Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Steady-state DGT fluxes of nanoparticulate metal complexesA

Herman P. van Leeuwen
+ Author Affiliations
- Author Affiliations

Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, the Netherlands. Email: herman.vanleeuwen@wur.nl

Environmental Chemistry 8(5) 525-528 https://doi.org/10.1071/EN11022
Submitted: 1 March 2011  Accepted: 22 July 2011   Published: 4 October 2011

Environmental context. Diffusive gel layer techniques can measure fluxes of chemical species in aqueous environmental media. Nanoparticulate metal complexes are small enough to penetrate gels, but their diffusive response is much slower than that of the free metal ions. Hence, time-resolved analysis of the diffusive flux of the complex sample is proposed as a chemical speciation tool for the nanodomain.

Abstract. For a fully labile complex system, the diffusive gradients in thin film (DGT) metal flux approaches the fairly simple limit defined by the joint diffusion of the free metal ion and the complex species in the gel layer. Natural soft nanoparticulate complexes, such as those with humics and fulvics, generally enter the DGT gel phase and some of them may even be adsorbed by the gel matrix. The time characteristics of the DGT response are affected by a lower rate of diffusion, as well as by possible accumulation of nanoparticulate species in the gel layer. Several cases are discussed in some detail on the basis of numerical analysis of the diffusion process. If the difference between the diffusion coefficients of the free metal ion and the nanoparticulate complex is sufficiently large, the time-resolved DGT flux allows for distinction between these two types of species.


References

[1]  J. Buffle, Complexation Reactions in Aquatic Systems: an Analytical Approach 1988 (Ellis Horwood: Chichester, UK).

[2]  S. Scally, W. Davison, H. Zhang, In situ measurements of dissociation kinetics and labilities of metal complexes in solution using DGT. Environ. Sci. Technol. 2003, 37, 1379.
In situ measurements of dissociation kinetics and labilities of metal complexes in solution using DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFWjt7s%3D&md5=68c64651fc7a170b604322a23acb22adCAS |

[3]  S. Scally, H. Zhang, W. Davison, Measurements of lead complexation with organic ligands using DGT. Aust. J. Chem. 2004, 57, 925.
Measurements of lead complexation with organic ligands using DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1Sjsr0%3D&md5=e06fbae2e09755ce06fbd3c995069959CAS |

[4]  R. M. Town, P. Chakraborty, H. P. van Leeuwen, Dynamic DGT speciation analysis and applicability to natural heterogeneous complexes. Environ. Chem. 2009, 6, 170.
Dynamic DGT speciation analysis and applicability to natural heterogeneous complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyqtrY%3D&md5=652e28cf4ec25bbf0ef06624a1fa65e9CAS |

[5]  P. L. R. van der Veeken, J. P. Pinheiro, H. P. van Leeuwen, Metal speciation by DGT/DET in colloidal complex systems. Environ. Sci. Technol. 2008, 42, 8835.
Metal speciation by DGT/DET in colloidal complex systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSnu7zE&md5=8d990ecd90581d2b822a04db2c65079aCAS |

[6]  H. Zhang, W. Davison, Diffusional characteristics of hydrogels used in DGT and DET techniques. Anal. Chim. Acta 1999, 398, 329.
Diffusional characteristics of hydrogels used in DGT and DET techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFeqtLk%3D&md5=c4142234571ef56c010a83fe1242f4fdCAS |

[7]  P. L. R. van der Veeken, H. P. van Leeuwen, DGT/DET gel partition features of humic acid/metal species. Environ. Sci. Technol. 2010, 44, 5523.
DGT/DET gel partition features of humic acid/metal species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGitbw%3D&md5=760898d50277d7df932e93d7b9360510CAS |

[8]  P. L. R. van der Veeken, P. Chakraborty, H. P. van Leeuwen, Accumulation of humic acid in DET/DGT gels. Environ. Sci. Technol. 2010, 44, 4253.
Accumulation of humic acid in DET/DGT gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslWgsL8%3D&md5=8a628254715c8a487bb205710f366e68CAS |

[9]  H. P. van Leeuwen, Dynamic aspects of in situ speciation processes and techniques, in In Situ Monitoring of Aquatic Systems. Chemical Analysis and Speciation (Eds J. Buffle, G. Horvai) 2000, pp. 253–277 (Wiley: Chichester, UK).

[10]  Ø. A. Garmo, W. Davison, H. Zhang, Effects of binding of metals to the hydrogel and filter membrane on the accuracy of the diffusive gradients in thin films technique. Anal. Chem. 2008, 80, 9220.
Effects of binding of metals to the hydrogel and filter membrane on the accuracy of the diffusive gradients in thin films technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWqu73E&md5=593f6e34a5672cf533876732629a6f77CAS |

[11]  L. P. Yezek, H. P. van Leeuwen, Donnan effects in the steady-state diffusion of metal ions through charged thin films Langmuir 2005, 21, 10 342.
Donnan effects in the steady-state diffusion of metal ions through charged thin filmsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGqsrjJ&md5=a9ceadf70f10cc2919e6cebae454eb03CAS |

[12]  D. Alemani, J. Buffle, Z. Zhang, J. Galceran, B. Chopard, Metal flux and dynamic speciation at (bio)interfaces. III: MHEDYN, a general code for metal flux computation; application to simple and fulvic complexants. Environ. Sci. Technol. 2008, 42, 2021.
Metal flux and dynamic speciation at (bio)interfaces. III: MHEDYN, a general code for metal flux computation; application to simple and fulvic complexants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhslKns7s%3D&md5=bd0308952b17a353f2c43eb09c551845CAS |

[13]  K. W. Warnken, W. Davison, H. Zhang, J. Galceran, J. Puy, In situ measurements of metal complex exchange kinetics in freshwater. Environ. Sci. Technol. 2007, 41, 3179.
In situ measurements of metal complex exchange kinetics in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsV2mur0%3D&md5=74efd69bbb7b902c4175005efc63545dCAS |

[14]  S. Mongin, R. Uribe, J. Puy, J. Cecília, J. Galceran, H. Zhang, W. Davison, Key role of the resin layer thickness in the lability of complexes measured by DGT. Environ. Sci. Technol. 2011, 45, 4869.
Key role of the resin layer thickness in the lability of complexes measured by DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVCmsL0%3D&md5=463bb138e21f451f1ec2e69c9cd5ac92CAS |

[15]  M. P. Harper, W. Davison, W. Tych, Temporal, spatial, and resolution constraints for in situ sampling devices using diffusional equilibration: dialysis and DET. Environ. Sci. Technol. 1997, 31, 3110.
Temporal, spatial, and resolution constraints for in situ sampling devices using diffusional equilibration: dialysis and DET.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1emsL4%3D&md5=8d17b7f1113e449153d495de3ee8c0c9CAS |

[16]  J. Crank, The Mathematics of Diffusion, 2nd edn 1973 (Oxford University Press: Oxford, UK).

[17]  M. C. Alfaro-de la Torre, P.-Y. Beaulieu, A. Tessier, In situ measurement of trace metals in lake water using the dialysis and DGT techniques Anal. Chim. Acta 2000, 418, 53.
In situ measurement of trace metals in lake water using the dialysis and DGT techniquesCrossref | GoogleScholarGoogle Scholar |

[18]  L. P. Yezek, P. L. R. van der Veeken, H. P. van Leeuwen, Donnan effects in metal speciation analysis by DET/DGT. Environ. Sci. Technol. 2008, 42, 9250.
Donnan effects in metal speciation analysis by DET/DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKlsrjN&md5=1a915eae4c29b6cd569070884a74a4fdCAS |