Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Biogeochemistry and cyanobacterial blooms: investigating the relationship in a shallow, polymictic, temperate lake

Michael R. Grace A D , Todd R. Scicluna A , Chamindra L. Vithana A , Peter Symes B and Katrina P. Lansdown A C
+ Author Affiliations
- Author Affiliations

A Water Studies Centre and School of Chemistry, Monash University, Clayton, VIC 3800, Australia.

B Royal Botanic Gardens, South Yarra, VIC 3141, Australia.

C Present address: School of Geography, Queen Mary, University of London,Mile End Road, London, E1 4NS, UK.

D Corresponding author. Email: mike.grace@monash.edu

Environmental Chemistry 7(5) 443-456 https://doi.org/10.1071/EN10042
Submitted: 25 April 2010  Accepted: 27 August 2010   Published: 13 October 2010

Environmental context. Effective mitigation of algal blooms, and their associated detrimental impacts on flora and fauna, requires an understanding of the factors leading to bloom development, including nutrients, light and hydrodynamics. We investigated a shallow, freshwater lake and demonstrate that there is sufficient bioavailable phosphorus to annually generate a large algal biomass. Extensive, seasonal phosphorus release from sediments is controlled by the interactions of the biogeochemical cycles of nitrogen, carbon, oxygen, iron and sulfur.

Abstract. The shallow, polymictic Ornamental Lake in the Royal Botanic Gardens, Melbourne, Australia, has suffered significant blooms of toxic Anabaena then Microcystis species every summer over the last decade. Although the hydrodynamic conditions of the water column are conducive for algal growth, the prolific growth is controlled by the bioavailable phosphorus concentration. Springtime phosphorus fluxes of 0.1–0.2 mmol m–2 day–1 from the sediment contribute to bloom development. These rates are also observed in anoxic sediment core incubations. Diel stratification, combined with high oxygen consumption associated with organic carbon loading, favour P release. Release rates may be amplified by the effects of sulfate reduction on P sorption onto FeIII (oxyhydroxide) surfaces. Sulfate concentrations are at the threshold where methanogenesis is inhibited in anoxic conditions. Effective bloom mitigation will require a >100-fold reduction in P concentrations, which may be achieved through macrophyte planting and inducing greater water flow through the lake system.

Additional keywords: algal bloom, dissolved inorganic nitrogen, phosphorus mobilisation, sediment, sulfate reduction.


References


[1]   C. Wagner , R. Adrian , Cyanobacteria dominance: quantifying the effects of climate change. Limnol. Oceanogr. 2009 , 54,  2460.
         open url image1

[2]   H. W. Paerl , Nuisance phytoplankton blooms in coastal, estuarine and inland waters. Limnol. Oceanogr. 1988 , 33,  823.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[3]   M. T. Dokulil , K. Teubner , Eutrophication and restoration of shallow lakes – the concept of stable equilibria revisited. Hydrobiologia 2003 , 506–509,  29.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   M. Scheffer , E. H. van Nes , Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 2007 , 584,  455.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   G. B. Arhonditsis , M. Winder , M. T. Brett , D. E. Schindler , Patterns and mechanisms of phytoplankton variability in Lake Washington (USA). Water Res. 2004 , 38,  4013.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[6]   H. S. Jensen , P. Kristensen , E. Jeppesen , A. Skytthe , Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 1992 , 235–236,  731.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   N. F. Caraco , J. J. Cole , G. E. Likens , Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 1989 , 341,  316.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   A. Kleeberg , Interactions between benthic phosphorus release and sulfur cycling in Lake Scharmutzelsee (Germany). Water Air Soil Pollut. 1997 , 99,  391.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   B. Thamdrup , H. Fossing , B. B. Jørgensen , Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus bay, Denmark. Geochim. Cosmochim. Acta 1994 , 58,  5115.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   M. Holmer , P. Storkholm , Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw. Biol. 2001 , 46,  431.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   B. B. Jørgensen , A. Weber , J. Zopfi , Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep-Sea Res. 2001 , 48,  2097.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   D. S. Baldwin , K. C. Hall , G. N. Rees , A. J. Richardson , Development of a protocol for recognizing sulfidic sediments (potential acid sulfate soils) in freshwater wetlands. Ecol. Manage. Restor. 2007 , 8,  56.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   P. I. Boon , Carbon cycling in Australian wetlands: the importance of methane. Verh. Internat. Verein Limnol. 2000 , 27,  37.
         open url image1

[14]   A. P. Annachhatre , S. Suktrakoolvait , Biological sulfate reduction using molasses as a carbon source. Water Environ. Res. 2001 , 73,  118.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[15]   D. R. Lovley , M. J. Klug , Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl. Environ. Microbiol. 1983 , 45,  187.
        | PubMed |  open url image1

[16]   K. M. Kuivila , J. W. Murray , A. H. Devol , P. C. Novelli , Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington. Geochim. Cosmochim. Acta 1989 , 53,  409.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   Symes P., Lake System Strategic Plan (Part 1) Background 2003 (Royal Botanic Gardens: Melbourne).

