Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Using diffusive gradients in thin films to probe the kinetics of metal interaction with algal exudates

Jacqueline Levy A C , Hao Zhang A , William Davison A and Rene Groben B
+ Author Affiliations
- Author Affiliations

A Lancaster Environment Centre, Lancaster University, Bailrigg, LA1 4YQ, UK.

B Centre for Ecology and Hydrology, Lancaster, Bailrigg, LA1 4AP, UK.

C Corresponding author. Email: jacqui.levy@gmail.com

Environmental Chemistry 8(5) 517-524 https://doi.org/10.1071/EN11046
Submitted: 12 April 2011  Accepted: 21 June 2011   Published: 14 October 2011

Environmental context. Interaction of metals with dissolved organic matter is one of the key processes defining metal bioavailability in water. The technique of diffusive gradients in thin films was used to investigate the kinetics of the interaction between metals and dissolved organic matter released by algae. For most metals the rate at which they were released from the organic matter was fast, but release of iron was kinetically limited.

Abstract. The interaction of metals with organic matter is one of the key processes determining metal speciation and bioavailability in water. Fulvic acid tends to dominate dissolved organic carbon (DOC) in freshwaters, but organic carbon produced in situ, e.g. exudates released by algae and bacteria, is also significant. The technique of diffusive gradients in thin films (DGT) was used to investigate the lability of metal–exudate complexes using a kinetic signature approach. Exudates were harvested from three cultured freshwater alga (Chlorella vulgaris, Cryptomonas pyrenoidifera, Anabaena flos-aquae) and the filtered media supplemented with trace metals. DGT-labile metal concentrations and kinetic signatures were determined (24-h deployment). The relationship between Fe and DOC was a defining feature of the kinetic signatures. Iron was the most kinetically limited metal followed by Al and Cu, whereas Co, Ni and Pb were effectively completely labile. Exudates from Chlorella vulgaris produced the most DOC and the most marked kinetic limitation.

Additional keywords: DGT, dissociation, dissolved organic carbon, phytoplankton, trace metals.


References

[1]  G. E. Batley, S. C. Apte, J. L. Stauber, Speciation and bioavailability of trace metals in water: progress since 1982. Aust. J. Chem. 2004, 57, 903.
Speciation and bioavailability of trace metals in water: progress since 1982.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1Sjsr8%3D&md5=4a425dd93122e384eab024473b94ea10CAS |

[2]  J. Buffle, K. J. Wilkinson, H. P. van Leeuwen, Chemodynamics and bioavailability in natural waters. Environ. Sci. Technol. 2009, 43, 7170.
Chemodynamics and bioavailability in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGgu7vE&md5=c39c4cefd0b68c326f4bddf703b8c337CAS |

[3]  P. G. C. Campbell, Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model, in Metal Speciation and Bioavailability in Aquatic Systems (Eds A. Tessier, D. R. Turner) 1995, pp. 45–102 (Wiley: Chichester, UK).

[4]  H. P. van Leeuwen, R. M. Town, J. Buffle, R. Cleven, W. Davison, J. Puy, W. H. van Riemsdijk, L. Sigg, Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environ. Sci. Technol. 2005, 39, 8545.
Dynamic speciation analysis and bioavailability of metals in aquatic systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOis73M&md5=57823b7291b817fc12ad02e4d1285afbCAS |

[5]  M. Filella, Freshwaters: which NOM matters? Environ. Chem. Lett. 2009, 7, 21.
Freshwaters: which NOM matters?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSksrc%3D&md5=dfe326327f241aa2c37c928678ee6c82CAS |

[6]  K. Wilkinson, J. Buffle, Critical evaluation of physicochemical parameters and processes for modelling the biological uptake of trace metals in environmental (aquatic) systems, in Physicochemical Kinetics and Transport at Biointerfaces (Eds H. P. van Leeuwen, W. Köster) 2004, pp. 445–533 (Wiley: Chichester, UK).

