Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Environmental geochemistry of recent volcanic ashes from the Southern Andes

Flavia Ruggieri A , Jose-Luis Fernández-Turiel A E , Julio Saavedra B , Domingo Gimeno C , Edmundo Polanco C and José Antonio Naranjo D
+ Author Affiliations
- Author Affiliations

A Institute of Earth Sciences Jaume Almera, Consejo Superior de Investigaciones Científicas (CSIC), Sole i Sabaris s/n, E-08028 Barcelona, Spain.

B IRNASA, CSIC, Cordel de Merinas 40-52, E-37008 Salamanca, Spain.

C Faculty of Geology, University of Barcelona, Marti i Franques s/n, E-08028 Barcelona, Spain.

D Servicio Nacional de Geología y Minería, Casilla, 10465 Santiago, Chile.

E Corresponding author. Email: jlfernandez@ictja.csic.es

Environmental Chemistry 8(3) 236-247 https://doi.org/10.1071/EN10097
Submitted: 15 October 2010  Accepted: 10 January 2011   Published: 22 June 2011

Environmental context. Explosive volcanic eruptions may have significant environmental repercussions for many Earth system cycles, particularly the water cycle. We investigate the potential contribution to local geochemical fluxes through water of five historical eruptions that occurred over a 20-year period in the Southern Andes. In all five cases, the major potentially toxic trace elements were arsenic, copper, fluoride, molybdenum, nickel, lead and zinc.

Abstract. The potential contribution to the local geochemical balance of five historical eruptions that occurred during the 20th Century has been investigated in the Southern Volcanic Zone (SVZ) of the Andean volcanic arc of South America (Lonquimay 1988, Hudson 1991, Copahue 2000, Llaima 2008, Chaitén 2008). These ashes were characterised by SEMEDX and XRD, and their potential released geochemical fluxes were examined using water and nitric acid batch leaching tests. Leachates were analysed by ICP-OES, ICP-MS and ISE. The major contents removed correspond to SO42– and Cl. The potential toxic trace element (PTTE) content was highly variable among the ash samples following this order: Chaitén > Copahue > Hudson > Llaima > Lonquimay. The trace elements with significant load in water batch leaching tests include Fe > F > B > P > Zn > As > Mn > Sr > Ba > Ti > Cu > Ni > Li > Rb > Co > Cr > Cd > Sb. Some of these elements (As, Cu, F, Mo, Ni, Pb and Zn) are included in the drinking water guidelines due to their potential toxicity and must be especially monitored in the environmental assessment of these ashfall deposits.

Additional keywords: Chaitén, Copahue, Hudson, leaching, Llaima, Lonquimay, Southern Volcanic Zone, trace elements.


References

[1]  M. T. Jones, S. R. Gislason, Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments. Geochim. Cosmochim. Acta 2008, 72, 3661.
Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos12lurs%3D&md5=1cdaf0aedc3741260553b7451a697611CAS |

[2]  V. Manville, K. Nemeth, K. Kano, Source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sediment. Geol. 2009, 220, 136.
Source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards.Crossref | GoogleScholarGoogle Scholar |

[3]  M. T. Jones, R. S. J. Sparks, P. J. Valdes, The climatic impact of supervolcanic ash blankets. Clim. Dyn. 2007, 29, 553.
The climatic impact of supervolcanic ash blankets.Crossref | GoogleScholarGoogle Scholar |

[4]  S. Duggen, P. Croot, U. Schacht, L. Hoffmann, Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data. Geophys. Res. Let. 2007, 34, L01612.
Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data.Crossref | GoogleScholarGoogle Scholar |

[5]  S. Duggen, N. Olgun, P. Croot, L. Hoffmann, H. Dietze, P. Delmelle, C. Teschner, The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review. Biogeosciences 2010, 7, 827.
The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1Cgu74%3D&md5=1d43dd261b9255f7f81c3f5b1fbaa814CAS |

[6]  B. Langmann, K. Zaksek, M. Hort, S. Duggen, Volcanic ash as fertiliser for the surface ocean. Atmos. Chem. Phys. 2010, 10, 3891.
Volcanic ash as fertiliser for the surface ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVeitbY%3D&md5=a1f3dae3ed87e7b83b37f59ede6846f4CAS |