[18]   R. H. Hesslein , An in situ sampler for close interval pore water studies. Limnol. Oceanogr. 1976 , 21,  912.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   N. J. Grigg , I. T. Webster , P. W. Ford , Pore-water convection induced by peeper emplacement in saline sediment. Limnol. Oceanogr. 1999 , 44,  425.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   R. Carignan , R. Gachter , Use of diffusion samplers in oligotrophic lake sediments: effects of free oxygen in sampler material. Limnol. Oceanogr. 1994 , 39,  468.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   Vithana C. L., Measuring the microbial activity using fluorescein diacetate (FDA) analysis in freshwater sediments 2009, M.Sc. Thesis, Monash University, Melbourne.

[22]   Eaton A. E., Clesceri L. S., Rice E. W., Greenberg A. E. (Eds), Standard Methods for the Examination of Water and Wastewater 2005 (APHA, AWWA and WEF: Washington, DC).

[23]   L. D. Anderson , M. L. Delaney , Sequential extraction and analysis of phosphorus in marine sediments: streamlining of the SEDEX procedure. Limnol. Oceanogr. 2000 , 45,  509.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[24]   Fonselius S. H., Determinaton of Hydrogen Sulphide, in Methods of Seawater Analysis (Ed. K. Grasshoff) 1976, pp. 71–78 (Verlag Chemie: Weinheim).

[25]   B. P. Boudreau , The diffusive tortuosity of fine-grained unlithified sediments. Geochim. Cosmochim. Acta 1996 , 60,  3139.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[26]   Y.-H. Li , S. Gregory , Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 1974 , 38,  703.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   N. Ohkubo , O. Yagi , M. Okada , Studies on the succession of blue-green algae, Microcystis, Anabaena, Oscillatoria and Phormidium in Lake Kasumigaura. Environ. Technol. 1993 , 14,  433.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   C. Yin , Z. Lan , M. Zhao , H. Bernhardt , Determination of phosphorus concentration threshold for algal growth in eutrophic Chaohu Lake, China. J. Environ. Sci. Health, Part. A: Environ. Sci. Eng. Toxic Hazard. Subst. Control 1992 , 27,  433.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   ANZECC, Australian and New Zealand Guidelines for Fresh and Marine Water Quality 2000 (Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand: Canberra).

[30]   X. Shi , L. Yang , X. Niu , L. Xiao , Z. Kong , B.-Q. Qin , G. Gao , Intracellular phosphorus metabolism of Microcystis aeruginosa under various redox potential in darkness. Microbiol. Res. 2003 , 158,  345.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[31]   V. Krivtsov , E. G. Bellinger , D. C. Sigee , Elemental composition of Microcystis aeruginosa under conditions of lake nutrient depletion. Aquat. Ecol. 2005 , 39,  123.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   Oliver R. L., Hart B. T., Olley J., Grace M. R., Rees C. M., Caitcheon G., The Darling River: algal growth and the cycling and sources of nutrients. Murray–Darling Basin Commission Report M386 1999 (CRC for Freshwater Ecology & CSIRO Land and Water: Canberra).

[33]   S. M. Mitrovic , R. L. Oliver , C. Rees , L. C. Bowling , R. T. Buckney , Critical flow velocities for the growth and dominance of Anabaena circinalis in some turbid freshwater rivers. Freshw. Biol. 2003 , 48,  164.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   W. Van Dok , B. T. Hart , Akinete germination in Anabena circinalis (Cyanophyta). J. Phycol. 1997 , 33,  12.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   P. A. Thompson , I. Jameson , S. I. Blackburn , The influence of light quality on akinete formation and germination in the toxic cyanobacterium Anabaena circinalis. Harmful Algae 2009 , 8,  504.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   P. D. Baker , D. Bellifemine , Environmental influences on akinete germination of Anabaena circinalis and implications for management of cyanobacterial blooms. Hydrobiologia 2000 , 427,  65.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   Lansdown K. P., The role of aquatic sediments in the biogeochemical cycling of nutrients in the Ornamental Lake, Royal Botanic Gardens, Melbourne 2004, B.Sc.(Hons) Thesis, Monash University, Melbourne.

