Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Bacterial bioreporter detects mercury in the presence of excess EDTA

Amy L. Dahl A D , John Sanseverino B and Jean-François Gaillard C
+ Author Affiliations
- Author Affiliations

A TechLaw, Inc., 101 Yesler Way, Suite 600, Seattle, WA 98104, USA.

B Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, Knoxville, TN 37996-1605, USA.

C Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, #A324, Evanston, IL 60208-3109, USA.

D Corresponding author. Email: adahl@techlawinc.com

Environmental Chemistry 8(6) 552-560 https://doi.org/10.1071/EN11043
Submitted: 6 April 2011  Accepted: 17 July 2011   Published: 13 September 2011

Environmental context. Understanding the uptake of mercury by bacteria is essential for predicting the amount of toxic methyl mercury formed in the environment. This study shows that the uptake of mercury by a whole-cell bacterial biosensor as a function of a strong ligand was greater than predicted by chemical speciation measurements or equilibrium calculations. These results call into question the use of chemical measurements and equilibrium modelling for predicting the toxicity of metals to living organisms in the environment and suggest that direct biological methods yield more accurate results.

Abstract. A whole-cell bacterial reporter was used to probe the bioavailability of mercury in the presence of a strong metal chelator, ethylenediaminetetraacetic acid (EDTA). Strain ARL1 was constructed by inserting a merR::luxCDABE fusion into the chromosome of Escherichia coli. The response of the bioreporter to HgII was monitored as a function of added EDTA. In parallel, square-wave voltammetry (SWV) measurements and thermodynamic calculations using MINEQL were performed to study the chemical speciation of mercury. The amount of electro-labile HgII measured by SWV was similar to the amount of non-complexed HgII predicted from equilibrium calculations. In contrast, the bioavailable fraction measured by the bioreporter was greater than the fraction predicted by either equilibrium calculation or electrochemical analysis. These results suggest that conventional chemical measurements and equilibrium calculations are not necessarily good proxies for predicting the bioavailable metal fraction. Additional factors such as kinetic effects or biological ligand competition must be considered.


References

[1]  R. Ebinghaus, R. Tripathi, D. Wallschlager, S. E. Lindberg, Natural and anthropogenic mercury sources and their impact on the air–surface exchange of mercury on regional and global scales, in Mercury Contaminated Sites (Eds R. Ebinghaus, R. R. Turner, L. de Lacerda, O. Vasiliev, W. Salomons) 1999, pp. 3–50 (Springer: Berlin).

[2]  F. D’Itri, Mercury contamination – what we have learned since Minamata. Environ. Monit. Assess. 1991, 19, 165.
Mercury contamination – what we have learned since Minamata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtFejsrk%3D&md5=732cac66ee2482852d1f9b18d81cdbafCAS |

[3]  J. C. Wasserman, S. Hacon, M. A. Wasserman, Biogeochemistry of mercury in the Amazonian environment. Ambio 2003, 32, 336.

[4]  P. B. Tchounwou, W. K. Ayensu, N. Ninashvili, D. Sutton, Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol. 2003, 18, 149.
Environmental exposure to mercury and its toxicopathologic implications for public health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFentrY%3D&md5=da1266ac6f0c2bb1dc9a013b23c07edaCAS |

[5]  M. Gilbertson, D. O. Carpenter, An ecosystem approach to the health effects of mercury in the Great Lakes basin ecosystem – introduction. Environ. Res. 2004, 95, 240.
An ecosystem approach to the health effects of mercury in the Great Lakes basin ecosystem – introduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1entL4%3D&md5=7a9c5f4cfabee16df58f3e3f9af6bcffCAS |

[6]  J. Morrissette, L. Takser, G. St-Amour, A. Smargiassi, J. Lafond, D. Mergler, Temporal variation of blood and hair mercury levels in pregnancy in relation to fish consumption history in a population living along the St Lawrence River. Environ. Res. 2004, 95, 363.
Temporal variation of blood and hair mercury levels in pregnancy in relation to fish consumption history in a population living along the St Lawrence River.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1enurw%3D&md5=6a79e6a1e839990c252e476bc3fa97aaCAS |

[7]  W. Bedsworth, D. Sedlak, Sources and environmental fate of strongly complexed nicker in estuarine waters: the role of ethylenediaminetetraacetate. Environ. Sci. Technol. 1999, 33, 926.
Sources and environmental fate of strongly complexed nicker in estuarine waters: the role of ethylenediaminetetraacetate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXptVShtg%3D%3D&md5=9bfe90483a2678ea6357c270a863023bCAS |

[8]  European Aminocarboxylates Committee (EAC), Chelating Agents, Questions and Answers, EDTA (European Chemical Industry Council: Belgium). Available at http://www.cefic.org/Documents/Other/EAC_broch_EDTA_03.pdf [Verified 10 August 2011].