[7]  D. G. Smith, M. T. Ledbetter, P. F. Ciesielski, Ice-rafted volcanic ash in the South-Atlantic sector of the southern-ocean during the last 100 000 years. Mar. Geol. 1983, 53, 291.
P. F. Ciesielski, Ice-rafted volcanic ash in the South-Atlantic sector of the southern-ocean during the last 100 000 years.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmtFKisb8%3D&md5=5f1a738f9ebbcced16a9c3cdb47668cbCAS |

[8]  R. S. Martin, S. F. L. Watt, D. M. Pyle, T. A. Mather, N. E. Matthews, R. B. Georg, J. A. Day, T. Fairhead, M. L. Witt, B. M. Quayle, Environmental effects of ashfall in Argentina from the 2008 Chaitén volcanic eruption. J. Volcanol. Geotherm. Res. 2009, 184, 462.
Environmental effects of ashfall in Argentina from the 2008 Chaitén volcanic eruption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFSqtr0%3D&md5=b82a0ddec505318861e7b8e760f7e3fdCAS |

[9]  G. Gangale, A. J. Prata, L. Clarisse, The infrared spectral signature of volcanic ash determined from high-spectral resolution satellite measurements. Remote Sens. Environ. 2010, 114, 414.
The infrared spectral signature of volcanic ash determined from high-spectral resolution satellite measurements.Crossref | GoogleScholarGoogle Scholar |

[10]  S. J. Cronin, V. E. Neall, J. A. Lecointre, M. J. Hedley, P. Loganathan, Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand. J. Volcanol. Geotherm. Res. 2003, 121, 271.
Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVCnsbw%3D&md5=b88c4fe0018a1d8079dbe0ae5364cd25CAS |

[11]  M. Inbar, H. A. Ostera, C. A. Parica, M. B. Remesal, F. M. Salani, Environmental assessment of 1991 Hudson volcano eruption ashfall effects on southern Patagonia region, Argentina. Environ. Geol. 1995, 25, 119.
Environmental assessment of 1991 Hudson volcano eruption ashfall effects on southern Patagonia region, Argentina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvVKktb0%3D&md5=a59cabb29c72d0fcf797d768aac492e9CAS |

[12]  C. Stewart, D. M. Johnston, G. S. Leonard, C. J. Horwell, T. Thordarson, S. J. Cronin, Contamination of water supplies by volcanic ashfall: a literature review and simple impact modelling. J. Volcanol. Geotherm. Res. 2006, 158, 296.
Contamination of water supplies by volcanic ashfall: a literature review and simple impact modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCiu7zO&md5=f7cc45aaa83e552773436ea83220927fCAS |

[13]  P. Allard, A. Aiuppa, H. Loyer, F. Carrot, A. Gaudry, G. Pinte, A. Michel, G. Dongarra, Acid gas and metal emission rates during long-lived basalt degassing at Stromboli volcano. Geophys. Res. Lett. 2000, 27, 1207.
Acid gas and metal emission rates during long-lived basalt degassing at Stromboli volcano.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVygtrY%3D&md5=ae2a3e54fdae8aaed15319244ca46e1bCAS |

[14]  P. Delmelle, M. Lambert, Y. Dufrene, P. Gerin, N. Oskarsson, Gas/aerosol ash interaction in volcanic plumes: new insights from surface analyses of fine ash particles. Earth Planet. Sci. Lett. 2007, 259, 159.
Gas/aerosol ash interaction in volcanic plumes: new insights from surface analyses of fine ash particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVGit7g%3D&md5=4cdf12a253c3fb09717fc448ebf3e292CAS |

[15]  F. Ruggieri, J. Saavedra, J. L. Fernández-Turiel, D. Gimeno, M. Garcia-Valles, Environmental geochemistry of ancient volcanic ashes. J. Hazard. Mater. 2010, 183, 353.
Environmental geochemistry of ancient volcanic ashes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChtr3N&md5=c5994860ade2cc4ae9769807a2279615CAS | 20675046PubMed |