[38]   B. M. Spears , L. Carvalho , R. Perkins , A. Kirika , D. M. Paterson , Sediment phosphorus cycling in a large shallow lake: spatio-temporal variation in phosphorus pools and release. Hydrobiologia 2007 , 584,  37.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[39]   W. Davison , The solubility of iron sulphides in synthetic and natural waters at ambient temperature. Aquat. Sci. 1991 , 53,  309.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[40]   T. F. Rozan , M. Taillefert , R. E. Trouwborst , B. T. Glazer , S. F. Ma , J. Herszage , L. M. Valdes , K. S. Price , G. W. Luther , Iron–sulfur–phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms. Limnol. Oceanogr. 2002 , 47,  1346.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[41]   K. C. J. Van Rees , E. A. Sudicky , P. S. C. Rao , K. R. Reddy , Evaluation of laboratory techniques for measuring diffusion coefficients in sediments. Environ. Sci. Technol. 1991 , 25,  1605.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[42]   N. R. Urban , C. Dinkel , B. Wehrli , Solute transfer across the sediment surface of a eutrophic lake: I. Porewater profiles from dialysis samplers. Aquat. Sci. 1997 , 59,  1.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[43]   I. Schauser , I. Chorus , J. Lewandowski , Effects of nitrate on phosphorus release: comparison of two Berlin lakes. Acta Hydrochim. Hydrobiol. 2006 , 34,  325.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[44]   M. Søndergaard , P. Kristensen , E. Jeppesen , Eight years of internal phosphorus loading and changes in the sediment phosphorus profile of Lake Søbygaard, Denmark. Hydrobiologia 1993 , 253,  345.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[45]   D. F. Burger , D. P. Hamilton , C. A. Pilditch , M. M. Gibbs , Benthic nutrient fluxes in a eutrophic, polymictic lake. Hydrobiologia 2007 , 584,  13.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[46]   G. Phillips , R. Jackson , C. Bennett , A. Chilvers , The importance of sediment phosphorus release in the restoration of very shallow lakes (The Norfolk Broads, England) and implications for biomanipulation. Hydrobiologia 1994 , 275–276,  445.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[47]   E. Kristensen , S. I. Ahmed , A. H. Devol , Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest? Limnol. Oceanogr. 1995 , 40,  1430.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[48]   B. Boström , K. Pettersson , Different patterns of phosphorus release from lake sediments in laboratory experiments. Hydrobiologia 1982 , 92,  415.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[49]   M. R. Grace , T. Jakob , D. Donnert , R. Beckett , Effect of an alternating oxic/anoxic regime on a (freshwater) Yarra River sediment. Aust. J. Chem. 2003 , 56,  923.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[50]   K. Hansen , S. Mouridsen , E. Kristensen , The impact of Chironomus plumosus larvae on organic matter decay and nutrient (N, P) exchange in a shallow eutrophic lake sediment following a phytoplankton sedimentation. Hydrobiologia 1997 , 364,  65.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[51]   B. B. Jørgensen , N. P. Revsbech , Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol. Oceanogr. 1985 , 30,  111.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[52]   K. Y. Maillacheruvu , G. F. Parkin , Kinetics of growth, substrate utilization and sulfide toxicity for propionate, acetate, and hydrogen utilizers in anaerobic systems. Water Environ. Res. 1996 , 68,  1099.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[53]   I. A. Sanders , C. M. Heppell , J. A. Cotton , G. Wharton , A. G. Hildrew , E. J. Flowers , M. Trimmer , Emission of methane from chalk streams has potential implications for agricultural practices. Freshw. Biol. 2007 , 52,  1176.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[54]   P. Casper , S. C. Maberly , G. H. Hall , B. J. Finlay , Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 2000 , 49,  1.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[55]   B. Moss , The art and science of lake restoration. Hydrobiologia 2007 , 581,  15.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[56]   E. Jeppesen , M. Søndergaard , M. Meerhoff , T. L. Lauridsen , J. P. Jensen , Shallow lake restoration by nutrient loading reduction – some recent findings and challenges ahead. Hydrobiologia 2007 , 584,  239.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[57]   Operating procedures and methods for the analytical chemistry laboratory 1999 (Water Studies Centre, Monash University:Clayton).

[58]   M. R. Grace , T. M. Hislop , B. T. Hart , R. Beckett , Effect of saline groundwater on the aggregation and settling of suspended particles in a turbid Australian river. Colloids Surf. A 1997 , 120,  123.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[59]   Saefumillah A., The release of organic phosphorus from aquatic sediments 2007, Ph.D. Thesis, Monash University, Melbourne.

[60]   S. Wang , X. Jin , Y. Pang , H. Zhao , X. Zhao , F. Wu , Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China. J. Colloid Interface Sci. 2005 , 289,  339.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[61]   S. P. Klapwijk , J. M. W. Kroon , M.-L. Meijer , Available phosphorus in lake sediments in the Netherlands. Hydrobiologia 1982 , 92,  491.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[62]   T. B. Reynoldson , R. C. Baily , K. E. Day , R. H. Norris , Biological guidelines for freshwater sediment based on BEnthic Assessment of SedimenT (the BEAST) using a multivariate approach for predicting biological state. Austral Ecol. 1995 , 20,  198.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[63]   K. Krogerus , P. Ekholm , Phosphorus in settling matter and bottom sediments in lakes loaded by agriculture. Hydrobiologia 2003 , 492,  15.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1