[9]  B. Nowack, Environmental chemistry of aminopolycarboxylate chelating agents. Environ. Sci. Technol. 2002, 36, 4009.
Environmental chemistry of aminopolycarboxylate chelating agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1Omt7o%3D&md5=17ed9579f1529f3e33c3a1d89ab1d67aCAS |

[10]  F. X. Han, S. Shiyab, J. Chen, Y. Su, D. L. Monts, C. A. Waggoner, F. B. Matta, Extractability and bioavailability of mercury from a mercury sulfide contaminated soil in Oak Ridge, Tennessee, USA. Water Air Soil Pollut. 2008, 194, 67.
Extractability and bioavailability of mercury from a mercury sulfide contaminated soil in Oak Ridge, Tennessee, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2qt7%2FF&md5=dd631f5c0a43ff4d567354f12786bd6aCAS |

[11]  H. Grčman, S. Velikonja-Bolta, D. Vodnik, B. Kos, D. Leštan, EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 2001, 235, 105.
EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity.Crossref | GoogleScholarGoogle Scholar |

[12]  C. D. Campbell, M. Hird, D. G. Lumsdon, J. C. L. Meeussen, The effect of EDTA and fulvic acid on Cd, Zn, and Cu toxicity to a bioluminescent construct (pUCD607) of Escherichia coli. Chemosphere 2000, 40, 319.
The effect of EDTA and fulvic acid on Cd, Zn, and Cu toxicity to a bioluminescent construct (pUCD607) of Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkt1OksA%3D%3D&md5=6dfea5043b2562048d376aea8a52cf2cCAS |

[13]  S. B. Huang, Z. J. Wang, M. Ma, Measuring the bioavailable/toxic concentration of copper in natural water by using anodic stripping voltammetry and Vibrio qinghaiensis sp. Nov.-Q67 bioassay. Chem. Spec. Bioavail. 2003, 15, 37.
Measuring the bioavailable/toxic concentration of copper in natural water by using anodic stripping voltammetry and Vibrio qinghaiensis sp. Nov.-Q67 bioassay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1Sltb4%3D&md5=02cb66730443962cd2f5fa6868d6171cCAS |

[14]  W. G. Sunda, S. A. Huntsman, Antagonisms between cadmium and zinc toxicity and manganese limitation in a coastal diatom. Limnol. Oceanogr. 1996, 41, 373.
Antagonisms between cadmium and zinc toxicity and manganese limitation in a coastal diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvFKhtrg%3D&md5=746d31d4e3fe83503170578a55a914adCAS |

[15]  C. E. Outten, T. V. O'Halloran, Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 2001, 292, 2488.
Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFWlsrk%3D&md5=8f8db7680ddcd9dcc3e02316205bf360CAS |

[16]  R. J. M. Hudson, Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects. Sci. Total Environ. 1998, 219, 95.
Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslWltrw%3D&md5=1c3723b9240fc680bb17cdec9d681212CAS |

[17]  K. J. Wilkinson, J. Buffle, Critical evaluation of physicochemical parameters and processes for modeling the biological uptake of trace metals in environmental (aquatic) systems, in Physicochemical Kinetics and Transport at Chemical – Biological Interphases (Eds H. P. van Leeuwen, W. Koester) 2004, pp. 445–533 (Wiley: Chichester, UK).

[18]  F. M. M. Morel, J. G. Hering, Principles and Applications of Aquatic Chemistry 1993 (Wiley-Interscience: New York).