[16]  D. B. Smith, R. A. Zielinski, W. I. Rose, Leachability of uranium and other elements from freshly erupted volcanic ash. J. Volcanol. Geotherm. Res. 1982, 13, 1.
Leachability of uranium and other elements from freshly erupted volcanic ash.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XkslKjt7c%3D&md5=977f733d2e4553ae2bfdb510bc84382fCAS |

[17]  J. A. Naranjo, E. Polanco, The 2000 AD eruption of Copahue Volcano, Southern Andes. Rev. Geol. Chile 2004, 31, 279.
The 2000 AD eruption of Copahue Volcano, Southern Andes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1CjtLc%3D&md5=91cf2101587cddb9b4a61f13b1809d7dCAS |

[18]  J. A. Naranjo, R. S. J. Sparks, M. V. Stasiuk, H. Moreno, G. J. Ablay, Morphological, structural and textural variations in the 1988–1990 andesite lava of Lonquimay volcano, Chile. Geol. Mag. 1992, 129, 657.
Morphological, structural and textural variations in the 1988–1990 andesite lava of Lonquimay volcano, Chile.Crossref | GoogleScholarGoogle Scholar |

[19]  H. Moreno, M. C. Gardeweg, La erupcion reciente en el complejo volcanico Lonquimay. Rev. Geol. Chile 1989, 16, 93..

[20]  E. Venzke, S. K. Sennert, R. Wunderman, Reports from the Smithsonian’s Global Volcanism Network, June 2008. Bull. Volcanol. 2009, 71, 229.
Reports from the Smithsonian’s Global Volcanism Network, June 2008.Crossref | GoogleScholarGoogle Scholar |

[21]  S. F. L. Watt, D. M. Pyle, T. A. Mather, R. S. Martin, N. E. Matthews, Fallout and distribution of volcanic ash over Argentina following the May 2008 explosive eruption of Chaitén, Chile. J. Geophys. Res. Solid Earth 2009, 114, B04207.
Fallout and distribution of volcanic ash over Argentina following the May 2008 explosive eruption of Chaitén, Chile.Crossref | GoogleScholarGoogle Scholar |

[22]  J. A. Naranjo, C. R. Stern, Holocene tephrochronology of the southernmost part (42°30′–45°S) of the Andean Southern Volcanic Zone. Rev. Geol. Chile 2004, 31, 225.
Holocene tephrochronology of the southernmost part (42°30′–45°S) of the Andean Southern Volcanic Zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1CjtLo%3D&md5=03a5d6aeb3bd7bfc67ca1214fa7408efCAS |

[23]  C. R. Stern, Active Andean volcanism: its geologic and tectonic setting. Rev. Geol. Chile 2004, 31, 161.
Active Andean volcanism: its geologic and tectonic setting.Crossref | GoogleScholarGoogle Scholar |

[24]  J. A. Naranjo, C. R. Stern, Holocene explosive activity of Hudson Volcano, southern Andes. Bull. Volcanol. 1998, 59, 291.
Holocene explosive activity of Hudson Volcano, southern Andes.Crossref | GoogleScholarGoogle Scholar |

[25]  N. Imai, S. Terashima, S. Itoh, A. Ando, 1994 compilation values for GSJ reference samples, igneous rock series. Geochem. J. 1995, 29, 91..

[26]  S. Terashima, S. Itoh, M. Ujiie, H. Kamioka, T. Tanaka, H. Hattori, 3 new GSJ rock reference samples- rhyolite JR-3, gabbro JGB-2 and hornoblendite JH-1. Geostand. Newsl. 1993, 17, 1.
3 new GSJ rock reference samples- rhyolite JR-3, gabbro JGB-2 and hornoblendite JH-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltVyjsb8%3D&md5=878db598ea774343f2b39568ceeda3f0CAS |

[27]  A. Georgakopoulos, A. Filippidis, A. Kassoli-Fournaraki, A. Iordanidis, J. L. Fernández-Turiel, J. F. Llorens, D. Gimeno, Environmentally important elements in fly ashes and their leachates of the power stations of Greece. Energy Sources 2002, 24, 83.
Environmentally important elements in fly ashes and their leachates of the power stations of Greece.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFGjug%3D%3D&md5=4f1e7aabd64ecdbc8ab6e23db435b185CAS |

