Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Compound-specific bromine isotope compositions of one natural and six industrially synthesised organobromine substances

Daniel Carrizo A , Maria Unger A B , Henry Holmstrand A E , Per Andersson C , Örjan Gustafsson A , Sean P. Sylva D and Christopher M. Reddy D
+ Author Affiliations
- Author Affiliations

A Department of Applied Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden.

B Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.

C Laboratory for Isotope Geology, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden.

D Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.

E Corresponding author. Email: henry.holmstrand@itm.su.se

Environmental Chemistry 8(2) 127-132 https://doi.org/10.1071/EN10090
Submitted: 10 August 2010  Accepted: 17 December 2010   Published: 2 May 2011

Journal Compilation © CSIRO Publishing 2011 Open Access CC BY-NC-ND

Environmental context. Brominated organic compounds of both natural and anthropogenic origin are commonly found in the environment. Bromine has two stable isotopes and the isotopic composition of brominated compounds may vary depending on production pathways and degradation processes. These variations are a result of isotope fractionation effects, when heavy isotopes react slower than lighter isotopes. We apply compound-specific bromine isotope analysis to industrial brominated organic compounds, and one naturally produced analogue, to test the feasibility of the technique to investigate the source and environmental fate of these compounds.

Abstract. The stable bromine isotopic composition (δ81Br) was determined for six industrially synthesised brominated organic compounds (BOCs) and one natural BOC by gas-chromatography multi-collector inductively coupled plasma mass spectrometry (GC-mcICP-MS). The δ81Br compositions of brominated benzenes, phenols (both natural and industrial), anisoles, and naphthalenes were constrained with the standard differential measurement approach using as reference a monobromobenzene sample with an independently determined δ81Br value (–0.39‰ v. Standard Mean Ocean Bromide, SMOB). The δ81Br values for the industrial BOCs ranged from –4.3 to –0.4‰. The average δ81Br value for the natural compound (2,4-dibromophenol) was 0.2 ± 1.6‰ (1 s.d.), and for the identical industrial compound (2,4-dibromophenol) –1.1 ± 0.9‰ (1 s.d.), with a statistically significant difference of ~1.4 (P < 0.05). The δ81Br of four out of six industrial compounds was found to be significantly different from that of the natural sample. These novel results establish the bromine isotopic variability among the industrially produced BOCs in relation to a natural sample.

Additional keywords: brominated organic compounds (BOCs), compound-specific isotope analysis (CSIA), gas-chromatography multi-collector inductively coupled plasma mass spectrometry (GC-mcICP-MS), pollutants.


References

[1]  G. W. Gribble, The diversity of naturally occurring organobromine compounds. Chem. Soc. Rev. 1999, 28, 335.
The diversity of naturally occurring organobromine compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1WjsLs%3D&md5=7dedfece3b0b373583c434eccaf0886aCAS |

[2]  E. L. Teuten, G. M. King, C. M. Reddy, Natural 14C in Saccoglossus bromophenolosus compared to 14C in surrounding sediments. Mar. Ecol. Prog. Ser. 2006, 324, 167.
Natural 14C in Saccoglossus bromophenolosus compared to 14C in surrounding sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlSlsA%3D%3D&md5=52e18282e20660aa708d9609763dc97aCAS |

[3]  K. T. Fielman, S. A. Woodin, M. D. Walla, D. E. Lincoln, Widespread occurrence of natural halogenated organics among temperate marine infauna. Mar. Ecol. Prog. Ser. 1999, 181, 1.
Widespread occurrence of natural halogenated organics among temperate marine infauna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1eqsg%3D%3D&md5=324e82906d961c46cd7d563545639ee2CAS |

[4]  G. W. Gribble, The diversity of naturally produced organohalogens. Chemosphere 2003, 52, 289.
The diversity of naturally produced organohalogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVGnsLo%3D&md5=1e744cc5e10e17e0ef5212892c95be9dCAS | 12738253PubMed |

[5]  N. Winterton, Chlorine: the only green element-towards a wider acceptance of its role in natural cycles. Green Chem. 2000, 2, 173.
Chlorine: the only green element-towards a wider acceptance of its role in natural cycles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntlSisb8%3D&md5=67889005c58743c70bc5030f1f533d52CAS |

[6]  C. E. Kicklighter, J. Kubanek, M. E. Hay, Do brominated natural products defend marine worms from consumers? Some do, most don’t. Limnol. Oceanogr. 2004, 49, 430.
Do brominated natural products defend marine worms from consumers? Some do, most don’t.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFWgu78%3D&md5=6d5bb56bcad2580ce0ddd5d8a26b8485CAS |

[7]  E. Pelizzetti, P. Calza, Chemistry of Marine Water and Sediment 2002 (Springer: Berlin).

