Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Capillary electrophoresis study of iron(II) and iron(III) polyaminocarboxylate complex speciation

Jessica M. Wilson A B and Richard F. Carbonaro A C
+ Author Affiliations
- Author Affiliations

A Department of Civil and Environmental Engineering, Manhattan College, Riverdale, NY 10471, USA.

B Present address: Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

C Corresponding author. Email: richard.carbonaro@manhattan.edu

Environmental Chemistry 8(3) 295-303 https://doi.org/10.1071/EN11017
Submitted: 19 February 2011  Accepted: 6 May 2011   Published: 22 June 2011

Environmental context. Methods for determining iron species are integral to investigations of iron cycling processes in the environment. Capillary electrophoresis is an effective tool for determining the concentrations of various iron species in solution, but the separations are highly dependent on the electrolyte composition. This study reports the use of capillary electrophoresis to separate and quantify distinct FeII and FeIII complexes with polyaminocarboxylates.

Abstract. The purpose of this study was to use capillary electrophoresis to (i) separate and quantify distinct FeII and FeIII complexes with polyaminocarboxylates and (ii) develop new methods for distinguishing between FeII and FeIII in aqueous media. A 25 mM phosphate and a 50 mM 3-(N-morpholino)propanesulfonic acid (MOPS) background electrolyte (BGE), both buffered at pH 7.1, were each tested with 6 polyaminocarboxylate complexes with FeII and FeIII. Adequate separation of all FeIII-chelating agent complexes was observed with the MOPS BGE. With the phosphate BGE, sharp peaks were obtained for FeIII complexes with EDTA, HEDTA, DTPA and CDTA, however FeIII–EGTA showed excessive peak broadening, and FeIII–TMDTA showed no discernable peak. Mobilities of FeIII–EGTA, FeIII–EDTA and FeIII–HEDTA were much larger when the phosphate BGE was employed, providing evidence for ternary complex formation with phosphate during electromigration. For FeII, complexes with TMDTA and EGTA were adequately separated with either BGE, but separations of the other chelating agents resulted in their corresponding FeIII complexes due to rapid oxidation by molecular oxygen. These chelating agents may be used as preservatives and derivatising agents for the analysis of ferrous and ferric iron in environmental samples.

Additional keywords: analytical method, chelating agent, complexation, oxidation, phosphate, ternary complex.


References

[1]  I. J. Buerge, S. J. Hug, Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environ. Sci. Technol. 1997, 31, 1426.
Kinetics and pH dependence of chromium(VI) reduction by iron(II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitVGiurg%3D&md5=317eba0011b4e9366d73674963e08cefCAS |

[2]  S. E. Fendorf, G. C. Li, Kinetics of chromate reduction by ferrous iron. Environ. Sci. Technol. 1996, 30, 1614.
Kinetics of chromate reduction by ferrous iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVKgu70%3D&md5=2e55f6bc58a0467537170c2472a0d56bCAS |

[3]  S. C. B. Myneni, T. K. Tokunaga, G. E. Brown, Abiotic selenium redox transformations in the presence of Fe(II,III) oxides. Science 1997, 278, 1106.
Abiotic selenium redox transformations in the presence of Fe(II,III) oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1Wiu7s%3D&md5=44814b41b653143c8d6ced634b409611CAS |

[4]  J. C. Fanning, The chemical reduction of nitrate in aqueous solution. Coord. Chem. Rev. 2000, 199, 159.
The chemical reduction of nitrate in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislegu7k%3D&md5=a806dcaf0c5f4488649104b3fae63eb9CAS |

[5]  D. Naka, D. Kim, T. J. Strathmann, Abiotic reduction of nitroaromatic compounds by aqueous iron(II)–catechol complexes. Environ. Sci. Technol. 2006, 40, 3006.
Abiotic reduction of nitroaromatic compounds by aqueous iron(II)–catechol complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVOksrg%3D&md5=ba9a893634eb3b2c87243654092d1b69CAS | 16719104PubMed |