[28]  G. Papastergios, J. L. Fernández-Turiel, A. Georgakopoulos, D. Gimeno, Natural and anthropogenic effects on the sediment geochemistry of Nestos River, northern Greece. Environ. Geol. 2009, 58, 1361.
Natural and anthropogenic effects on the sediment geochemistry of Nestos River, northern Greece.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVensLbO&md5=bf46dcb25ef72dd050ae02bc02b62953CAS |

[29]  J. Sastre, A. Sahuquillo, M. Vidal, G. Rauret, Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Anal. Chim. Acta 2002, 462, 59.
Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlKjsL4%3D&md5=b61d5c59b23f08c7a4762179f7a5dc42CAS |

[30]  G. Papastergios, J. L. Fernández-Turiel, A. Georgakopoulos, D. Gimeno, Arsenic background concentrations in surface soils of Kavala Area, northern Greece. Water Air Soil Pollut. 2010, 209, 323.
Arsenic background concentrations in surface soils of Kavala Area, northern Greece.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslyks70%3D&md5=e705ac75fa32f8abad894130b83b5b4fCAS |

[31]  J. C. Varekamp, A. P. Ouimette, S. W. Herman, K. S. Flynn, A. Bermudez, D. Delpino, Naturally acid waters from Copahue volcano, Argentina. Appl. Geochem. 2009, 24, 208.
Naturally acid waters from Copahue volcano, Argentina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOnsbY%3D&md5=690c7c36ae489e2c914aa060243b63e8CAS |

[32]  J. L. Fernández-Turiel, J. F. Llorens, M. Carnicero, F. Valero, Application of ICP-MS to outlet water control in the Llobregat and Ter drinking water treatment plants. Quim. Anal. 2000, 19, 217..

[33]  J. L. Fernández-Turiel, J. F. Llorens, F. López-Vera, C. Gómez-Artola, I. Morell, D. Gimeno, Strategy for water analysis using ICP-MS. Fresenius J. Anal. Chem. 2000, 368, 601.
Strategy for water analysis using ICP-MS.Crossref | GoogleScholarGoogle Scholar | 11228710PubMed |

[34]  J. L. Fernández-Turiel, A. López-Soler, J. F. Llorens, X. Querol, P. Aceñolaza, F. Durand, J. P. López, M. E. Medina, J. N. Rossi, A. J. Toselli, J. Saavedra, Environmental monitoring using surface water, river sediments, and vegetation: a case study in the Famatina Range, La Rioja, NW Argentina. Environ. Int. 1995, 21, 807.
Environmental monitoring using surface water, river sediments, and vegetation: a case study in the Famatina Range, La Rioja, NW Argentina.Crossref | GoogleScholarGoogle Scholar |

[35]  C. M. Bethke, Geochemical and Biochemical Reaction Modeling 2008 (Cambridge University Press: New York).

[36]  S. R. Taylor, S. M. McLennan, The Continental Crust: its Composition and Evolution 1985 (Blackwell: Oxford, UK).

[37]  A. Georgakopoulos, A. Filippidis, A. Kassoli-Fournaraki, Leachability of major and trace elements of fly ash from Ptolemais power station, Northern Greece. Energy Sources 2002, 24, 103.
Leachability of major and trace elements of fly ash from Ptolemais power station, Northern Greece.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVWjsrc%3D&md5=2f11716b6c31e62668f7ccdef0f536daCAS |

[38]  C. J. Horwell, J. S. Le Blond, S. A. K. Michnowicz, G. Cressey, Cristobalite in a rhyolitic lava dome: evolution of ash hazard. Bull. Volcanol. 2010, 72, 249.
Cristobalite in a rhyolitic lava dome: evolution of ash hazard.Crossref | GoogleScholarGoogle Scholar |

