Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Size-resolved chemical composition of Australian dust aerosol during winter

M. Radhi A , M. A. Box A E , G. P. Box A , M. D. Keywood B , D. D. Cohen C , E. Stelcer C and R. M. Mitchell D
+ Author Affiliations
- Author Affiliations

A School of Physics, University of New South Wales, Sydney, NSW 2052, Australia.

B CSIRO Marine and Atmospheric Research, Centre for Australian Weather and Climate Research, A partnership between CSIRO and the Australian Bureau of Meteorology, PMB1, Aspendale, VIC 3195, Australia.

C Australian Nuclear Science and Technology Organisation, Menai, NSW 2234, Australia.

D CSIRO Marine and Atmospheric Research, Black Mountain Laboratories, Clunies Ross Street, Acton, ACT 2601, Australia.

E Corresponding author. Email: m.box@unsw.edu.au

Environmental Chemistry 8(3) 248-262 https://doi.org/10.1071/EN10134
Submitted: 7 December 2010  Accepted: 4 May 2011   Published: 22 June 2011

Environmental context. Mineral dust aerosol is both an efficient scatterer of solar radiation, potentially cooling the planet, and a moderate absorber, potentially warming it: the exact balance is both uncertain, and geographically variable. Australian desert soils are noticeably more reddish than most Northern Hemisphere deserts, most probably a result of enhanced iron mineralogy. This paper contains results from a field campaign designed to increase our understanding of the chemistry of Australian mineral dust aerosol, especially in relation to iron and salt.

Abstract. Australia is the dominant source of mineral dust aerosol in the Southern Hemisphere, yet the physical, chemical and optical properties of this aerosol remain poorly understood. Four sets of size-resolved aerosol samples were collected at a site on the edge of the Lake Eyre Basin (LEB), in the south-east dust transport pathway. Back trajectory analysis shows that three samples were sourced from the LEB (one during a rare winter dust storm), and one from coastal regions to the south. All samples were subjected to both ion beam analysis and ion chromatography. A Fe/Al ratio of 0.9 was found, consistent with results from our other campaigns to sites in the LEB, significantly higher than typical Northern Hemisphere values (~0.45–0.6). This confirms the iron-rich character of central Australian soils. Clear evidence of marine advection in the fourth sample was also found, and evidence of chloride depletion by nitric acid in two samples.

Additional keywords: chloride depletion, entrained salt, ion beam analysis, Lake Eyre Basin, mineral dust aerosol, radiative forcing.


References

[1]  R. P. V. Forster, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, R. Van Dorland, Changes in Atmospheric Constituents and in Radiative Forcing, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller) 2007 (Cambridge University Press: Cambridge, UK).

[2]  T. Y. Tanaka, M. Chiba, A numerical study of the contributions of dust source regions to the global dust budget. Global Planet. Change 2006, 52, 88.
A numerical study of the contributions of dust source regions to the global dust budget.Crossref | GoogleScholarGoogle Scholar |

[3]  Y. Qin, R. M. Mitchell, Characterisation of episodic aerosol types over the Australian continent. Atmos. Chem. Phys. 2009, 9, 1943.
Characterisation of episodic aerosol types over the Australian continent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1yisrw%3D&md5=2b096137302acf07c111fb8c55f49a45CAS |

[4]  J. E. Bullard, K. White, Quantifying iron oxide coatings on dune sands using spectrometric measurements: an example from the Simpson–Strzelecki Desert, Australia. J. Geophys. Res. 2002, 107, 2125.
Quantifying iron oxide coatings on dune sands using spectrometric measurements: an example from the Simpson–Strzelecki Desert, Australia.Crossref | GoogleScholarGoogle Scholar |

[5]  I. N. Sokolik, O. B. Toon, Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 1996, 381, 681.
Direct radiative forcing by anthropogenic airborne mineral aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjslGmt7Y%3D&md5=e1494ed9a69bbd8135751efb0bbe8664CAS |