[19]  C. Sarin, J. M. Hall, J. Cotter-Howells, K. Killham, M. S. Cresser, Influence of complexation with chloride on the responses of a lux-marked bacteria bioassay to cadmium, copper, lead, and mercury. Environ. Toxicol. Chem. 2000, 19, 259.
| 1:CAS:528:DC%2BD3cXhsF2hsr8%3D&md5=420a0f86184e5a2ddd3f8e4de47347e0CAS |

[20]  O. Errecalde, P. G. C. Campbell, Cadmium and zinc bioavailability to Selenastrum capricornutum (Chlorophyceae): accidental metal uptake and toxicity in the presence of citrate. J. Phycol. 2000, 36, 473.
Cadmium and zinc bioavailability to Selenastrum capricornutum (Chlorophyceae): accidental metal uptake and toxicity in the presence of citrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmslars7k%3D&md5=f2fac8ebf4968de0a28a850e99029e77CAS |

[21]  O. Errecalde, M. Seidl, P. G. C. Campbell, Influence of a low molecular weight metabolite (citrate) on the toxicity of cadmium and zinc to the unicellular green alga Selenastrum capricornutum: an exception to the free-ion model. Water Res. 1998, 32, 419.
Influence of a low molecular weight metabolite (citrate) on the toxicity of cadmium and zinc to the unicellular green alga Selenastrum capricornutum: an exception to the free-ion model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1OgtQ%3D%3D&md5=ccc68c6a79e9c5cf4f97018e6befc615CAS |

[22]  L. Parent, M. R. Twiss, P. G. C. Campbell, Influences of natural dissolved organic matter on the interaction of aluminum with the microalga Chlorella: a test of the free-ion model of trace metal toxicity. Environ. Sci. Technol. 1996, 30, 1713.
Influences of natural dissolved organic matter on the interaction of aluminum with the microalga Chlorella: a test of the free-ion model of trace metal toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVKnsr4%3D&md5=a6031174760a18d7361513da3901d3e8CAS |

[23]  C. Fortin, P. G. C. Campbell, Thiosulfate enhances silver uptake by a green alga: role of anion transporters in metal uptake. Environ. Sci. Technol. 2001, 35, 2214.
Thiosulfate enhances silver uptake by a green alga: role of anion transporters in metal uptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVCgsLo%3D&md5=168b3bc9240d6ebcd32c6bd83386b1afCAS |

[24]  P. L. Brown, S. J. Markich, Evaluation of the free ion activity model of metal-organism interaction: extension of the conceptual model. Aquat. Toxicol. 2000, 51, 177.
Evaluation of the free ion activity model of metal-organism interaction: extension of the conceptual model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVSmsLw%3D&md5=8904c7f1ae55edbc9deb4e15850ced93CAS |

[25]  H. P. van Leeuwen, Metal speciation dynamics and bioavailability: inert and labile complexes. Environ. Sci. Technol. 1999, 33, 3743.
Metal speciation dynamics and bioavailability: inert and labile complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvV2jtLc%3D&md5=0e344de170d713f9fa6d1df3a2f09363CAS |

[26]  H. P. van Leeuwen, Speciation dynamics and bioavailability of metals. J. Radioanal. Nucl. Chem. 2000, 246, 487.
Speciation dynamics and bioavailability of metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVOn&md5=1c85b3f26676601c94be442700d35e66CAS |

[27]  S. Jansen, R. Blust, H. P. V. Leeuwen, Metal speciation dynamics and bioavailability: ZnII and CdII uptake by mussel (Mytilus edulis) and carp (Cyprinus carpio). Environ. Sci. Technol. 2002, 36, 2164.
Metal speciation dynamics and bioavailability: ZnII and CdII uptake by mussel (Mytilus edulis) and carp (Cyprinus carpio).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVOjtrc%3D&md5=72caefc3f259dbd35b06d2c09f2ce8f6CAS |

[28]  National Recommended Water Quality Criteria 2009 (US EPA, Office of Water, Office of Science and Technology). Available at http://water.epa.gov/scitech/swguidance/standards/current/upload/nrwqc-2009.pdf [Verified 10 August 2011].

[29]  T. Barkay, M. Gillman, R. R. Turner, Effects of dissolved organic carbon and salinity on bioavailability of mercury. Appl. Environ. Microbiol. 1997, 63, 4267.
| 1:CAS:528:DyaK2sXnt12ntrw%3D&md5=f27f6e715c2547117a9a05ba7788a597CAS |

[30]  B. M. Miskimmin, J. W. M. Rudd, C. A. Kelly, Influence of dissolved organic-carbon, Ph, and microbial respiration rates on mercury methylation and demethylation in lake water. Can. J. Fish. Aquat. Sci. 1992, 49, 17.
Influence of dissolved organic-carbon, Ph, and microbial respiration rates on mercury methylation and demethylation in lake water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xit1Wjtbc%3D&md5=21d033b337eba35cebb2febad8628365CAS |

[31]  Aquatic Life Ambient Freshwater Quality Criteria – Copper, 2007 Revision, EPA-822-R-07-001 2007 (US EPA, Office of Water) Available at http://water.epa.gov/scitech/swguidance/standards/criteria/aqlife/pollutants/copper/upload/2009_04_27_criteria_copper_2007_criteria-full.pdf [Verified 10 August 2011].