[39]  M. Reich, A. Zuniga, A. Amigo, G. Vargas, D. Morata, C. Palacios, M. A. Parada, R. D. Garreaud, Formation of cristobalite nanofibers during explosive volcanic eruptions. Geology 2009, 37, 435.
Formation of cristobalite nanofibers during explosive volcanic eruptions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFaqsLw%3D&md5=fb72c7ddd75dfe664e21faa890ace555CAS |

[40]  J. Taddeucci, M. Pompilio, P. Scarlato, Conduit processes during the July–August 2001 explosive activity of Mt Etna (Italy): inferences from glass chemistry and crystal size distribution of ash particles. J. Volcanol. Geotherm. Res. 2004, 137, 33.
Conduit processes during the July–August 2001 explosive activity of Mt Etna (Italy): inferences from glass chemistry and crystal size distribution of ash particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslSnsbo%3D&md5=e3673e9b0c65cdfbaab559154d4fd675CAS |

[41]  R. A. Scasso, S. Carey, Morphology and formation of glassy volcanic ash from the August 12–15, 1991 eruption of Hudson Volcano, Chile. Lat. Am. J. Sedimentology Basin Anal. 2005, 12, 3..

[42]  U. Martin, K. Nemeth, Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary. J. Volcanol. Geotherm. Res. 2007, 159, 164.
Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCktrfF&md5=67e2a20182b5faac5bd7ee9b7cac5ccbCAS |

[43]  M. J. Le Bas, R. W. Le Maitre, A. Streckeisen, B. Zanettin, A chemical classification of volcanic rocks based on the total alkali-Silica diagram. J. Petrol. 1986, 27, 745..

[44]  T. K. Hinkley, Distribution of metals between particulate and gaseous forms in a volcanic plume. Bull. Volcanol. 1991, 53, 395.
Distribution of metals between particulate and gaseous forms in a volcanic plume.Crossref | GoogleScholarGoogle Scholar |

[45]  R. J. Lantzy, F. T. Mackenzie, Atmospheric trace-metals – global cycles and assessment of mans impact. Geochim. Cosmochim. Acta 1979, 43, 511.
Atmospheric trace-metals – global cycles and assessment of mans impact.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlsVers70%3D&md5=16d6296e35aa072b2fc42ca544e3fb98CAS |

[46]  C. C. Patterson, D. M. Settle, Magnitude of lead flux to the atmosphere from volcanoes. Geochim. Cosmochim. Acta 1987, 51, 675.
Magnitude of lead flux to the atmosphere from volcanoes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhvVShsr0%3D&md5=5fb0218f169d1083bd2aecd489e3077fCAS |

[47]  D. J. Kratzmann, S. Carey, R. Scasso, J. A. Naranjo, Compositional variations and magma mixing in the 1991 eruptions of Hudson volcano, Chile. Bull. Volcanol. 2009, 71, 419.
Compositional variations and magma mixing in the 1991 eruptions of Hudson volcano, Chile.Crossref | GoogleScholarGoogle Scholar |

[48]  S. R. Gislason, E. H. Oelkers, Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochim. Cosmochim. Acta 2003, 67, 3817.
Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvF2rtLo%3D&md5=1ca5375d55860830da983c63a9bdb44dCAS |

[49]  D. Wolff-Boenisch, S. R. Gislason, E. H. Oelkers, C. V. Putnis, The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C. Geochim. Cosmochim. Acta 2004, 68, 4843.
The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCitrbF&md5=1aaf680ac552a12bc9b572bef0fe48a1CAS |

[50]  C. S. Witham, C. Oppenheimer, C. J. Horwell, Volcanic ash-leachates: a review and recommendations for sampling methods. J. Volcanol. Geotherm. Res. 2005, 141, 299.
Volcanic ash-leachates: a review and recommendations for sampling methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVajtro%3D&md5=5d8e67744fdabe76e35246a1135acf5dCAS |

[51]  G. A. Parks, Surface energy and adsorption at mineral/water interfaces; an introduction, in Reviews in Mineralogy and Geochemistry (Eds M. F. Hochella, A. F. White) 1990, pp. 133–175 (Mineralogical Society of America: Washington, DC).