[8]  F. Keppler, R. Eiden, V. Niedan, J. Pracht, H. F. Schöler, Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature 2000, 403, 298.
Halocarbons produced by natural oxidation processes during degradation of organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1ChsA%3D%3D&md5=b5667c64ef8900f6346f1cbdb5bed64dCAS | 10659846PubMed |

[9]  L. Huang, N. C. Sturchio, T. Abrajano, L. J. Heraty, B. D. Holt, Carbon and chlorine isotope fractionation of chlorinated aliphatic hydrocarbons by evaporation. Org. Geochem. 1999, 30, 777.
Carbon and chlorine isotope fractionation of chlorinated aliphatic hydrocarbons by evaporation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtFynu7s%3D&md5=a4c1df8a7eadc38610e196b03cebb882CAS |

[10]  R. Theiler, J. C. Cook, L. P. Hager, Haloydrocarbon synthesis by bromoperoxidase. Science 1978, 202, 1094.
Haloydrocarbon synthesis by bromoperoxidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXot1yitg%3D%3D&md5=45ea2da2fd4dbd840ee771822b5e0700CAS | 17777960PubMed |

[11]  A. Butler, J. N. Carter-Franklin, The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat. Prod. Rep. 2004, 21, 180.
The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFWgtb0%3D&md5=f7d65c387daaa04c8c15ad526788da79CAS | 15039842PubMed |

[12]  M. Alaee, P. Arias, A. Sjödin, A. Bergman, An overview of commercially used countries/regions and possible modes of release. Environ. Int. 2003, 29, 683.
An overview of commercially used countries/regions and possible modes of release.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFKksb4%3D&md5=39926489811920bd99693825688707c0CAS | 12850087PubMed |

[13]  C. A. de Wit, M. Alaee, D. C. G. Muir, Levels and trends of brominated retardants in the Arctic. Chemosphere 2006, 64, 209.
Levels and trends of brominated retardants in the Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFKrtb8%3D&md5=c16ac3dddde3aedc640d603a0641f13fCAS | 16458344PubMed |

[14]  S. P. Sylva, L. Ball, R. K. Nelson, C. M. Reddy, Compound-specific 81Br/79Br analysis by capillary gas chromatography/multicollector inductively coupled plasma mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 3301.
Compound-specific 81Br/79Br analysis by capillary gas chromatography/multicollector inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ektLfJ&md5=31844474b50e5b93ec1499e131a6c5b8CAS | 17879393PubMed |

[15]  H. Holmstrand, M. Unger, D. Carrizo, P. Andersson, Ö. Gustafsson, Compound-specific bromine isotope analysis of penta-brominated diphenyl ethers using GC-ICP-multicollector-MS. Rapid Commun. Mass Spectrom. 2010, 24, 2135.
Compound-specific bromine isotope analysis of penta-brominated diphenyl ethers using GC-ICP-multicollector-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVOgtbs%3D&md5=c9c5389f5885601a5fa2bbbf9f8827d1CAS | 20552688PubMed |

[16]  F. Gelman, L. Halicz, High precision determination of bromide isotope ratio by GC-MC-ICPMS. Inter. Journ. Mass Spec. 2010, 289, 167.
High precision determination of bromide isotope ratio by GC-MC-ICPMS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SmtrjM&md5=1c0d3b498649e474558db42dd6e0b8faCAS |

[17]  L. Melander, W. H. Saunders, Reaction Rates of Isotopic Molecules 1987 (Krieger Publishing Company: Malabar, FL, USA).

[18]  R. Criss, Principles of Stable Isotopic Distribution 1999 (Oxford University Press: New York).

[19]  C. M. Reddy, L. Xu, N. D. Drenzek, N. C. Sturchio, L. J. Heraty, C. Kimblin, A. Butler, Chlorine isotope effect for enzyme-catalyzed chlorination. J. Am. Chem. Soc. 2002, 124, 14526.
Chlorine isotope effect for enzyme-catalyzed chlorination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1Gqtro%3D&md5=27ca068c5aa674813b4411701fb74f69CAS | 12465949PubMed |

[20]  N. C. Sturchio, L. J. Clausen, L. J. Heraty, L. Huang, B. D. Holt, T. A. Abrajano, Chlorine isotope investigation of natural attenuation of trichloroethene in an aerobic aquifer. Environ. Sci. Technol. 1998, 32, 3037.
Chlorine isotope investigation of natural attenuation of trichloroethene in an aerobic aquifer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVyrt78%3D&md5=f40f70fb2546fc6c103d8bb0072f400aCAS |

[21]  N. J. Drenzek, T. I. Eglinton, C. O. Wirsen, H. D. May, Q. Wu, K. R. Sowers, C. M. Reddy, The absence and application of stable carbon isotopic fractionation during the reductive dechlorination of polychlorinated biphenyls. Environ. Sci. Technol. 2001, 35, 3310.
The absence and application of stable carbon isotopic fractionation during the reductive dechlorination of polychlorinated biphenyls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvV2qtLk%3D&md5=2c058383200dbbd5576f2679fcab48bcCAS | 11529569PubMed |