[32]  P. Paquin, R. Santore, R. Mathew, The Biotic Ligand Model Windows Interface, Version 2.2.3, User’s Guide and Reference Manual 2007 (HydroQual, Inc., Mahwah, NJ). Available at http://www.hydroqual.com/blm/BLM_manual.pdf [Verified 10 August 2011].

[33]  P. R. Gorski, D. E. Armstrong, J. P. Hurley, M. M. Shafer, Speciation of aqueous methylmercury influences uptake by a freshwater alga (Selenastrum capricornutum). Environ. Toxicol. Chem. 2006, 25, 534.
Speciation of aqueous methylmercury influences uptake by a freshwater alga (Selenastrum capricornutum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlCqtw%3D%3D&md5=ac0bc52e28fed433fa0c760efae21644CAS |

[34]  J. M. Ritchie, M. Cresser, J. Cotter-Howells, Toxicological response of a bioluminescent microbial assay to Zn, Pb and Cu in an artificial soil solution: relationship with total metal concentrations and free ion activities. Environ. Pollut. 2001, 114, 129.
Toxicological response of a bioluminescent microbial assay to Zn, Pb and Cu in an artificial soil solution: relationship with total metal concentrations and free ion activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVarsrw%3D&md5=4d63ab7703ae38c712c1a1fc36f5bff8CAS |

[35]  G. E. Batley, S. C. Apte, J. L. Stauber, Speciation and bioavailability of trace metals in water: progress since 1982. Aust. J. Chem. 2004, 57, 903.
Speciation and bioavailability of trace metals in water: progress since 1982.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1Sjsr8%3D&md5=4a425dd93122e384eab024473b94ea10CAS |

[36]  V. I. Slaveykova, K. J. Wilkinson, Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model. Environ. Chem. 2005, 2, 9.
Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisV2it7Y%3D&md5=a3a99e1e508810dcaba3a47efde00d4fCAS |

[37]  C. S. Hassler, K. J. Wilkinson, Failure of the biotic ligand and free-ion activity models to explain zinc bioaccumulation by Chlorella kesslerii. Environ. Toxicol. Chem. 2003, 22, 620.
| 1:CAS:528:DC%2BD3sXhtlCkurs%3D&md5=b16593cc9017da4e0afe89ce92d62f14CAS |

[38]  M. L. Tercier, J. Buffle, In situ voltammetric measurements in natural-waters – future prospects and challenges. Electroanalysis 1993, 5, 187.
In situ voltammetric measurements in natural-waters – future prospects and challenges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXit1Gqsrw%3D&md5=c0f78adff9b7819c63747de59cb5e270CAS |

[39]  C. K. Jain, I. Ali Arsenic, Occurrence, toxicity and speciation techniques. Water Res. 2000, 34, 4304.
Occurrence, toxicity and speciation techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFCrs78%3D&md5=1988c7657c9aff834fd5b482f8862e03CAS |

[40]  J. P. Pinheiro, H. P. van Leeuwen, Metal speciation dynamics and bioavailability. 2. Radial diffusion effects in the microorganism range. Environ. Sci. Technol. 2001, 35, 894.
Metal speciation dynamics and bioavailability. 2. Radial diffusion effects in the microorganism range.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVOnsA%3D%3D&md5=985ad5913261d2cbb7f9d20e44b71678CAS |

[41]  J. Buffle, G. Horvai (Eds) In Situ Monitoring of Aquatic Systems, Chemical Analysis and Speciation 2000, Vol. 6 (Wiley: West Sussex, UK).

[42]  S. Daunert, G. Barrett, J. S. Feliciano, R. S. Shetty, S. Shrestha, W. Smith-Spencer, Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem. Rev. 2000, 100, 2705.
Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFSmtbk%3D&md5=759c45e78233de5a89c534b492ca3efdCAS |

[43]  U. Petänen, M. Romantschuk, Use of bioluminescent bacterial sensors as an alternative method for measuring heavy metals in soil extracts. Anal. Chim. Acta 2002, 456, 55.
Use of bioluminescent bacterial sensors as an alternative method for measuring heavy metals in soil extracts.Crossref | GoogleScholarGoogle Scholar |