[6]  A. L. Bussan, T. J. Strathmann, Influence of organic ligands on the reduction of polyhalogenated alkanes by iron(II). Environ. Sci. Technol. 2007, 41, 6740.
Influence of organic ligands on the reduction of polyhalogenated alkanes by iron(II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFCjs7c%3D&md5=6dff094a0ca3169b0f172db038446c28CAS | 17969689PubMed |

[7]  T. J. Strathmann, A. T. Stone, Reduction of the carbamate pesticides oxamyl and methomyl by dissolved FeII and CuI. Environ. Sci. Technol. 2001, 35, 2461.
Reduction of the carbamate pesticides oxamyl and methomyl by dissolved FeII and CuI.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVCqs7s%3D&md5=497c92800cbd2e928eb49d34588b33d9CAS | 11432549PubMed |

[8]  T. J. Strathmann, A. T. Stone, Reduction of oxamyl and structurally related pesticides by FeII: influence of organic ligands and natural organic matter. Environ. Sci. Technol. 2002, 36, 5172.
Reduction of oxamyl and structurally related pesticides by FeII: influence of organic ligands and natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1Krtrc%3D&md5=55a28e4bf27f1251e6f66536fc141976CAS | 12523435PubMed |

[9]  H. J. Fenton, Oxidation of tartaric acid in the presence of iron. J. Chem. Soc. 1894, 65, 899..

[10]  C. Walling, Fenton's reagent revisited. Acc. Chem. Res. 1975, 8, 125.
Fenton's reagent revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhs1Sksro%3D&md5=03e509036ee90f8e96b69d79362c4c98CAS |

[11]  W. Stumm, Redox processes catalyzed by hydrous oxide surfaces. Chem. Geol. 1988, 70, 81.
Redox processes catalyzed by hydrous oxide surfaces.Crossref | GoogleScholarGoogle Scholar |

[12]  W. Stumm, J. J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters 1996 (Wiley: New York).

[13]  W. Stumm, G. F. Lee, Oxygenation of ferrous iron. Ind. Eng. Chem. 1961, 53, 143.
Oxygenation of ferrous iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXnslymsQ%3D%3D&md5=0f18962b055f009cb9f632089d748a22CAS |

[14]  A. N. Pham, T. D. Waite, Oxygenation of FeII in natural waters revisited: kinetic modeling approaches, rate constant estimation and the importance of various reaction pathways. Geochim. Cosmochim. Acta 2008, 72, 3616.
Oxygenation of FeII in natural waters revisited: kinetic modeling approaches, rate constant estimation and the importance of various reaction pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos12lurw%3D&md5=e06098b73ddb4b04a6507f0ffac132c7CAS |

[15]  S. Schäffer, P. Gareil, C. Dezael, D. Richard, Direct determination of iron(II), iron(III) and total iron as UV-absorbing complexes by capillary electrophoresis. J. Chromatogr. A 1996, 740, 151.
Direct determination of iron(II), iron(III) and total iron as UV-absorbing complexes by capillary electrophoresis.Crossref | GoogleScholarGoogle Scholar |

[16]  J. M. Santana-Casiano, M. Gonzalez-Davila, M. J. Rodriguez, F. J. Millero, The effect of organic compounds in the oxidation kinetics of FeII. Mar. Chem. 2000, 70, 211.
The effect of organic compounds in the oxidation kinetics of FeII.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1Wjtr0%3D&md5=f77ba7f6470caaa4f9ad987ea15eddd3CAS |

[17]  V. Zang, R. Van Eldik, Kinetics and mechanism of the autoxidation of iron(II) induced through chelation by ethylenediaminetetraacetate and related ligands. Inorg. Chem. 1990, 29, 1705.
Kinetics and mechanism of the autoxidation of iron(II) induced through chelation by ethylenediaminetetraacetate and related ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvVKmu7Y%3D&md5=aecebc0c96d6a80a159a5e1f20c9f68eCAS |

[18]  D. C. Harris, Quantitative Chemical Analysis, 7th edn 2006 (W.H. Freeman & Co Ltd: New York).