[6]  Y. Balkanski, M. Schulz, T. Claquin, S. Guibert, Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmos. Chem. Phys. 2007, 7, 81.
Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitl2jsr4%3D&md5=bfc68a18b9f644698ea5d84f9864add4CAS |

[7]  J. M. Bowler, Aridity in Australia – age, origins and expression in Aeolian landforms and sediments. Earth Sci. Rev. 1976, 12, 279.
Aridity in Australia – age, origins and expression in Aeolian landforms and sediments.Crossref | GoogleScholarGoogle Scholar |

[8]  L. Kiefert, G. Mctainsh, Oxygen isotope abundance in the quartz fraction of Aeolian dust: implications for soil and ocean sediment formation in the Australasian region. Aust. J. Soil Res. 1996, 34, 467.
Oxygen isotope abundance in the quartz fraction of Aeolian dust: implications for soil and ocean sediment formation in the Australasian region.Crossref | GoogleScholarGoogle Scholar |

[9]  A. W. Knight, G. H. McTainsh, R. W. Simpson, Sediment loads in an Australian dust storm: implications for present and past dust processes. Catena 1995, 24, 195.
Sediment loads in an Australian dust storm: implications for present and past dust processes.Crossref | GoogleScholarGoogle Scholar |

[10]  E. C. Shaw, A. J. Gabric, G. H. McTainsh, Impacts of Aeolian dust deposition on phytoplankton dynamics in Queensland coastal waters. Mar. Freshwater Res. 2008, 59, 951.
Impacts of Aeolian dust deposition on phytoplankton dynamics in Queensland coastal waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVChsb3L&md5=81b844bab62a2b57c7d0fb321a592603CAS |

[11]  R. S. B. Greene, S. R. Cattle, A. A. McPherson, Role of eolian dust deposits in landscape development and soil degradation in south-eastern Australia. Aust. J. Earth Sci. 2009, 56, 55.
Role of eolian dust deposits in landscape development and soil degradation in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

[12]  L. Kiefert, G. H. McTainsh, W. G. Nickling, Sedimentological characteristics of Saharan and Australian dusts, in The Impact of Desert Dust across the Mediterranean (Eds S. Guerzoni, R. Chester) 1996, pp. 183–190 (Kluwer Academic Publishers: Dordrecht, the Netherlands).

[13]  R. M. Mitchell, S. K. Campbell, Y. Qin, Recent increase in aerosol loading over the Australian arid zone. Atmos. Chem. Phys. 2010, 10, 1689.
Recent increase in aerosol loading over the Australian arid zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsl2qsrY%3D&md5=b1df24679fcfd5a6b1bdae1b684750dfCAS |

[14]  J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, T. E. Gill, Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 1002.
Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product.Crossref | GoogleScholarGoogle Scholar |

[15]  J. Bullard, M. Baddock, G. H. McTainsh, J. Leys, Sub-basin scale dust source geomorphology detected using MODros. Inf. Serv. Geophys. Res. Lett. 2008, 35, L15404.
Sub-basin scale dust source geomorphology detected using MODros. Inf. Serv.Crossref | GoogleScholarGoogle Scholar |

[16]  M. Radhi, M. A. Box, G. P. Box, R. M. Mitchell, D. D. Cohen, E. Stelcer, M. D. Keywood, Optical, physical and chemical characteristics of Australian continental aerosols: results from a field experiment. Atmos. Chem. Phys. 2010, 10, 5925.
Optical, physical and chemical characteristics of Australian continental aerosols: results from a field experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKltrbK&md5=eab86bd51ccbd9317e18d767727a3590CAS |

[17]  M. Radhi, M. A. Box, G. P. Box, R. M. Mitchell, D. D. Cohen, E. Stelcer, M. D. Keywood, Size-resolved mass and chemical properties of dust aerosols from Australia's Lake Eyre Basin. Atmos. Environ. 2010, 44, 3519.
Size-resolved mass and chemical properties of dust aerosols from Australia's Lake Eyre Basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVWhtLo%3D&md5=46b1a3435b60f87c16f7293c99fc8020CAS |