[7]  E. P. Achterberg, C. M. G. van den Berg, M. Boussemart, W. Davison, Speciation and cycling of trace metals in Esthwaite Water: a productive English lake with seasonal deep-water anoxia. Geochim. Cosmochim. Acta 1997, 61, 5233.
Speciation and cycling of trace metals in Esthwaite Water: a productive English lake with seasonal deep-water anoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFSktQ%3D%3D&md5=0481b4b34490bf20a9c178fdfd95211aCAS |

[8]  W. R. Arnold, J. S. Cotsifas, R. S. Ogle, S. G. S. DePalma, D. S. Smith, A comparison of the copper sensitivity of six invertebrate species in ambient salt water of varying dissolved organic matter concentrations. Environ. Toxicol. Chem. 2010, 29, 311.
A comparison of the copper sensitivity of six invertebrate species in ambient salt water of varying dissolved organic matter concentrations.Crossref | GoogleScholarGoogle Scholar |

[9]  M. Clifford, J. C. McGeer, Development of a biotic ligand model to predict the acute toxicity of cadmium to Daphnia pulex. Aquat. Toxicol. 2010, 98, 1.
Development of a biotic ligand model to predict the acute toxicity of cadmium to Daphnia pulex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFWqsb4%3D&md5=e7302cda90583ee9163c4fe4dc3652b8CAS |

[10]  K. A. C. De Schamphelaere, C. R. Janssen, Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna. Environ. Toxicol. Chem. 2004, 23, 1365.
Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1ylsL0%3D&md5=f3710f7b300ce4ab7a1e65b23cb79d33CAS |

[11]  H. Z. Ma, S. D. Kim, D. K. Cha, H. E. Allen, Effect of kinetics of complexation by humic acid on toxicity of copper to Ceriodaphnia dubia. Environ. Toxicol. Chem. 1999, 18, 828.
| 1:CAS:528:DyaK1MXislSls7o%3D&md5=93be491395d10c2a885c6263193a016aCAS |

[12]  I. Worms, D. F. Simon, C. S. Hassler, K. J. Wilkinson, Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie 2006, 88, 1721.
Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cis7rK&md5=fb9a6c4369cfdfbf0b0048a949c3ebe2CAS |

[13]  R. M. Town, M. Filella, Dispelling the myths: is the existence of L1 and L2 ligands necessary to explain metal ion speciation in natural waters? Limnol. Oceanogr. 2000, 45, 1341.
Dispelling the myths: is the existence of L1 and L2 ligands necessary to explain metal ion speciation in natural waters?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFCitbo%3D&md5=45d46cfcf34aca006c7ba76819c1a1e6CAS |

[14]  F. M. M. Morel, J. G. Hering, Principles and Applications of Aquatic Chemistry 1993 (Wiley: New York).

[15]  E. Tipping, Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 1998, 4, 3.
Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlSjuro%3D&md5=b691b52d3cb423544a67e094a347a8e7CAS |

[16]  K. J. Wilkinson, A. Joz-Roland, J. Buffle, Different roles of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters. Limnol. Oceanogr. 1997, 42, 1714.
Different roles of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtlejsrg%3D&md5=effcda83906f9fd8c9c1c3156e84ab41CAS |

[17]  V. Chanudet, M. Filella, The application of the MBTH method for carbohydrate determination in freshwaters revisited. Int. J. Environ. Anal. Chem. 2006, 86, 693.
The application of the MBTH method for carbohydrate determination in freshwaters revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtV2msrk%3D&md5=d0b0aa40ff30184e29127a4353f8bde1CAS |

[18]  J. Buffle, G. G. Leppard, Characterization of aquatic colloids and macromolecules. 1. Structure and behaviour of colloidal material. Environ. Sci. Technol. 1995, 29, 2169.
Characterization of aquatic colloids and macromolecules. 1. Structure and behaviour of colloidal material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntFKksrs%3D&md5=7007f267abbb2697f2fb021948ed1134CAS |

