A dynamic biophysical fugacity model of the movement of a persistent organic pollutant in Antarctic marine food webs
Roger Cropp A B , Georgina Kerr A , Susan Bengtson-Nash A and Darryl Hawker AA Atmospheric Environment Research Centre, School of Environment, Griffith University, Nathan, QLD 4111, Australia.
B Corresponding author. Email: r.cropp@griffith.edu.au
Environmental Chemistry 8(3) 263-280 https://doi.org/10.1071/EN10108
Submitted: 2 October 2010 Accepted: 28 March 2011 Published: 22 June 2011
Environmental context. Persistent organic pollutants (POPs) are potentially toxic chemicals capable of long distance transport and are often found far from their source. Little is known of their behaviour in Antarctica, where the marine plankton food web is driven by strong seasonal variations in solar radiation. Here the first dynamic coupled ecosystem–fugacity model to describe how POPs distribute through the Antarctic environment is presented. The model is used to identify the important processes that govern the presence of hexachlorobenzene in Antarctic plankton.
Abstract. Polar regions can be repositories for many persistent organic pollutants (POPs). However, comparatively little is known of the movement and behaviour of POPs in Antarctic ecosystems. These systems are characterised by strong seasonal effects of light on plankton dynamics. This work describes a mass-conserving, fugacity-based dynamic model to describe the movement of POPs in the Antarctic physical and plankton systems. The model includes dynamic corrections for changes in the population volumes and the temperature dependence of the fugacity capacities, and was developed by coupling a dynamic Nutrient–Phytoplankton–Zooplankton–Detritus (NPZD) ecosystem model to fugacity models of the chemistry and biology of the Southern Ocean. The model is applied to the movement of hexachlorobenzene, a POP found in the Antarctic environment. The model predicts that the burden of HCB in the plankton varies with the seasonal cycle in Antarctic waters, and induces a seasonal variation in the biomagnification factor of zooplankton. This suggests that time series of POP concentrations in Antarctic biotic and abiotic systems should be measured over complete seasonal cycles. Furthermore, detritus is shown to be a key contributor to the movement of POPs in polar environments, linking physical and biological components of the model.
Additional keywords: Antarctica, biomagnification factor, dynamic coupled fugacity food web model, hexachlorobenzene (HCB), plankton.
References
[1] T. N. Brown, F. Wania, Screening chemicals for the potential to be persistent organic pollutants: a case study of arctic contaminants. Environ. Sci. Technol. 2008, 42, 5202.| Screening chemicals for the potential to be persistent organic pollutants: a case study of arctic contaminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFOrt7o%3D&md5=070b2fdb6f561f429a5590c617cdd13bCAS | 18754370PubMed |
[2] Final Act of the Plenipotentiaries on the Stockholm Convention on Persistent Organic Pollutants, Geneva, Switzerland, 5 June 2001, UNEP/POPS/CONF/4 2001 (United Nations Environment Programme: Geneva, Switzerland).
[3] F. Wania, D. Mackay, The evolution of mass balance models of persistent organic pollutant fate in the environment. Environ. Pollut. 1999, 100, 223.
| The evolution of mass balance models of persistent organic pollutant fate in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslShtbo%3D&md5=66b90b9ead85f92a38ad6443b2ef70cbCAS | 15093120PubMed |
[4] B. C. Kelly, M. G. Ikonomou, J. D. Blair, F. A. P. C. Gobas, Bioaccumulation behaviour of polybrominated diphenyl ethers (PBDEs) in a Canadian Arctic marine food web. Sci. Total Environ. 2008, 401, 60.
| Bioaccumulation behaviour of polybrominated diphenyl ethers (PBDEs) in a Canadian Arctic marine food web.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntl2lsLs%3D&md5=4fe729eb665b51c8487f3d0d03fff1a9CAS | 18538377PubMed |
[5] S. M. Bengtson Nash, Persistent organic pollutants in antarctica; current and future research priorities. J. Environ. Monit. 2011, 13, 497.
| Persistent organic pollutants in antarctica; current and future research priorities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFyksbY%3D&md5=0d4c903da02cddda9b6e0ed817cec768CAS | 21321741PubMed |
[6] F. De Laender, D. Van Oevelen, S. Frantzen, J. J. Middelburg, K. Soetaert, Seasonal PCB bioaccumulation in an Arctic marine ecosystem: a model analysis incorporating lipid dynamics, food-web productivity and migration. Environ. Sci. Technol. 2010, 44, 356.
