33, 213.
| Fluorescence of soil humic acids and their fractions obtained by tandem size exclusion chromatography-polyacrylamide gel electrophoresis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlCqurs%3D&md5=2407689f0fe10300e64e419d9d38f2a9CAS |
[12] O. E. Trubetskaya, O. A. Trubetskoi, B. A. Borisov, N. F. Ganzhara, Electrophoresis and size-exclusion chromatography of humic substances extracted from detritus and soils of different geneses. Eurasian Soil Sci. 2008, 41, 171.
| Electrophoresis and size-exclusion chromatography of humic substances extracted from detritus and soils of different geneses.Crossref | GoogleScholarGoogle Scholar |
[13] Ph. Schmitt-Kopplin, A. W. Garrison, E. M. Perdue, D. Freitag, A. Kettrup, Capillary electrophoresis in the analysis of humic substances facts and artifacts. J. Chromatogr. A 1998, 807, 101.
| Capillary electrophoresis in the analysis of humic substances facts and artifacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvVahs7g%3D&md5=78b3ed2ecb9bd33709a9c7cba131f42bCAS |
[14] M.-Y. Chen, Y.-Z. Chang, F.-J. Lu, J.-L. Chen, Capillary electrophoretic determination of selected phenolic compounds in humic substances of well waters and fertilizers. Anal. Sci. 2010, 26, 561.
| Capillary electrophoretic determination of selected phenolic compounds in humic substances of well waters and fertilizers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1ens7c%3D&md5=687f3ac471699f1e431c06da81316bb6CAS |
[15] S. Pompe, K.-H. Heise, H. Nitsche, Capillary electrophoresis for a ‘finger-print’ characterization of fulvic and humic acids. J. Chromatogr. A 1996, 723, 215.
| Capillary electrophoresis for a ‘finger-print’ characterization of fulvic and humic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnslSnsA%3D%3D&md5=b21506e15391108ca61073beba6b0333CAS |
[16] D. Fetsch, M. Hradilová, E. M. Peña Méndez, J. Havel, Capillary zone electrophoresis study of aggregation of humic substances. J. Chromatogr. A 1998, 817, 313.
| Capillary zone electrophoresis study of aggregation of humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltleltb0%3D&md5=51ec720ff6c3bbbbe9a92991efbb226cCAS |
[17] R. Kautenburger, Influence of metal concentration and the presence of competing cations on europium and gadolinium speciation with humic acid analysed by CE-ICP-MS. J. Anal. At. Spectrom. 2009, 24, 934.
| Influence of metal concentration and the presence of competing cations on europium and gadolinium speciation with humic acid analysed by CE-ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Slt7Y%3D&md5=eb7264b100aa11d14524a77e7ec11486CAS |
[18] S. L. De Moraes, M. O. O. Rezende, Capillary electrophoresis (CE): a powerful tool to characterize humic acid (HA). J. Braz. Chem. Soc. 2008, 19, 24.
| Capillary electrophoresis (CE): a powerful tool to characterize humic acid (HA).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Ons70%3D&md5=4c8a93b7a16aadc64dc94796965de5e0CAS |
[19] Z. He, T. Ohno, F. Wu, D. C. Olk, C. W. Honeycutt, M. Olanya, Capillary electrophoresis and fluorescence excitation–emission matrix spectroscopy for characterization of humic substances. Soil Sci. Soc. Am. J. 2008, 72, 1248.
| Capillary electrophoresis and fluorescence excitation–emission matrix spectroscopy for characterization of humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2itrbL&md5=342a1d5f910052a7c9fb836040870ef8CAS |
[20] Z. He, T. Ohno, D. C. Olk, F. Wu, Capillary electrophoresis profiles and fluorophore components of humic acids in Nebraska corn and Philippine rice soils. Geoderma 2010, 156, 143.
| Capillary electrophoresis profiles and fluorophore components of humic acids in Nebraska corn and Philippine rice soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltF2ktL0%3D&md5=de95abfd36b790021cdc7ff6dc412d60CAS |
[21] M. Tatzber, F. Mutsch, A. Mentler, E. Leitgeb, M. Englisch, M. H. Gerzabek, Determination of organic and inorganic carbon in forest soil samples by mid-infrared spectroscopy and partial least squares regression. Appl. Spectrosc. 2010, 64, 1167.
| Determination of organic and inorganic carbon in forest soil samples by mid-infrared spectroscopy and partial least squares regression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlaku7fO&md5=4e9a6ee6e0b4a7857b10cebf19d1ce95CAS |
[22] M. Tatzber, F. Mutsch, A. Mentler, E. Leitgeb, M. Englisch, F. Zehetner, I. Djukic, M. H. Gerzabek, The potential of mid-infrared spectroscopy for soil identification demonstrated on a large sample set of forest soils. Geoderma 2011, 166, 162.