[19]  J. Dahlén, S. Karlsson, Determination of iron(II) in natural waters by capillary zone electrophoresis using on-capillary complexation with 2,4,6-tri(2′-pyridyl)-1,3,5-triazine. J. Chromatogr. A 1999, 848, 491.
Determination of iron(II) in natural waters by capillary zone electrophoresis using on-capillary complexation with 2,4,6-tri(2′-pyridyl)-1,3,5-triazine.Crossref | GoogleScholarGoogle Scholar |

[20]  C. S. Bürgisser, A. T. Stone, Determination of EDTA, NTA, and other amino carboxylic acids and their Co(II) and Co(III) complexes by capillary electrophoresis. Environ. Sci. Technol. 1997, 31, 2656.
Determination of EDTA, NTA, and other amino carboxylic acids and their Co(II) and Co(III) complexes by capillary electrophoresis.Crossref | GoogleScholarGoogle Scholar |

[21]  S. Fanali, L. Ossicini, F. Foret, P. Bocek, Resolution of optical isomers by capillary zone electrophoresis: study of enantiomeric and diastereoisomeric CoIII complexes with ethylenediamine and amino acid ligands. J. Microcol. Sep. 1989, 1, 190.
Resolution of optical isomers by capillary zone electrophoresis: study of enantiomeric and diastereoisomeric CoIII complexes with ethylenediamine and amino acid ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlt1Gnu7k%3D&md5=e250b7554b5365d2ff8e152ac3ec320dCAS |

[22]  G. Owens, V. K. Ferguson, M. J. McLaughlin, I. Singleton, R. J. Reid, F. A. Smith, Determination of NTA and EDTA and speciation of their metal complexes in aqueous solution by capillary electrophoresis. Environ. Sci. Technol. 2000, 34, 885.
Determination of NTA and EDTA and speciation of their metal complexes in aqueous solution by capillary electrophoresis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVOqsg%3D%3D&md5=ceb024696cea20a567dfe6c4eaa5e773CAS |

[23]  S. Pozdniakova, A. Padarauskas, Speciation of metals in different oxidation states by capillary electrophoresis using pre-capillary complexation with complexones. Analyst 1998, 123, 1497.
Speciation of metals in different oxidation states by capillary electrophoresis using pre-capillary complexation with complexones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFKmt7k%3D&md5=860cec7199438b641ab63f17151963d3CAS |

[24]  Z. Chen, M. Megharaj, R. Naidu, Confirmation of iron complex formation using electrospray ionization mass spectrometry (ESI-MS) and sample stacking for analysis of iron polycarboxylate speciation by capillary electrophoresis. Microchem. J. 2007, 86, 94.
Confirmation of iron complex formation using electrospray ionization mass spectrometry (ESI-MS) and sample stacking for analysis of iron polycarboxylate speciation by capillary electrophoresis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvValu78%3D&md5=1f207e38c6feab7e0df319c2d976e7f2CAS |

[25]  C. F. Whitehead, (Amino)carboxylate coordination reactions with ferric (hydr)oxides: adsorption and ligand-assisted dissolution 2003, Ph.D. Dissertation, The Johns Hopkins University.

[26]  R. F. Carbonaro, A. T. Stone, Speciation of chromium(III) and cobalt(III) (amino)carboxylate complexes using capillary electrophoresis. Anal. Chem. 2005, 77, 155.
Speciation of chromium(III) and cobalt(III) (amino)carboxylate complexes using capillary electrophoresis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSmtrfJ&md5=6a789b35eb003701ecba23191bd23268CAS | 15623291PubMed |

[27]  Q. Yu, A. Kandegedara, Y. Xu, D. B. Rorabacher, Avoiding interferences from Good’s buffers: a contiguous series of noncomplexing tertiary amine buffers covering the entire range of pH 3–11. Anal. Biochem. 1997, 253, 50.
Avoiding interferences from Good’s buffers: a contiguous series of noncomplexing tertiary amine buffers covering the entire range of pH 3–11.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVegtr8%3D&md5=1c44ca9e96de42576438d7cae676459eCAS | 9356141PubMed |

[28]  A. E. Martell, R. M. Smith, R. J. Motekaitis, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0 2004 (National Institute of Standards and Technology: Gaithersburg, MD). Available at http://www.nist.gov/srd/nist46.cfm [Verified 6 June 2011].