| Seasonal PCB bioaccumulation in an Arctic marine ecosystem: a model analysis incorporating lipid dynamics, food-web productivity and migration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFShsrnK&md5=09752f31e5e34a9c081264eb5fec1cb3CAS | 19950940PubMed |
[7] S. Corsolini, T. Romeo, N. Ademollo, S. Greco, S. Focardi, POPs in key species of marine Antarctic ecosystem. Microchem. J. 2002, 73, 187.
| POPs in key species of marine Antarctic ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslGjsro%3D&md5=0e238f9caa7a7662d015905946ccab88CAS |
[8] S. M. Bengtson Nash, A. H. Poulsen, S. Kawaguchi, W. Vetter, M. Schlabach, Persistent organohalogen contaminant burdens in Antarctic krill (Euphausia superba) from the eastern Antarctic sector: a baseline study. Sci. Total Environ. 2008, 407, 304.
| Persistent organohalogen contaminant burdens in Antarctic krill (Euphausia superba) from the eastern Antarctic sector: a baseline study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWiu7bI&md5=a031da211c54f0a62b587b0ad0839779CAS | 18848720PubMed |
[9] H. J. Marchant, F. J. Scott, A. T. Davidson, Antarctic Marine Protists (Eds F. J. Scott, H. J. Marchant) 2005 (Australian Antarctic Division: Hobart).
[10] M. Scheringer, F. Wania, Multimedia models of global transport and fate of persistent organic pollutants, in The Handbook of Environmental Chemistry (Ed. H. Fiedler) 2003, pp. 237–269 (Springer-Verlag: Berlin).
[11] D. Mackay, Multimedia Environmental Models. The Fugacity Approach 2001 (Taylor and Francis: Boca Raton, FL).
[12] F. Wania, K. Breivik, N. J. Persson, M. S. McLachlan, CoZMo-POP 2 – A fugacity-based dynamic multi-compartmental mass balance model of the fate of persistent organic pollutants. Environ. Model. Softw. 2006, 21, 868.
| CoZMo-POP 2 – A fugacity-based dynamic multi-compartmental mass balance model of the fate of persistent organic pollutants.Crossref | GoogleScholarGoogle Scholar |
[13] D. Mackay, J. A. Arnot, E. Webster, L. Reid, The evolution and future of environmental fugacity models, in Ecotoxicology Modeling: Emerging Topics in Ecotoxicology: Principles, approaches and Perspectives Vol. 2 2009, pp. 355–375 (Springer: Dordrecht, the Netherlands).
[14] F. Wania, D. Mackay, A global distribution model for persistent organic chemcials. Sci. Total Environ. 1995, 160–161, 211.
| A global distribution model for persistent organic chemcials.Crossref | GoogleScholarGoogle Scholar |
[15] D. Mackay, S. Paterson, Evaluating the multimedia fate of organic chemicals: a level III fugacity model. Environ. Sci. Technol. 1991, 25, 427.
| Evaluating the multimedia fate of organic chemicals: a level III fugacity model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXoslOisg%3D%3D&md5=9024e1b2b2826c8d4519763c70a9f5cbCAS |
[16] D. Mackay, F. Wania, Transport of contaminants to the Arctic: partitioning, processes and models. Sci. Total Environ. 1995, 160–161, 25.
| Transport of contaminants to the Arctic: partitioning, processes and models.Crossref | GoogleScholarGoogle Scholar |
[17] J. Dachs, S. J. Eisenreich, J. E. Baker, F.-C. Ko, J. D. Jeremiason, Coupling of phytoplankton uptake and air–water exchange of persistent organic pollutants. Environ. Sci. Technol. 1999, 33, 3653.
| Coupling of phytoplankton uptake and air–water exchange of persistent organic pollutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslOmsLo%3D&md5=fddcbc362848209e3d342592eabf46e7CAS |
[18] P. J. S. Franks, NPZ models of plankton dynamics: their construction, coupling to physics, and application. J. Oceanogr. 2002, 58, 379.
| NPZ models of plankton dynamics: their construction, coupling to physics, and application.Crossref | GoogleScholarGoogle Scholar |
[19] A. M. Edwards, Adding detritus to a nutrient-phytoplankton-zooplankton model: a dynamical-systems approach. J. Plankton Res. 2001, 23, 389.
| Adding detritus to a nutrient-phytoplankton-zooplankton model: a dynamical-systems approach.Crossref | GoogleScholarGoogle Scholar |
[20] H. V. Sverdrup, On conditions for the vernal blooming of phytoplankton. J. Cons. Int. Explor. Mer 1953, 18, 287..
