Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Solubility of mimetite Pb5(AsO4)3Cl at 5–55°C

Tomasz Bajda
+ Author Affiliations
- Author Affiliations

Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environment Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland. Email: bajda@geol.agh.edu.pl

Environmental Chemistry 7(3) 268-278 https://doi.org/10.1071/EN10021
Submitted: 9 March 2010  Accepted: 24 April 2010   Published: 2 May 2010

Environmetal context. The mobility of toxic arsenic compounds in the environment can be controlled by the solubility of certain minerals. To predict and model the fate and behaviour of these contaminants, the solubility and related thermodynamic properties of the lead and arsenic mineral mimetite were determined. The data obtained in this study will be used to optimise and increase the effectiveness of remediation procedures that are already applied to contaminated sites.

Abstract. The solubility of the synthesised mimetite was measured in a series of dissolution experiments at 5–55°C and at pH values between 2.00 and 2.75. The solubility product logKSP for the reaction Pb5(AsO4)3Cl ↔ 5Pb2+ + 3AsO43– + Cl at 25°C is –76.35 ± 1.01. The free energy of formation ΔGf,2980 calculated from this measured solubility product equals –2634.3 ± 5.9 kJ mol–1. The temperature dependence of the logKSP is non-linear, indicating that the enthalpy of the reaction depends on the temperature. The enthalpy of the formation of mimetite ΔHf0, is –2965.9 ± 4.7 kJ mol–1, the entropy, ΔS0, is 39.5 J mol–1 K–1, and the heat capacity, ΔCp,f0 is –6172 ± 105 J mol–1 K–1. Hydrochemical modelling indicates that regardless of the composition of the background solution, Pb5(AsO4)3Cl is most stable at neutral to weakly alkaline pH.

Additional keywords: arsenic, dissolution, lead, synthesis, thermodynamic properties.


Acknowledgements

I thank Maciej Manecki (AGH-UST) for help with calculations, fruitful discussions and for his comments on an earlier version of this manuscript. Marek Sikora, Adam Gaweł, Włodzimierz Mozgawa (all from AGH UST) are thanked for their assistances with AAS, XRD, and FTIR analyses respectively. I greatly appreciate the comments of the reviewers, which helped to improve the manuscript. This work was supported by the Ministry of Science and Higher Education as AGH UST grant no. 10.10.140.681 from the University of Science and Technology.


References


[1]   Berman E., Toxic Metals and their Analysis 1980 (Heyden and Sons: London).

[2]   Onishi H., Arsenic, in Handbook of Geochemistry (Ed. K. H. Wedepohl) 1969, Vol. II–2, Ch. 33 (Springer-Verlag: New York).

[3]   B. K. Mandal , K. T. Suzuki , Arsenic round the world: a review. Talanta 2002 , 58,  201.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[4]   J. S. Lee , J. O. Nriagu , Stability constant for metal arsenates. Environ. Chem. 2007 , 4,  123.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[5]   L. Marini , M. Accornero , Prediction of the thermodynamic properties of metal–arsenate and metal–arsenite aqueous complexes to high temperatures and pressures and some geological consequences. Environ. Geol. 2007 , 52,  1343.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[6]   H. L. Liu , Y. N. Zhu , H. X. Yu , Solubility and stability of lead arsenates at 25°C. J. Environ. Sci. Health A 2009 , 44,  1465.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[7]   Bhumbla D. K., Keefer R. F., Arsenic mobilization and bioavailability in soils, in Arsenic in the Environment, Part I: Cycling and Characterization (Ed. J. O. Nriagu) 1994, pp. 62–66 (Wiley: New York).