[29]  D. Kaniansky, M. Masár, J. Marák, R. Bodor, Capillary electrophoresis of inorganic anions. J. Chromatogr. A 1999, 834, 133.
Capillary electrophoresis of inorganic anions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1Ogs74%3D&md5=598db0f56693fdea16c0a9fbb2369678CAS | 10189691PubMed |

[30]  M. D. Lind, M. J. Hamor, T. A. Hamor, J. L. Hoard, Stereochemistry of ethylenediaminetetraacetato complexes. II. The structure of crystalline Rb[Fe(OH2)Y]·H2O. III. The structure of crystalline Li[Fe(OH2)Y]·2H2O. Inorg. Chem. 1964, 3, 34.
Stereochemistry of ethylenediaminetetraacetato complexes. II. The structure of crystalline Rb[Fe(OH2)Y]·H2O. III. The structure of crystalline Li[Fe(OH2)Y]·2H2O.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXitVagug%3D%3D&md5=f6836c847c8110497a05aa9c4c5ff5d9CAS |

[31]  T. Yamamoto, K. Mikata, K. Miyoshi, H. Yoneda, The crystal and molecular structures of lithium trimethylenediaminetetraacetatoferrate(III) trihydrate Li[Fe(TRDTA)]·3H2O and sodium ethylenediamine-N,N′-diacetato-N,N′-di-3-propionatoferrate(II) pentahydrate Na[Fe(EDDDA)]·5H2O. Inorg. Chim. Acta 1988, 150, 237.
The crystal and molecular structures of lithium trimethylenediaminetetraacetatoferrate(III) trihydrate Li[Fe(TRDTA)]·3H2O and sodium ethylenediamine-N,N′-diacetato-N,N′-di-3-propionatoferrate(II) pentahydrate Na[Fe(EDDDA)]·5H2O.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXoslemug%3D%3D&md5=2bb25a3669de950300a56f2a3906d46dCAS |

[32]  Z. D. Matović, V. D. Miletić, M. M. Vasojević, M. Cvijović, S. Ćurčić, S. K. Belošević, Synthesis and DFT defined trans (O5O6) molecular structure of Cs[Fe(1,3-PDDADP)]·2H2O. Strain analysis and spectral assignment of the complex. Monatsh. Chem. 2007, 138, 823.
Synthesis and DFT defined trans (O5O6) molecular structure of Cs[Fe(1,3-PDDADP)]·2H2O. Strain analysis and spectral assignment of the complex.Crossref | GoogleScholarGoogle Scholar |

[33]  S. Seibig, R. van Eldik, Multistep oxidation kinetics of [FeII(CDTA)] [CDTA = N,N′,N″,N′′′-(1,2-cyclohexanediamine)tetraacetate] with molecular oxygen. Eur. J. Inorg. Chem. 1999, 447.
Multistep oxidation kinetics of [FeII(CDTA)] [CDTA = N,N′,N″,N′′′-(1,2-cyclohexanediamine)tetraacetate] with molecular oxygen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsVamtLg%3D&md5=6624e780b70ccd77669662b1fc888912CAS |

[34]  J. E. Schenk, W. J. Weber, Chemical interactions of dissolved silica with iron(II) and (III). J. Am. Water Works Assoc. 1968, 60, 199..

[35]  R. Weinberger, Practical Capillary Electrophoresis, 2nd edn 2000 (Academic Press: San Diego, CA).

[36]  J. H. Knox, M. Shibukawa, Anomalous bandspreading of ethylenediaminetetraacetato-chromium(III) ion in reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1991, 545, 123.
Anomalous bandspreading of ethylenediaminetetraacetato-chromium(III) ion in reversed-phase high-performance liquid chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltVSitr8%3D&md5=86fab949cd577ff9df51ed88ff171ea5CAS |