[19]  C. Lamelas, V. I. Slaveykova, Pb uptake by the freshwater alga Chlorella kesslerii in the presence of dissolved organic matter of variable composition. Environ. Chem. 2008, 5, 366.
Pb uptake by the freshwater alga Chlorella kesslerii in the presence of dissolved organic matter of variable composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSnsrvP&md5=ef30529363800cd45f56d09d1793e225CAS |

[20]  H. Zhang, W. Davison, Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal. Chem. 1995, 67, 3391.
Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnslKgtrc%3D&md5=87242e0da4eca5a0b457f07f56562955CAS |

[21]  N. J. Lehto, W. Davison, H. Zhang, W. Tych, An evaluation of DGT performance using a dynamic numerical model Environ. Sci. Technol. 2006, 40, 6368.
An evaluation of DGT performance using a dynamic numerical modelCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFahurg%3D&md5=623c890a11cbd3fa9809dc00c04c9a29CAS |

[22]  R. M. Town, P. Chakraborty, H. P. van Leeuwen, Dynamic DGT speciation analysis and applicability to natural heterogeneous complexes. Environ. Chem. 2009, 6, 170.
Dynamic DGT speciation analysis and applicability to natural heterogeneous complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyqtrY%3D&md5=652e28cf4ec25bbf0ef06624a1fa65e9CAS |

[23]  M. Pesavento, G. Alberti, R. Biesuz, Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review. Anal. Chim. Acta 2009, 631, 129.
Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWis73L&md5=89a58bdc99ffcaf7e7dd7407249c87e4CAS |

[24]  K. W. Warnken, H. Zhang, W. Davison, J. Galceran, J. Puy, In situ measurements of metal complex exchange kinetics in freshwater. Environ. Sci. Technol. 2007, 41, 3179.
In situ measurements of metal complex exchange kinetics in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsV2mur0%3D&md5=74efd69bbb7b902c4175005efc63545dCAS |

[25]  Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Report EPA-821-R-02-013 2002 (US Environmental Protection Agency: Washington, DC).

[26]  J. Lund, C. Kipling, E. LeCren, The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 1958, 11, 143.
The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting.Crossref | GoogleScholarGoogle Scholar |

[27]  K. W. Warnken, H. Zhang, W. Davison, Accuracy of the diffusive gradient in thin-films technique: diffusion boundary layer and effective sampling area considerations. Anal. Chem. 2006, 78, 3780.
Accuracy of the diffusive gradient in thin-films technique: diffusion boundary layer and effective sampling area considerations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVSktrg%3D&md5=411c06d81379c7a9f952adf64a081059CAS |

[28]  Ø. A. Garmo, W. Davison, H. Zhang, Effects of binding of metals to the hydrogel and filter membrane on the accuracy of the diffusive gradients in thin films technique. Anal. Chem. 2008, 80, 9220.
Effects of binding of metals to the hydrogel and filter membrane on the accuracy of the diffusive gradients in thin films technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWqu73E&md5=593f6e34a5672cf533876732629a6f77CAS |

[29]  C. R. Janssen, D. G. Heijerick, Algal toxicity tests for environmental risk assessments of metals, in Reviews of Environmental Contamination and Toxicology (Ed. G. Ware) 2003, pp. 23–52 (Springer: New York).

[30]  B. Koukal, P. Rosse, A. Reinhardt, B. Ferrari, K. J. Wilkinson, J. L. Loizeau, J. Dominik, Effect of Pseudokirchneriella subcapitata (Chlorophyceae) exudates on metal toxicity and colloid aggregation. Water Res. 2007, 41, 63.
Effect of Pseudokirchneriella subcapitata (Chlorophyceae) exudates on metal toxicity and colloid aggregation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1KitbbJ&md5=18133da1e05ddf7fa9f3ac49ca85e707CAS |

[31]  Ø. Garmo, K. Ravi Naqvi, O. Røyset, K. Steinnes, Estimation of diffusive boundary layer thickness in studies involving diffusive gradients in thin films (DGT). Anal. Bioanal. Chem. 2006, 386, 2233.
K. Ravi Naqvi, O. Røyset, K. Steinnes, Estimation of diffusive boundary layer thickness in studies involving diffusive gradients in thin films (DGT).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cmsb3J&md5=30ae1d9b635e9836a2af98a20e1177e1CAS |