[21] K. Weber, H. Goerke, Persistent organic pollutants (POPs) in Antarctic fish: levels, patterns, changes. Chemosphere 2003, 53, 667.
| Persistent organic pollutants (POPs) in Antarctic fish: levels, patterns, changes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVKnsbs%3D&md5=0eb43807d671e04beda0588d81594e89CAS | 12962716PubMed |
[22] R. Fuoco, G. Capodaglio, B. Muscatello, M. Radaeli, Persistent Organic Pollutants (POPs) in the Antarctic Environment: a Review of Findings 2009 (Scientific Committee on Antarctic Research (SCAR), Action Group on Environmental Contamination in Antarctica: Cambridge, UK).
[23] F. Campolongo, R. Braddock, The use of graph theory in the sensitivity analysis of the model output: a second order screening method. Reliab. Eng. Syst. Saf. 1999, 64, 1.
| The use of graph theory in the sensitivity analysis of the model output: a second order screening method.Crossref | GoogleScholarGoogle Scholar |
[24] L. Hughes, E. Webster, D. Mackay, An evaluative screening level model of the fate of organic chemicals in sludge-amended soils including organic matter degradation. Soil and Sediment Contamination: An International Journal 2008, 17, 564..
[25] R. Cropp, J. Norbury, Parameterizing plankton functional type models: insights from a dynamical systems perspective. J. Plankton Res. 2009, 31, 939.
| Parameterizing plankton functional type models: insights from a dynamical systems perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFygsbw%3D&md5=89d0fefc9935dddba941237ac7477f51CAS |
[26] C. Reynolds, Ecology of Phytoplankton. 2006 (Cambridge University Press: Cambridge, UK).
[27] C. A. Ng, K. A. Gray, Tracking bioaccumulation in aquatic organisms: a dynamic model integrating life history characteristics and environmental change. Ecol. Modell. 2009, 220, 1266.
| Tracking bioaccumulation in aquatic organisms: a dynamic model integrating life history characteristics and environmental change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFagt7k%3D&md5=c744a6da75a6557da66da94fc44c6211CAS |
[28] J. A. Arnot, F. A. P. C. Gobas, A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environ. Toxicol. Chem. 2004, 23, 2343.
| A food web bioaccumulation model for organic chemicals in aquatic ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGrs7w%3D&md5=b184a74cce2c75d760c6cb898144ebc5CAS | 15511097PubMed |
[29] Z. Patwa, R. Christensen, D. C. Lasenby, E. Webster, D. Mackay, An exploration of the role of mysids in benthis–pelagic coupling and biomagnification using a dynamic bioaccumulation model. Environ. Toxicol. Chem. 2007, 26, 1224.
| An exploration of the role of mysids in benthis–pelagic coupling and biomagnification using a dynamic bioaccumulation model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1yjtrw%3D&md5=bc17c1dec5eb34882a508615e0ab1d51CAS | 17571689PubMed |
[30] J. Dachs, S. J. Eisenreich, R. M. Hoff, Influence of eutrophication on air–water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants. Environ. Sci. Technol. 2000, 34, 1095.
| Influence of eutrophication on air–water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlymsQ%3D%3D&md5=20016fc45cc8eb9f05d01e14a25aa62fCAS |
[31] N. Berrojalbiz, S. Lacorte, A. Calbet, E. Saiz, C. Barata, J. Dachs, Accumulation and cycling of polycyclic aromatic hydrocarbons in zooplankton. Environ. Sci. Technol. 2009, 43, 2295.
| Accumulation and cycling of polycyclic aromatic hydrocarbons in zooplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVOmt70%3D&md5=43dc0c8858dc005f235369ff4448a194CAS | 19452877PubMed |
[32] S. B. Hooker, C. R. McClain, The calibration and validation of SeaWIFS data. Prog. Oceanogr. 2000, 45, 427.
| The calibration and validation of SeaWIFS data.Crossref | GoogleScholarGoogle Scholar |
[33] S. Levitus, World Ocean Atlas 1998 1998 (US Government Printing Office: Washington, DC).
[34] D. A. Hastings, W. J. Emery, The Advanced Very High Resolution Radiometer (AVHRR): a brief reference guide. Photogramm. Eng. Remote Sensing 1992, 58, 1183..
[35] C. R. Stearns, L. M. Keller, G. A. Weidner, M. Sievers, Monthly mean climatic data for Antarctic automatic weather stations, in Antarctic Meteorology and Climatology: Studies based on Automatic Weather Stations (Eds D. H. Bromwich, C. R. Stearns) 1993, pp. 1–21 (American Geophysical Union: Washington, DC).
[36] R. P. Schwarzenbach, Environmental Organic Chemistry 2003 (Wiley: Hoboken, NJ).