[8]   J. Matschullat , Arsenic in the geosphere – a review. Sci. Total Environ. 2000 , 249,  297.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[9]   B. A. Manning , S. Goldberg , Adsorption and stability of arsenic(III) at the clay mineral–water interface. Environ. Sci. Technol. 1997 , 31,  2005.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[10]   S. Chakravarty , V. Dureja , G. Bhattacharyya , S. Maity , S. Bhattacharjee , Removal of arsenic from ground water using low cost ferruginous manganese ore. Water Res. 2002 , 36,  625.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[11]   S. Goldberg , Chemical modeling of arsenate adsorption on aluminum and iron oxide minerals. Soil Sci. Soc. Am. J. 1986 , 52,  1154.
         open url image1

[12]   T. F. Lin , J. K. Wu , Adsorption of arsenite and arsenate with inactivated alumina grains: equilibrium and kinetics. Water Res. 2001 , 35,  2049.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[13]   M. L. Pierce , C. B. Moore , Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res. 1982 , 16,  1247.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[14]   S. M. Fendorf , J. Eick , P. R. Grossl , D. L. Sparks , Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ. Sci. Technol. 1997 , 31,  315.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[15]   Z. Hongshao , R. Stanforth , Competitive adsorption of phosphate and arsenate on goethite. Environ. Sci. Technol. 2001 , 35,  4753.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[16]   L. Carlson , J. M. Bigham , U. Schwertmann , A. Kyek , Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues. Environ. Sci. Technol. 2002 , 36,  1712.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[17]   J. Giménez , M. Martínez , J. Pablo , M. Rovira , L. Duro , Arsenic sorption onto natural hematite, magnetite, and goethite. J. Hazard. Mater. 2007 , 141,  575.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[18]   W. Chen , R. Parette , J. Zou , F. S. Cannon , B. A. Dempsey , Arsenic removal by iron-modified activated carbon. Water Res. 2007 , 41,  1851.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[19]   J. V. Bothe , P. W. Brown , Arsenic immobilization by calcium arsenate formation. Environ. Sci. Technol. 1999 , 33,  3806.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[20]   Y. N. Zhu , X. H. Zhang , Q. L. Xie , D. Q. Wang , G. W. Cheng , Solubility and stability of calcium arsenates at 25°C. Water Air Soil Pollut. 2006 , 169,  221.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[21]   V. G. Chukhlantsev , The solubility products of a number of arsenates. J. Anal. Chem. – USSR 1956 , 11,  565.
        |  CAS |  open url image1

[22]   Robins R. G., The stability and solubility of ferric arsenate: an update, in EPD Congress ’90, Proceedings of the Extractions Processing Division Congress, TMS Annual Meeting; Anaheim, CA, 19–22 February 1990 (Ed. D. R. Gaskell) 1990, pp. 93–104 (The Minerals, Metals & Materials Society: Warrendale, PA).

[23]   D. Langmuir , J. Mahoney , J. Rowson , Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings. Geochim. Cosmochim. Acta 2006 , 70,  2942.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[24]   J. N. Moore , W. H. Ficklin , C. Johns , Partitioning of arsenic and metals in reducing sulfidic sediments. Environ. Sci. Technol. 1988 , 22,  432.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[25]   D. Craw , D. Falconer , J. H. Youngson , Environmental arsenopyrite stability and dissolution: theory, experiment, and field observations. Chem. Geol. 2003 , 199,  71.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[26]   D. Mohan , C. U. Pittman , Arsenic removal from water/wastewater using adsorbents – a critical review. J. Hazard. Mater. 2007 , 142,  1.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[27]   L. G. Twidwell , K. O. Plessas , P. G. Comba , D. R. Dahnke , Removal of arsenic from wastewater and stabilization of arsenic bearing waste solids: summary of experimental studies. J. Hazard. Mater. 1994 , 36,  69.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[28]   Bajda T., Szmit E., Manecki M., Removal of As(V) from solutions by precipitations of mimetite Pb5(AsO4)3Cl, in Environmental Engineering (Eds L. Pawłowski, M. Dudzińska, A. Pawłowski) 2007, pp. 119–124 (Taylor & Francis: London).

[29]   M. C. F. Magalhães , Arsenic. An environmental problem limited by solubility. Pure Appl. Chem. 2002 , 74,  1843.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   M. C. F. Magalhães , J. D. P. de Jesus , The chemistry of formation of some secondary arsenate minerals of Cu(II), Zn(II) and Pb(II). Min. Mag. 1988 , 52,  679.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   M. C. F. Magalhães , M. C. M. Silva , Stability of lead arsenates. Monatsh. Chem. 2003 , 134,  735.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   US EPA, Identification and Listing of Hazardous Waste, Toxicity Characteristics, 40 CFR 261.24 1999 (US Environmental Protection Agency: Washington, DC).