[52]  R. Wollast, L. Chou, Surface-reactions during the early stages of weathering of Albite. Geochim. Cosmochim. Acta 1992, 56, 3113.
Surface-reactions during the early stages of weathering of Albite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisFWgsQ%3D%3D&md5=a62aa089fea0cef2832590ad73031bd4CAS |

[53]  E. H. Oelkers, S. V. Golubev, C. Chairat, O. S. Pokrovsky, J. Schott, The surface chemistry of multi-oxide silicates. Geochim. Cosmochim. Acta 2009, 73, 4617.
The surface chemistry of multi-oxide silicates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlyiurc%3D&md5=7b208898f3a33512d39cfe1d288beffaCAS |

[54]  G. R. Holdren, P. M. Speyer, pH dependent changes in the rates and stoichiometry of dissolution of an alkali feldspar at room-temperature. Am. J. Sci. 1985, 285, 994.
pH dependent changes in the rates and stoichiometry of dissolution of an alkali feldspar at room-temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltlOluw%3D%3D&md5=94ad024b8913c59d0ded64953c76997fCAS |

[55]  P. Delmelle, P. Gerin, N. Oskarsson, Surface and bulk studies of leached and unleached volcanic ashes. EOS Trans. AGU 2000, 81, F1311. [AGU 2000 Fall Meeting, 15–19 December 2000, San Francisco, CA]

[56]  N. Oskarsson, The interaction between volcanic gases and tephra fluorine adhering to tephra of the 1970 Hekla eruption. J. Volcanol. Geotherm. Res. 1980, 8, 251.
The interaction between volcanic gases and tephra fluorine adhering to tephra of the 1970 Hekla eruption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXjtl2kuw%3D%3D&md5=db8e91fe799ae5d991940d7a118c435cCAS |

[57]  J. C. Varekamp, J. F. Luhr, K. L. Prestegaard, The 1982 eruptions of El Chichon volcano (Chiapas, Mexico) – character of the eruptions, ash-fall deposits, and gas-phase. J. Volcanol. Geotherm. Res. 1984, 23, 39.
The 1982 eruptions of El Chichon volcano (Chiapas, Mexico) – character of the eruptions, ash-fall deposits, and gas-phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhsFansbg%3D&md5=592d5703b37246cdd4896d00b5b2ceabCAS |

[58]  C. H. Rubin, E. K. Noji, P. J. Seligman, J. L. Holtz, J. Grande, F. Vittani, Evaluating a fluorosis hazard after a volcanic-eruption. Arch. Environ. Health 1994, 49, 395.
Evaluating a fluorosis hazard after a volcanic-eruption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitVWmsb4%3D&md5=f95c87cfd5e72453067634226923b642CAS | 7944572PubMed |

[59]  T. Wilson, C. Stewart, J. Cole, D. Johnston, S. Cronin, Vulnerability of farm water supply systems to volcanic ash fall. Environ. Earth Sci. 2010, 61, 675.
Vulnerability of farm water supply systems to volcanic ash fall.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlartrY%3D&md5=c941d9d139256cf1a14114de0113e333CAS |

[60]  J. C. Chang, Solubility product constants, in CRC Handbook of Chemistry and Physics (Ed. D. R. Lide) 1991, pp. 8–43 (The Chemical Rubber Co.: Boca Raton, FL).

[61]  K. H. Gayer, L. C. Thompson, O. T. Zajicek, The solubility of aluminum hydroxide in acidic and basic media at 25°C. Can. J. Chem. 1958, 36, 1268.
The solubility of aluminum hydroxide in acidic and basic media at 25°C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXhtVajsQ%3D%3D&md5=c38fd1f4d481d800669ef411de8611fcCAS |

[62]  D. J. Kratzmann, S. Carey, R. A. Scasso, J. A. Naranjo, Role of cryptic amphibole crystallization in magma differentiation at Hudson volcano, Southern Volcanic Zone, Chile. Contrib. Mineral. Petrol. 2010, 159, 237.
Role of cryptic amphibole crystallization in magma differentiation at Hudson volcano, Southern Volcanic Zone, Chile.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGgurnF&md5=ad690d4e4c21810d971f01b96e1d3510CAS |

[63]  Código Alimentario Argentino (CAA)-Capitulo XII – Bebidas Hídricas, Agua y Agua Gasificada-Agua Potable, Law 18.284 2007 (ANMAT, Administración Nacional de Medicamentos Alimentos y Tecnología Médica: Buenos Aires, Argentina).