[22]  H. Holmstrand, D. Gadomski, M. Mandalakis, M. Tysklind, R. Irvine, P. Andersson, Ö. Gustafsson, Origin of PCDDs in ball clay assessed with compound-specific chlorine isotope analysis and radiocarbon dating. Environ. Sci. Technol. 2006, 40, 3730.
Origin of PCDDs in ball clay assessed with compound-specific chlorine isotope analysis and radiocarbon dating.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkslWlsbY%3D&md5=36364bad54a1cd7bf150f8f73cb3af15CAS | 16830534PubMed |

[23]  H. Holmstrand, M. Mandalakis, Z. Zencak, P. Andersson, Ö. Gustafsson, First compound-specific chlorine-isotope analysis of environmentally bioaccumulated organochlorines indicates a degradation-related kinetic isotope effect for DDT. Chemosphere , 69, 1533.
First compound-specific chlorine-isotope analysis of environmentally bioaccumulated organochlorines indicates a degradation-related kinetic isotope effect for DDT.Crossref | GoogleScholarGoogle Scholar |

[24]  T. B. Hofstetter, C. M. Reddy, L. J. Heraty, M. Berg, N. C. Sturchio, Carbon and chlorine isotope effects during abiotic reductive dechlorination of polychlorinated ethanes. Environ. Sci. Technol. 2007, 41, 4662.
Carbon and chlorine isotope effects during abiotic reductive dechlorination of polychlorinated ethanes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFOkt7w%3D&md5=ff7ffeff8c53acf946f798511998bb65CAS | 17695912PubMed |

[25]  J. F. Willey, J. W. Taylor, Capacitive integration to produce high precision isotope ratio measurements on methyl chloride and methyl bromide samples. Anal. Chem. 1978, 50, 1930.
Capacitive integration to produce high precision isotope ratio measurements on methyl chloride and methyl bromide samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlvFSnu7k%3D&md5=4ec56cc611fe551d60bd53fb11e9e7f3CAS |

[26]  O. Shouakar-Stash, S. V. Alexeev, S. K. Frape, L. P. Alexeeva, R. J. Drimmie, Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes, of deep groundwaters of the Siberian Platform, Russia. Appl. Geochem. 2007, 22, 589.
Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes, of deep groundwaters of the Siberian Platform, Russia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlygsLs%3D&md5=5e92ced0ba05d6ce97061f8d98865881CAS |

[27]  C. M. Reddy, L. J. Heraty, B. D. Holt, N. C. Sturchio, T. I. Eglinton, N. J. Drenzek, L. Xu, J. L. Lake, K. A. Maruya, Stable chlorine isotopic compositions of Aroclors and Aroclor-contaminated sediments. Environ. Sci. Technol. 2000, 34, 2866.
Stable chlorine isotopic compositions of Aroclors and Aroclor-contaminated sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsVGks7k%3D&md5=02b17dfccf44817d59cc444b27f2babfCAS |

[28]  J. N. Drenzek, C. H. Tarr, T. I. Eglinton, L. J. Heraty, N. C. Sturchio, V. J. Shineer, C. M. Reddy, Stable chlorine and carbon isotopic compositions of selected semi-volatile organochlorines compounds. Org. Geochem. 2002, 33, 437.
Stable chlorine and carbon isotopic compositions of selected semi-volatile organochlorines compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xitlaksr0%3D&md5=dd161d7f249af3a90b922bc1a754268cCAS |

[29]  C. Aeppli, H. Holmstrand, P. Andersson, Ö. Gustafsson, Direct compound-specific stable isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing. Anal. Chem. 2010, 82, 420.
Direct compound-specific stable isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFCgu7bL&md5=d9423eea88720aa5fc02dc18ed415a1eCAS | 20000586PubMed |

[30]  H. G. M. Eggenkamp, M. L. Coleman, Rediscovery of classical methods and their application to the measurement of stable bromine isotopes in natural samples. Chem. Geol. 2000, 167, 393.
Rediscovery of classical methods and their application to the measurement of stable bromine isotopes in natural samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1Shtb0%3D&md5=d1f3fc90e4d526f16c3ff8f2cbfa5aabCAS |

[31]  R. L. Stotler, S. K. Frape, O. Shouakar-Stash, An isotopic survey of δ81Br and δ37Cl of dissolved halides in the Canadian and Fennoscandian Shields. Chem. Geol. 2010, 274, 38.
An isotopic survey of δ81Br and δ37Cl of dissolved halides in the Canadian and Fennoscandian Shields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1elt7g%3D&md5=8fc93cb3d26764168464d62ebb8fac44CAS |