[33]   A. Wojnar , M. Manecki , T. Bajda , Bioaccessibility of As(V) and Pb(II) from mimetite. Geochim. Cosmochim. Acta 2005 , 69,  A628.
         open url image1

[34]   A. Nakamoto , Y. Urasima , S. Sugiura , H. Nakano , T. Yachi , K. Tadokoro , Pyromorphite-mimetite minerals from the Otaru–Matsukura barite mine in Hokkaido, Japan. Mineral. J. 1969 , 6,  85.
        |  CAS |  open url image1

[35]   E. A. Perseil , P. Blanc , D. Ohnenstetter , As-bearing fluorapatite in manganiferous deposits from St Marcel Praborna, Val d’Aosta, Italy. Can. Mineral. 2000 , 38,  101.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[36]   B. Gołębiowska , A. Pieczka , W. Franus , Ca-bearing phosphatian mimetite from Rędziny, Lower Silesia, Poland. N. Jb. Miner. Mh. 2002 , 2002,  31.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   E. R. Kreidler , F. A. Hummel , The crystal chemistry of apatite: structure fields of fluoro- and chlorapatite. Am. Mineral. 1970 , 55,  170.
        |  CAS |  open url image1

[38]   McConnell D., Apatite: Its Crystal Chemistry, Mineralogy, Utilization and Geologic and Biologic Occurrences 1973 (Springer Verlag: New York).

[39]   Roy D. M., Drafall L. E., Roy R., Crystal chemistry, crystal growth, and phase equilibria of apatites, in Phase Diagrams, Material Sciences and Technology 6–V (Ed. A. M. Alper) 1978, pp. 186–239 (Academic Press: New York).

[40]   Elliott J. C., Structure and Chemistry of the Apatites and other Calcium Orthophosphates 1994 (Elsevier: Amsterdam).

[41]   M. Handke , W. Mozgawa , M. Nocuń , Specific features of the IR spectra of silicate glasses. J. Mol. Struct. 1994 , 325,  129.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[42]   R. B. R. Mesquita , S. M. V. Fernandes , A. O. S. S. Rangel , Turbidimetric determination of chloride in different types of water using a single sequential injection analysis system. J. Environ. Monit. 2002 , 4,  458.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[43]   R. K. Dhar , Y. Zheng , J. Rubenstone , A. van Geen , A rapid colorimetric method for measuring arsenic concentrations in groundwater. Anal. Chim. Acta 2004 , 526,  203.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[44]   WHO Guidelines for drinking-water quality. Volume 1: Recommendations, 2nd edn 1993 (World Health Organization: Geneva).

[45]   Parkhurst D., User’s guide to PHREEQC: a computer program for speciation, reaction-path, advective transport, and inverse geochemical calculations, Water Resources Investigations Report 95-4227 1995 (US Geological Survey: Lakewood, CO).

[46]   Allison J. D., Brown D. S., Novo-Gradac K. J., MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: version 3.0 user’s manual, EPA/600/3-91/021 1991 (US Environmental Protection Agency, Environmental Research Laboratory: Athens, GA).

[47]   Y. Dai , J. M. Hughes , P. M. Moore , The crystal structures of mimetite and clinomimetite, Pb5(AsO4)3Cl. Can. Mineral. 1991 , 29,  369.
        |  CAS |  open url image1

[48]   A. I. Inegbenebor , J. H. Thomas , P. A. Williams , The chemical stability of mimetite and distribution coefficients for pyromorphite–mimetite solid-solutions. Min. Mag. 1989 , 53,  363.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[49]   Robins R. G., The stabilities of arsenic(V) and arsenical compounds in aqueous metal extraction systems, in Hydrometallurgical, Research, Development and Plant Practice (Eds K. Osseo-Assare, J. D. Miller) 1982, pp. 291–310 (The Minerals, Metals & Materials Society: Warrendale, PA).

[50]   Berner E. K., Berner R. A., The Global Water Cycle. Geochemistry and Environment 1987 (Prentice Hall, Inc.: Englewood Cliffs, NJ).