[44]  L. H. Hansen, S. J. Sorensen, Versatile biosensor vectors for detection and quantification of mercury. FEMS Microbiol. Lett. 2000, 193, 123.
Versatile biosensor vectors for detection and quantification of mercury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlCqtL8%3D&md5=6def5f46f7c3b93ea1f3140d7252a545CAS |

[45]  M. Virta, J. Lampinen, M. Karp, A luminescence-based mercury biosensor. Anal. Chem. 1995, 67, 667.
A luminescence-based mercury biosensor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivFOru74%3D&md5=c0a5b02bdbcc610702d18b5b59eaaf6eCAS |

[46]  T. Petanen, M. Romantschuk, Toxicity and bioavailability to bacteria of particle-associated arsenite and mercury. Chemosphere 2003, 50, 409.
Toxicity and bioavailability to bacteria of particle-associated arsenite and mercury.Crossref | GoogleScholarGoogle Scholar |

[47]  L. D. Rasmussen, S. J. Sorensen, R. R. Turner, T. Barkay, Application of a merlux biosensor for estimating bioavailable mercury in soil. Soil Biol. Biochem. 2000, 32, 639.
Application of a merlux biosensor for estimating bioavailable mercury in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtlKjsrc%3D&md5=6ae06de9a86cd28256d03d99b2771d1dCAS |

[48]  A. Ivask, M. Virta, A. Kahru, Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil. Soil Biol. Biochem. 2002, 34, 1439.
Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVWrsrY%3D&md5=44ace8946c193bebfa53504b2274f7d3CAS |

[49]  D. S. Holmes, S. K. Dubey, S. Gangolli, Development of biosensors for the detection of mercury and copper ions. Environ. Geochem. Health 1994, 16, 229.
Development of biosensors for the detection of mercury and copper ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltFOrurk%3D&md5=73219bf83c51ce51415462d3f17f0bfcCAS |

[50]  S. M. Tauriainen, M. P. J. Virta, M. T. Karp, Detecting bioavailable toxic metals and metalloids from natural water samples using luminescent sensor bacteria. Water Res. 2000, 34, 2661.
Detecting bioavailable toxic metals and metalloids from natural water samples using luminescent sensor bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFWktbk%3D&md5=bcfe6f358aa4568d57ab3019e4b8ddbfCAS |

[51]  B. D. Gambill, A. O. Summers, Versatile mercury-resistant cloning and expression vectors. Gene 1985, 39, 293.
Versatile mercury-resistant cloning and expression vectors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhtVehsLY%3D&md5=d672cbe14deca5cc78f9aebb45f11643CAS |

[52]  J. Sambrook, T. Maniatis, D. W. Russell, E. F. Fritsch, Molecular Cloning: A Laboratory Manual, 3rd edn 2001 (Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY).

[53]  Q. Y. Yu, A. Kandegedara, Y. P. Xu, D. B. Rorabacher, Avoiding interferences from Good's buffers: a contiguous series of noncomplexing tertiary amine buffers covering the entire range of pH 3–11. Anal. Biochem. 1997, 253, 50.
Avoiding interferences from Good's buffers: a contiguous series of noncomplexing tertiary amine buffers covering the entire range of pH 3–11.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVegtr8%3D&md5=1c44ca9e96de42576438d7cae676459eCAS |

[54]  H. Soares, S. C. Pinho, M. Barros, Influence of N-substituted aminosulfonic acids with a morpholinic ring pH buffers on the redox processes of copper or zinc ions: a contribution to speciation studies. Electroanalysis 1999, 11, 1312.
Influence of N-substituted aminosulfonic acids with a morpholinic ring pH buffers on the redox processes of copper or zinc ions: a contribution to speciation studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFClurk%3D&md5=72d8d5c7d419d4a8d375e8bcfd74a93fCAS |

[55]  H. Soares, P. Conde, A. A. N. Almeida, M. Vasconcelos, Evaluation of n-substituted aminosulfonic acid pH buffers with a morpholinic ring for cadmium and lead speciation studies by electroanalytical techniques. Anal. Chim. Acta 1999, 394, 325.
Evaluation of n-substituted aminosulfonic acid pH buffers with a morpholinic ring for cadmium and lead speciation studies by electroanalytical techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFWlu7Y%3D&md5=ebca044b27f1185a4169ab0d27f1bc2aCAS |

[56]  P. Corbisier, D. van der Lelie, B. Borremans, A. Provoost, V. de Lorenzo, N. L. Brown, J. R. Lloyd, J. L. Hobman, E. Csoregi, G. Johansson, B. Mattiasson, Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal. Chim. Acta 1999, 387, 235.
Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlGqur4%3D&md5=1b4f603e2970cfd4b18db32c20b2adb8CAS |

[57]  M. A. Nolan, J.-F. Gaillard, Probing zinc speciation in contaminated sediments by square wave voltammetry at a Hg–Ir microelectrode, in Environmental Electrochemical Analyses of Trace Metal Biogeochemistry (Eds M. Taillefert, T. F. Rozan) 2002, Vol. Series 811, pp. 210–226 (American Chemical Society: Washington, DC).