[64]  Drinking water – Part 1: Requirements 2006 (INN, Instituto Nacional de Normalización: Santiago, Chile).

[65]  Guidelines for Drinking Water Quality, First addendum to Third Edition, Volume 1: Recommendations 2008 (World Health Organization: Geneva, Switzerland).

[66]  D. B. Smith, R. A. Zielinski, H. E. Taylor, M. B. Sawyer, Leaching characteristics of ash from the May 18, 1980, eruption of Mount St Helens volcano, Washington. Bull. Volcanol. 1983, 46, 103.
Leaching characteristics of ash from the May 18, 1980, eruption of Mount St Helens volcano, Washington.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltFChu7Y%3D&md5=967275d90dc5db662bc06728b4a3f5faCAS |

[67]  G. B. Alexander, The effect of particle size on the solubility of amorphous silica in water. J. Phys. Chem. 1957, 61, 1563.
The effect of particle size on the solubility of amorphous silica in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXitl2ltw%3D%3D&md5=971170c56ad99e158ce5ef74899bf913CAS |

[68]  G. B. Alexander, W. M. Heston, R. K. Iler, The solubility of amorphous silica in water. J. Phys. Chem. 1954, 58, 453.
The solubility of amorphous silica in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXmslSqtQ%3D%3D&md5=1e14e8a3e021b868ac91ee284b2cb916CAS |

[69]  D. Wolff-Boenisch, S. R. Gislason, E. H. Oelkers, The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates. Geochim. Cosmochim. Acta 2006, 70, 858.
The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtValsr8%3D&md5=9c575868ec3829b49b71653790007904CAS |

[70]  E. Valsami-Jones, K. V. Ragnarsdottir, A. Putnis, D. Bosbach, A. J. Kemp, G. Cressey, The dissolution of apatite in the presence of aqueous metal cations at pH 2–7. Chem. Geol. 1998, 151, 215.
The dissolution of apatite in the presence of aqueous metal cations at pH 2–7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtl2gt78%3D&md5=2b92ac47ee8deb00d7949b40fb69b07aCAS |

[71]  F. C. M. Driessens, Mineral Aspects of Dentistry 1982 (S. Karger AG: Basel, Switzerland).

[72]  H. McDowell, T. M. Gregory, W. E. Brown, Solubility of Ca5(PO4)3OH in system Ca(OH)2-H3PO4-H2O AT 5°C, 15°C, 25°C and 37°C. J. Res. Natl. Bur. Stand. A 1977, 81, 273..

[73]  J. F. Banfield, R. A. Eggleton, Apatite replacement and rare-earth mobilization, fractionation, and fixation during weathering. Clays Clay Miner. 1989, 37, 113.
Apatite replacement and rare-earth mobilization, fractionation, and fixation during weathering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhslKqsrw%3D&md5=65d143b5edf1c7bf934c77d9b74c836cCAS |

[74]  D. London, G. B. Morgan, H. A. Babb, J. L. Loomis, Behavior and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 MPa(H2O). Contrib. Mineral. Petrol. 1993, 113, 450.
Behavior and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 MPa(H2O).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktFaht7s%3D&md5=3278bddef6f3ddd907ebda8385938989CAS |

[75]  F. Africano, G. Van Rompaey, A. Bernard, F. Le Guern, Deposition of trace elements from high temperature gases of Satsuma-Iwojima volcano. Earth Planets Space 2002, 54, 275..

[76]  A. Bernard, F. Leguern, Condensation of volatile elements in high-temperature gases of Mount St Helens. J. Volcanol. Geotherm. Res. 1986, 28, 91.
Condensation of volatile elements in high-temperature gases of Mount St Helens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksVKms74%3D&md5=6dc9aadc57ff6228a84d9572b3d7b309CAS |