[51]   M. Williams , Arsenic in mine water: an international study. Environ. Geol. 2001 , 40,  267.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[52]   S. Sauvé , M. B. McBride , W. H. Hendershot , Speciation of lead in contaminated soils. Environ. Pollut. 1997 , 98,  149.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[53]   Nordstrom D. K., Plummer L. N., Wigley T. M. L., Wolery T. J., Ball J. W., Jenne E. A., Bassett R. L., Crerar D. A.et al., Comparison of computerized chemical models for equilibrium calculations in aqueous systems, in Chemical Modeling in Aqueous Systems, Speciation, Sorption, Solubility, and Kinetics (Ed. E. A. Jenne) 1979, Series 93, pp. 857–892 (American Chemical Society: Washington, DC).

[54]   J. D. Cotter-Howells , S. Capron , Remediation of contaminated land by formation of heavy metals phosphates. Appl. Geochem. 1996 , 11,  335.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[55]   J. Flis , M. Manecki , T. Bajda , Solubility of pyromorphite–mimetite solid solutions at 5–65°C: variability of thermodynamic stability of minerals from pyromorphite–mimetite series at 5–65°C. Geochim. Cosmochim. Acta 2007 , 71,  A285.
         open url image1

[56]   Nordstrom D. K., Munoz J. L., Geochemical Thermodynamics 1994 (Blackwell: Boston, MA).

[57]   E. L. Shock , D. C. Sassani , M. Willis , D. A. Sverjensky , Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmochim. Acta 1997 , 61,  907.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[58]   E. L. Shock , H. C. Helgeson , Calculation of the thermodynamic and transport properties of aqueous species at high pressure and temperatures: correlation algorithms for ionic species and equations of state prediction to 5 kb and 1000°C. Geochim. Cosmochim. Acta 1988 , 52,  2009.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[59]   R. B. Perkins , C. D. Palmer , Solubility of Ca6[Al(OH)6]2(CrO4)3·26H2O, the chromate analog of ettringite; 5–75°C. Appl. Geochem. 2000 , 15,  1203.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[60]   Robie R. A., Hemingway B. S., Fisher J. R., Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures, Bulletin 1452 1978 (US Geological Survey: Washington, DC).

[61]   Comba P. G., Removal of arsenic from process and wastewater solutions 1987, MSc thesis, Montana College of Mineral Science and Technology, Butte, MT.

[62]   L. Xie , D. E. Giammar , Equilibrium solubility and dissolution rate of the lead phosphate chloropyromorphite. Environ. Sci. Technol. 2007 , 41,  8050.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[63]   D. D. Wagman , W. H. Evans , V. B. Parker , R. H. Schumm , I. Halow , S. M. Bailey , K. L. Churney , F. L. Nuttall , The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 1982 , 11,  1.
        | Crossref |  open url image1

[64]   F. H. Sweeton , R. E. Mesmer , C. F. J. Baes , Acidity measurements at elevated temperatures. VII. Dissociation of water. J. Solution Chem. 1974 , 3,  191.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[65]   Smith R. M., Martell A. E., Critical Stability Constants, 4, Inorganic Complexes 1976 (Plenum Press: New York).

[66]   Ball J. W., Nordstrom D. K., WATEQ4F – User’s manual with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters, Open-File Report 90-129 1991 (US Geological Survey: Denver, CO).

[67]   Whiting K. S., The thermodynamic and geochemistry of arsenic with application to subsurface waters at the Sharon Steel Superfund Site at Midvale, Utah 1992, MSc thesis, Colorado School of Mines, Golden, CO.

[68]   S. R. Levitt , R. A. Condrate , The vibrational spectra of lead apatites. Am. Mineral. 1970 , 55,  1562.
        |  CAS |  open url image1

[69]   G. Bartholomäi , W. E. Klee , The vibrational spectra of pyromorphite, vanadinite and mimetite. Spectr. Acta 1978 , 34,  831.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[70]   R. L. Frost , J. M. Bouzaid , S. Palmer , The structure of mimetite, arsenian pyromorphite and hedyphane – a Raman spectroscopic study. Polyhedron 2007 , 26,  2964.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1