[32]  S. Scally, W. Davison, H. Zhang, In situ measurements of dissociation kinetics and labilities of metal complexes in solution using DGT. Environ. Sci. Technol. 2003, 37, 1379.
In situ measurements of dissociation kinetics and labilities of metal complexes in solution using DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFWjt7s%3D&md5=68c64651fc7a170b604322a23acb22adCAS |

[33]  Ø. A. Garmo, O. Røyset, E. Steinnes, T. P. Flaten, Performance study of diffusive gradients in thin films for 55 elements. Anal. Chem. 2003, 75, 3573.
Performance study of diffusive gradients in thin films for 55 elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Krs7o%3D&md5=be1078b4ccd411c05410382016ae1138CAS |

[34]  S. Scally, W. Davison, H. Zhang, Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films. Anal. Chim. Acta 2006, 558, 222.
Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFygtw%3D%3D&md5=bde1777b84f6e85dc40fe63fb6903159CAS |

[35]  S. Scally, H. Zhang, W. Davison, Measurements of lead complexation with organic ligands using DGT. Aust. J. Chem. 2004, 57, 925.
Measurements of lead complexation with organic ligands using DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1Sjsr0%3D&md5=e06fbae2e09755ce06fbd3c995069959CAS |

[36]  E. van Veen, S. Comber, M. Gardner, Interlaboratory comparability of copper complexation capacity determination in natural waters. J. Environ. Monit. 2002, 4, 116.
Interlaboratory comparability of copper complexation capacity determination in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntlyksA%3D%3D&md5=f6bcddd7ecd882eb8079a3c18a4ae418CAS |

[37]  E. Rotureau, H. P. van Leeuwen, Kinetics of metal ion binding by polysaccharide colloids. J. Phys. Chem. A 2008, 112, 7177.
Kinetics of metal ion binding by polysaccharide colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlOls7s%3D&md5=15a67cb0613eb0b7f7b439af4952bd99CAS |

[38]  E. Rotureau, H. P. van Leeuwen, Kinetic features of metal complexes with polysaccharide colloids: impact of ionic strength. J. Phys. Chem. A 2009, 113, 12879.
Kinetic features of metal complexes with polysaccharide colloids: impact of ionic strength.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CrsrrJ&md5=7ad2eaf2129b2c1001a6f8d96a808e72CAS |

[39]  C. S. Hassler, V. Schoemann, Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean. Biogeosciences 2009, 6, 2281.
Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVCqsg%3D%3D&md5=180a29f47a7901b1fcfda20e0f6c0eacCAS |

[40]  J. W. Rijstenbil, L. J. A. Gerringa, Interactions of algal ligands, metal complexation and availability, and cell responses of the diatom Ditylum brightwellii with a gradual increase in copper. Aquat. Toxicol. 2002, 56, 115.
Interactions of algal ligands, metal complexation and availability, and cell responses of the diatom Ditylum brightwellii with a gradual increase in copper.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVam&md5=f4cc9e226e7f7d1c8b8ccaa301e5049bCAS |

[41]  J. Buffle, Z. Zhang, K. Startchev, Metal flux and dynamic speciation at (bio)interfaces. Part 1: critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances. Environ. Sci. Technol. 2007, 41, 7609.
Metal flux and dynamic speciation at (bio)interfaces. Part 1: critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ymtr3E&md5=cc635b0cd04d6db150673f6bc5919279CAS |

[42]  R. Uribe, S. Mongin, J. Puy, J. Cecília, J. Galceran, H. Zhang, W. Davison, Contribution of partially labile complexes to the DGT metal flux. Environ. Sci. Technol. 2011, 45, 5317.
Contribution of partially labile complexes to the DGT metal flux.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVWlsLs%3D&md5=0806f7b68503ff4b785e84006817b8a5CAS |