[37] L. Shen, F. Wania, Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides. J. Chem. Eng. Data 2005, 50, 742.
| Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVGis7k%3D&md5=c0e425a9b95a6136ed8114dbc9e9e5e4CAS |
[38] N. M. Mahowald, A. R. Baker, G. Bergametti, N. Brooks, R. A. Duce, T. D. Jickells, N. Kubilay, J. M. Prospero, I. Tegen, Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem. Cycles 2005, 19, GB4025.
| Atmospheric global dust cycle and iron inputs to the ocean.Crossref | GoogleScholarGoogle Scholar |
[39] S. Ciavatta, T. Lovato, M. Ratto, R. Pastres, Global uncertainty and sensitivity analysis of a food-web bioaccumulation model. Environ. Toxicol. Chem. 2009, 28, 718.
| Global uncertainty and sensitivity analysis of a food-web bioaccumulation model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFaisb8%3D&md5=746de993649cbad46019bd7c7025b919CAS | 19391679PubMed |
[40] M. D. Morris, Factorial sampling plans for preliminary computational experiments. Technometrics 1991, 33, 161.
| Factorial sampling plans for preliminary computational experiments.Crossref | GoogleScholarGoogle Scholar |
[41] R. A. Cropp, R. D. Braddock, The new Morris method: an efficient second-order screening method. Reliab. Eng. Syst. Saf. 2002, 78, 77.
| The new Morris method: an efficient second-order screening method.Crossref | GoogleScholarGoogle Scholar |
[42] T. Kiorboe, A Mechanistic Approach to Plankton Ecology 2008 (Princeton University Press: Princeton, NJ).
[43] R. R. Hood, E. A. Laws, M. J. Follows, D. A. Siegel, Modeling and prediction of marine microbial populations in the genomic era. Oceanography 2007, 20, 155..
[44] A. J. Gabric, P. H. Whetton, R. A. Cropp, Dimethylsulphide production in the subantarctic southern ocean under enhanced greenhouse conditions. Tellus B Chem. Phys. Meterol. 2001, 53, 273.
| Dimethylsulphide production in the subantarctic southern ocean under enhanced greenhouse conditions.Crossref | GoogleScholarGoogle Scholar |
[45] J. Klánová, N. Matykiewiczová, Z. Máčka, P. Prošek, K. Láska, P. Klán, Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica. Environ. Pollut. 2008, 152, 416.
| Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica.Crossref | GoogleScholarGoogle Scholar | 17655988PubMed |
[46] B. C. Kelly, M. G. Ikonomou, J. D. Blair, A. E. Morin, F. A. P. C. Gobas, Food web-specific biomagnification of persistent organic pollutants. Science 2007, 317, 236.
| Food web-specific biomagnification of persistent organic pollutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFaqtrs%3D&md5=8657176c53813b6a22c9bd58d8fc3666CAS | 17626882PubMed |
[47] M. J. Behrenfeld, K. H. Halsey, A. J. Milligan, Evolved physiological responses of phytoplankton to their integrated growth environment. Phil. Trans. R. Soc. B 2008, 363, 2687.
| Evolved physiological responses of phytoplankton to their integrated growth environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2qs77L&md5=4aa540781cf6d9cc30877a4e04e6bea7CAS |
[48] W. O. Smith, J. Marra, M. R. Hiscock, R. T. Barber, The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep Sea Res. Part II Top. Stud. Oceanogr. 2000, 47, 3119.
| The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFOisA%3D%3D&md5=d6dd9e11b7f476c627aae2a5aa888eceCAS |
[49] P. Larsson, A. Andersson, D. Broman, J. Nordback, E. Lundberg, Persistent organic pollutants (POPs) in pelagic systems. Ambio 2000, 29, 202..
[50] A. L. Chiuchiolo, R. M. Dickhut, M. A. Cochran, H. W. Ducklow, Persistent organic pollutants at the base of the Antarctic marine food web. Environ. Sci. Technol. 2004, 38, 3551.
| Persistent organic pollutants at the base of the Antarctic marine food web.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlaitbY%3D&md5=7c12a7b321f2abadf6fc036638ac4395CAS | 15296304PubMed |
[51] A. Sobek, G. Cornelissen, P. Tiselius, Ö. Gustafsson, Passive partitioning of polychlorinated biphenyls between seawater and zooplankton, a study comparing observed field distributions to equilibrium sorption experiments. Environ. Sci. Technol. 2006, 40, 6703.