[18]  B. C. T. Macdonald, M. D. Melville, I. White, The distribution of soluble cations within chenopod-patterned ground, arid western New South Wales, Australia. Catena 1999, 37, 89.
The distribution of soluble cations within chenopod-patterned ground, arid western New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

[19]  N. P. Webb, H. A. McGowan, S. R. Phinn, G. H. McTainsh, AUSLEM (Australian Land Erodibility Model): a tool for identifying wind erosion hazard in Australia. Geomorphology 2006, 78, 179.
AUSLEM (Australian Land Erodibility Model): a tool for identifying wind erosion hazard in Australia.Crossref | GoogleScholarGoogle Scholar |

[20]  V. A. Marple, K. L. Rubow, S. M. Behm, A Microorifice Uniform Deposit Impactor (MOUDI): description, calibration, and use. Aerosol Sci. Technol. 1991, 14, 434.
A Microorifice Uniform Deposit Impactor (MOUDI): description, calibration, and use.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkslOmurs%3D&md5=42790297bf98f859b9c72119c4bb5f4eCAS |

[21]  D. D. Cohen, Applications of simultaneous IBA techniques to aerosol analysis. Nucl. Instrum. Methods 1993, B79, 385..

[22]  D. D. Cohen, R. Siegele, I. Orlic, E. Stelcer, Long-term accuracy and precision of PIXE and PIGE measurements for thin and thick sample analyses. Nucl. Instrum. Methods 2002, B189, 81..

[23]  S.-C. Hsu, S. C. Liu, Y.-T. Huang, S.-C. C. Lung, F. Tsai, J.-Y. Tu, S.-J. Kao, A criterion for identifying Asian dust events based on Al concentration data collected from northern Taiwan between 2002 and early 2007. J. Geophys. Res. 2008, 113, D18306.
A criterion for identifying Asian dust events based on Al concentration data collected from northern Taiwan between 2002 and early 2007.Crossref | GoogleScholarGoogle Scholar |

[24]  D. R. E. Lide, CRC Handbook of Chemistry and Physics 1997 (CRC Press: Boca Raton, FL).

[25]  F. J. Millero, M. L. Sohn, Chemical Oceanography 1996 (CRC Press: Baca Raton, FL).

[26]  D. D. Cohen, Characterisation of atmospheric fine particles using IBA techniques. Nucl. Instr. Meth. 1998, B136–138, 14..

[27]  T. A. Pakkanen, V.-M. Kerminen, R. E. Hillamo, M. Màkinen, T. Màkelà, A. Virkkula, Distribution of nitrate over sea-salt and soil derived particles — Implications from a field study. J. Atmos. Chem. 1996, 24, 189.
Distribution of nitrate over sea-salt and soil derived particles — Implications from a field study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsFersbk%3D&md5=d211ff24394574e1abc5b06561899477CAS |

[28]  H. Zhuang, C. K. Chan, M. Fang, A. S. Wexler, Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong. Atmos. Environ. 1999, 33, 843.
Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtFSjur8%3D&md5=33c4c2b52d0949797047dd8ad3852e09CAS |

[29]  S.-C. Hsu, S. C. Liu, S.-J. Kao, W.-L. Jeng, Y.-T. Huang, C.-M. Tseng, F. Tsai, J.-Y. Tu, Y. Yang, Water-soluble species in the marine aerosol from the northern South China Sea: High chloride depletion related to air pollution. J. Geophys. Res. 2007, 112, D19304.
Water-soluble species in the marine aerosol from the northern South China Sea: High chloride depletion related to air pollution.Crossref | GoogleScholarGoogle Scholar |

[30]  T. S. Bates, J. D. Cline, R. H. Gammon, S. R. Kelly-Hansen, Regional and Seasonal Variations in the Flux of Oceanic Dimethylsulfide to the Atmosphere. J. Geophys. Res. 1987, 92, 2930.
Regional and Seasonal Variations in the Flux of Oceanic Dimethylsulfide to the Atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkt1Oqu70%3D&md5=56831d6d416bf6c47ffc939912cc15b7CAS |