| The potential of mid-infrared spectroscopy for soil identification demonstrated on a large sample set of forest soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Clt77E&md5=38b37bca5d5c8096c2a0bd3572606472CAS |
[23] M. Tatzber, M. Stemmer, H. Spiegel, C. Katzlberger, G. Haberhauer, A. Mentler, M. H. Gerzabek, FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. J. Plant Nutr. Soil Sci. 2007, 170, 522.
| FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFCqsr0%3D&md5=98cc3bad68dbe5f62c3527b3050cda3bCAS |
[24] M. Tatzber, M. Stemmer, H. Spiegel, C. Katzlberger, F. Zehetner, G. Haberhauer, E. Garcia-Garcia, M. H. Gerzabek, Spectroscopic behaviour of 14C-labelled humic acids in a long-term field experiment with three cropping systems. Aust. J. Soil Res. 2009, 47, 459.
| 1:CAS:528:DC%2BD1MXpvF2ktLY%3D&md5=1308d4bbd2fe7f1d9544d348d0513bd2CAS |
[25] N. Senesi, V. D’Orazio, G. Ricca, Humic acids in the first generation of EUROSOILS. Geoderma 2003, 116, 325.
| Humic acids in the first generation of EUROSOILS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVGisbY%3D&md5=80003cccd63969edce1a077acf61bb96CAS |
[26] M. Tatzber, H. Spiegel, C. Katzlberger, G. Haberhauer, M. H. Gerzabek, An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ. Chem. Lett. 2007, 5, 9.
| An alternative method to measure carbonate in soils by FT-IR spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislygt78%3D&md5=a844818b827f2a05b5cbe3ce1b87bd4eCAS |
[27] M. Tatzber, M. Stemmer, H. Spiegel, C. Katzlberger, G. Haberhauer, M. H. Gerzabek, Impact of different tillage practices on molecular characteristics of humic acids in a long-term field experiment – an application of three different spectroscopic methods. Sci. Total Environ. 2008, 406, 256.
| Impact of different tillage practices on molecular characteristics of humic acids in a long-term field experiment – an application of three different spectroscopic methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Shs7fM&md5=94f42f93f852ea4650701fbc29dfbbe0CAS |
[28] A. Bühl, P. Zöfel, SPSS 11: Einführung in die moderne Datenanalyse unter Windows, 8th edn 2002 (Pearson Studium: Munich). [In German].
[29] H. A. David, H. O. Hartley, E. S. Pearson, The distribution of the ratio, in a single normal sample, of range to standard deviation. Biometrika 1954, 41, 482.
[30] R. Sutton, G. Sposito, Molecular structure in soil humic substances: the new view. Environ. Sci. Technol. 2005, 39, 9009.
| Molecular structure in soil humic substances: the new view.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGmtb7L&md5=427be9301f88d35faee8e0f33c962bb9CAS |
[31] M. Kleber, What is recalcitrant soil organic matter? Environ. Chem. 2010, 7, 320.
| What is recalcitrant soil organic matter?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12jsb%2FE&md5=4e097b043ec874e7a7845800e37f7786CAS |
[32] N. Poirier, S. Derenne, J. N. Rouzaud, C. Largeau, A. Mariotti, J. Balesdent, J. Maquet, Chemical structure and sources of the macromolecular, resistant, organic fraction isolated from a forest soil (Lacadee, south-west France). Org. Geochem. 2000, 31, 813.
| Chemical structure and sources of the macromolecular, resistant, organic fraction isolated from a forest soil (Lacadee, south-west France).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1yjtrs%3D&md5=9e208be870396c1795ccc30dcdeef0b0CAS |
[33] O. E. Craig, J. M. Collins, The removal of protein from mineral surfaces: implications for residue analysis of archaeological materials. J. Archaeol. Sci. 2002, 29, 1077.
| The removal of protein from mineral surfaces: implications for residue analysis of archaeological materials.Crossref | GoogleScholarGoogle Scholar |
[34] A. Jokic, A. I. Frenkel, R. M. Huang, Effect of light on birnessite catalysis of the Maillard reaction and its implication in humification. Can. J. Soil Sci. 2001, 81, 277.
| Effect of light on birnessite catalysis of the Maillard reaction and its implication in humification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1Oltw%3D%3D&md5=b0fe6f76ceb3e309aa0b609eda3b0536CAS |
[35] P. M. Huang, Soil mineral–organic matter–microorganism interactions: fundamentals and impacts. Adv. Agron. 2004, 82, 391.
| Soil mineral–organic matter–microorganism interactions: fundamentals and impacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVymsA%3D%3D&md5=ef1061ef48fd78d78a2272bfa9df4f7fCAS |