[58]  J. C. Westall, J. L. Zachary, F. M. M. Morel, MINEQL: A Computer Program for the Calculation of Chemical Equilibrium Composition in Aqueous Systems 1976 (R.M. Parsons Laboratory for Water Resources and Hydrodynamics, Massachusetts Institute of Technology: Cambridge, MA).

[59]  P. R. G. Barrocas, Assessment of Mercury(II) Species Bioavailability using a Bioluminescent Bacterial Biosensor 2004, PhD Thesis, Florida State University, Tallahassee, FL.

[60]  J. B. Fein, D. Delea, Experimental study of the effect of EDTA on Cd adsorption by Bacillus subtilis: a test of the chemical equilibrium approach. Chem. Geol. 1999, 161, 375.
Experimental study of the effect of EDTA on Cd adsorption by Bacillus subtilis: a test of the chemical equilibrium approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsV2qsLk%3D&md5=82d4f5c8119aff4e265da05170c66d22CAS |

[61]  J. M. Benoit, C. C. Gilmour, R. P. Mason, Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3). Appl. Environ. Microbiol. 2001, 67, 51.
Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVWiuw%3D%3D&md5=f4afda4987d9a6e6a20908bee506ae13CAS |

[62]  J. M. Benoit, C. C. Gilmour, R. P. Mason, A. Heyes, Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ. Sci. Technol. 1999, 33, 951.
Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntlajtg%3D%3D&md5=34f28cc73dd9199ae4dea3e8a48cc210CAS |

[63]  G. R. Golding, C. A. Kelly, R. Sparling, P. C. Loewen, J. W. M. Rudd, T. Barkay, Evidence for facilitated uptake of HgII by Vibrio anguillarum and Escherichia coli under anaerobic and aerobic conditions. Limnol. Oceanogr. 2002, 47, 967.
Evidence for facilitated uptake of HgII by Vibrio anguillarum and Escherichia coli under anaerobic and aerobic conditions.Crossref | GoogleScholarGoogle Scholar |

[64]  J. K. Schaefer, F. M. M. Morel, High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nat. Geosci. 2009, 2, 123.
High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1amt7k%3D&md5=b891c5d04be8b81dde40ef1d6612bda2CAS |

[65]  W. Schecher, Thermochemical Data Used in MINEQL+ version 4.5 2001 (Environmental Research Software: Hallowell, ME).

[66]  S. L. Chen, D. B. Wilson, Genetic engineering of bacteria and their potential for Hg2+ bioremediation. Biodegradation 1997, 8, 97.
Genetic engineering of bacteria and their potential for Hg2+ bioremediation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntlKqsL8%3D&md5=55b13de4d55b4474daafadc046d960a3CAS |

[67]  X. Deng, D. B. Wilson, Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 2001, 56, 276.
Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1Shur4%3D&md5=c20f2d1724ceff71a7ec70326d304709CAS |

[68]  A. Kungolos, I. Aoyama, S. Muramoto, Toxicity of organic and inorganic mercury to Saccharomyces cerevisiae. Ecotoxicol. Environ. Saf. 1999, 43, 149.
Toxicity of organic and inorganic mercury to Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvF2gtbo%3D&md5=674940cb78cec9712ef7cb821785d8a1CAS |

[69]  K. J. Scott, Development and Use of a mer-lux Bioreporter for the Measurement and Characterization of Bioavailable HgII in Defined Media and Aquatic Environmental Samples 2003. PhD Thesis, University of Manitoba.

[70]  P. R. G. Barrocas, W. M. Landing, R. J. M. Hudson, Assessment of mercury(II) bioavailability using a bioluminescent bacterial biosensor: practical and theoretical challenges. J. Environ. Sci. (China) 2010, 22, 1137.
Assessment of mercury(II) bioavailability using a bioluminescent bacterial biosensor: practical and theoretical challenges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKhtbzL&md5=c106db47006056273ba7dcd3b2bd9bd8CAS |