[31]  G. P. Ayers, J. P. Ivey, R. W. Gillett, Coherence between seasonal cycles of dimethyl sulphide, methanesulphonate and sulphate in marine air. Nature 1991, 349, 404.
Coherence between seasonal cycles of dimethyl sulphide, methanesulphonate and sulphate in marine air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtVKhs7k%3D&md5=aac4a2554d6a8c19bd16770a63f66bc4CAS |

[32]  R. Arimoto, R. A. Duce, D. L. Savoie, J. M. Prospero, R. Talbot, J. D. Cullen, U. Tomza, N. F. Lewis, B. J. Ray, Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A. J. Geophys. Res. 1996, 101, 2011.
Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1Ckt7o%3D&md5=6ee868e83cb6b314da5af5a3183735e5CAS |

[33]  G. P. Ayers, J. P. Ivey, H. S. Goodman, Sulfate and methanesulfonate in the maritime aerosol at Cape Grim, Tasmania. J. Atmos. Chem. 1986, 4, 173.
Sulfate and methanesulfonate in the maritime aerosol at Cape Grim, Tasmania.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xit1yjsbY%3D&md5=f5e1d0de60d78dffb872f2bd011cbc2eCAS |

[34]  S. Kadowaki, Size distribution of atmospheric total aerosols, sulfate, ammonium and nitrate particulates in the Nagoya area. Atmos. Environ. 1976, 10, 39.
Size distribution of atmospheric total aerosols, sulfate, ammonium and nitrate particulates in the Nagoya area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xht1Kit7c%3D&md5=8c0b077918b9be1fc09dc0cd0582af47CAS |

[35]  S. Lafon, I. N. Sokolik, J. L. Rajot, S. Caquineau, A. Gaudichet, Characterization of iron oxides in mineral dust aerosols: Implications for light absorption. J. Geophys. Res. 2006, 111, D21207.
Characterization of iron oxides in mineral dust aerosols: Implications for light absorption.Crossref | GoogleScholarGoogle Scholar |

[36]  L. D. Rotstayn, M. A. Collier, R. M. Mitchell, Y. Qin, S. K. Campbell, Simulated enhancement of ENSO-related rainfall variability due to Australian dust. Atmos. Chem. Phys. Discuss. 2011, 11, 1595.
Simulated enhancement of ENSO-related rainfall variability due to Australian dust.Crossref | GoogleScholarGoogle Scholar |

[37]  T. Cahill, R. Eldred, P. Feeney, Particulate monitoring and data analysis for the National Park Service, 1982–1985. National Park Service Contract Number USDICX-0001-3-0056, Technical Report 1986 (US National Park Service and University of California, Air Quality Group: Davis, CA).

[38]  L. Gomes, D. A. Gillette, A comparison of characteristics of aerosol from dust storms in Central Asia with soil-derived dust from other regions. Atmos. Environ. 1993, 27, 2539..

[39]  I. Chiapello, G. Bergametti, B. Chatenet, P. Bousquet, F. Dulac, E. Soares, Origins of African dust transported over the northeastern tropical Atlantic. J. Geophys. Res. 1997, 102, 13701.
Origins of African dust transported over the northeastern tropical Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslOiurY%3D&md5=1f6299353dbce0ee282a9d24359849dbCAS |

[40]  Y. Sun, G. Zhuang, Y. Wang, X. Zhao, J. Li, Z. Wang, Z. An, Chemical composition of dust storms in Beijing and implications for the mixing of mineral aerosol with pollution aerosol on the pathway. J. Geophys. Res. 2005, 110, D24209.
Chemical composition of dust storms in Beijing and implications for the mixing of mineral aerosol with pollution aerosol on the pathway.Crossref | GoogleScholarGoogle Scholar |

[41]  X. Y. Zhang, R. Arimoto, Z. An, Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J. Geophys. Res. 1997, 102, 28041.
Dust emission from Chinese desert sources linked to variations in atmospheric circulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVWrtg%3D%3D&md5=67a1d809f5b6fe9cd4a6dcfc2c53d39aCAS |