| Passive partitioning of polychlorinated biphenyls between seawater and zooplankton, a study comparing observed field distributions to equilibrium sorption experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVShs7%2FO&md5=8a2a295a4099f6230f4565e00bc16c8eCAS | 17144299PubMed |
[52] A. Sobek, M. McLachlan, K. Borga, L. Asplund, K. Lundstedt-Enkel, A. Polder, O. Gustafsson, A comparison of PCB bioaccumulation factors between an arctic and a temperate marine food web. Sci. Total Environ. 2010, 408, 2753.
| A comparison of PCB bioaccumulation factors between an arctic and a temperate marine food web.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFaqtr8%3D&md5=0df3a72ace66470cf32b63c8907a7a0fCAS | 20385405PubMed |
[53] A. Clarke, P. A. Tyler, Adult antarctic krill feeding at abyssal depths. Curr. Biol. 2008, 18, 282.
| Adult antarctic krill feeding at abyssal depths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVWntL4%3D&md5=755007a24512a454db52ed5bddc65397CAS | 18302926PubMed |
[54] A. J. Gabric, R. Cropp, T. Hirst, H. Marchant, The sensitivity of dimethyl sulfide production to simulated climate change in the Eastern Antarctic Southern Ocean. Tellus B Chem. Phys. Meterol. 2003, 55, 966.
| The sensitivity of dimethyl sulfide production to simulated climate change in the Eastern Antarctic Southern Ocean.Crossref | GoogleScholarGoogle Scholar |
[55] S. W. Karickhoff, Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 1981, 10, 833.
| Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtV2iuro%3D&md5=4a0481ce639af6629cfd4005af0b0dd2CAS |
[56] C. E. Reimers, E. Suess, The partitioning of organic carbon fluxes and sedimentary organic matter decomposition rates in the ocean. Mar. Chem. 1983, 13, 141.
| The partitioning of organic carbon fluxes and sedimentary organic matter decomposition rates in the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksFynurY%3D&md5=ad82a8e0018bab9867767d00e5a6997aCAS |
[57] D. Mackay, Multimedia Environmental Models: the Fugacity Approach 2001 (Lewis Publishers: Boca Raton, FL).
[58] C. S. Warren, D. Mackay, N. P. Bahadur, D. G. B. Boocock, A suite of multi-segment fugacity models describing the fate of organic contaminants in aquatic systems: application to the Rihand Reservoir, India. Water Res. 2002, 36, 4341.
| A suite of multi-segment fugacity models describing the fate of organic contaminants in aquatic systems: application to the Rihand Reservoir, India.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvF2ku7k%3D&md5=31f8978a4cf272737ec4d1f5475aa304CAS | 12420939PubMed |
[59] D. Mackay, S. Paterson, W. Y. Shiu, Generic models for evaluating the regional fate of chemicals. Chemosphere 1992, 24, 695.
| Generic models for evaluating the regional fate of chemicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xit1Smt7c%3D&md5=bf9d1edbf41e358f386c8bf4ec465085CAS |
[60] A. A. Koelmans, S. F. Anzion, L. Lijklema, Dynamics of organic micropollutant biosorption to cyanobacteria and detritus. Environ. Sci. Technol. 1995, 29, 933.
| Dynamics of organic micropollutant biosorption to cyanobacteria and detritus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktFehtLs%3D&md5=9189a6a63e0a257df6fa92a57768ea93CAS |
[61] C. S. Reynolds, Ecology of Phytoplankton 2006 (Cambridge University Press: New York).
[62] M. E. Baird, P. R. Oke, I. M. Suthers, J. H. Middleton, A plankton population model with biomechanical descriptions of biological processes in an idealised 2-D ocean basin. J. Mar. Syst. 2004, 50, 199.
| A plankton population model with biomechanical descriptions of biological processes in an idealised 2-D ocean basin.Crossref | GoogleScholarGoogle Scholar |
[63] A. Cincinelli, T. Martellini, M. Del Bubba, L. Lepri, S. Corsolini, N. Borghesi, M. D. King, R. M. Dickhut, Organochlorine pesticide air-water exchange and bioconcentration in krill in the Ross Sea. Environ. Pollut. 2009, 157, 2153.
| Organochlorine pesticide air-water exchange and bioconcentration in krill in the Ross Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVKlsLo%3D&md5=57ab695e3892019101d46a2ee0c15b00CAS | 19269724PubMed |
[64] R. M. Dickhut, A. Cincinelli, M. Cochran, H. W. Ducklow, Atmospheric concentrations and air–water flux of organochlorine pesticides along the Western Antarctic peninsula. Environ. Sci. Technol. 2005, 39, 465.
| Atmospheric concentrations and air–water flux of organochlorine pesticides along the Western Antarctic peninsula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCmsLvP&md5=7c2c0e1cb806176ac4735754574bb0b6CAS | 15707045PubMed |