Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Matrix-bound phosphine in paddy fields under a simulated increase in global atmospheric CO2

J. Zhang A , J. J. Geng A C , R. Zhang B , H. Q. Ren A and X. R. Wang A
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.

B School of Chemical and Environmental Science, Nanjing Normal University, Nanjing 210097, China.

C Corresponding author. Email: jjgeng@nju.edu.cn

Environmental Chemistry 7(3) 287-291 https://doi.org/10.1071/EN09164
Submitted: 25 December 2009  Accepted: 21 April 2010   Published: 22 June 2010

Environmental context. Although phosphine (PH3) is an important gaseous carrier in the phosphorus cycle, its production and environmental behaviour remain unclear. Paddy fields are thought to be one of the main sources responsible for the production and emission of PH3. Understanding the behaviour of PH3 in paddy fields under elevated CO2 concentration is crucial in understanding the phosphorus cycle and its response to rising global atmospheric CO2 concentration.

Abstract. The behaviour of matrix-bound phosphine (MBP) in paddy fields under elevated [CO2] (ambient + 200 μmol mol–1) is investigated to understand the soil phosphorus cycle and its link to increasing global atmospheric [CO2]. MBP concentrations range from 17.0 ± 5.8 to 1035 ± 331 ng kg–1. Concentrations at the transplanting and harvest stages are significantly higher than during the growing stages. The MBP level (212 ± 61 ng kg–1) under elevated [CO2] is slightly higher than under ambient [CO2] (189 ± 44 ng kg–1). Root exudates and addition of inorganic phosphate fertiliser speed up the production of MBP, whereas fast paddy growth and increasing air temperature accelerate the emission of MBP into the atmosphere. Significant positive correlations are found between MBP and inorganic phosphorus and organic matter, indicating that MBP may be produced from the microbial reduction of inorganic phosphorus in paddy fields.

Additional keywords: elevated [CO2], FACE, MBP, phosphorus cycle.


Acknowledgements

This work was supported by the National Science Foundation of Jiangsu Province (grant no. BK2008276), the National Basic Research Program of China (no. 2008CB418003), the National Science Foundation of China (no. 20607009), the International Foundation of Science (no. A/4425–1), the Key Special Program on the Science and Technology for the Pollution Control and Treatment of Water Bodies (no. 2008ZX07316–004) and Self-Research Subject of the State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education. The authors thank Wang Rui from the Institute of Atmospheric Physics and Professor Zhu Jianguo from the Institute of Soil Science, Chinese Academy of Sciences, who provided great assistance in the field investigation.


References


[1]   I. Dévai , L. Felföldy , I. Wittner , S. Plósz , Detection of phosphine: new aspects the phosphorus cycle in the hydrosphere. Nature 1988 , 333,  343.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[2]   D. Glindemann , U. Stottmeister , A. Bergmann , Free phosphine from the anaerobic biosphere. Environ. Sci. Pollut. Res 1996 , 3,  17.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[3]   J. Roels , W. Verstraete , Occurrence and origin of phosphine in landfill gas. Sci. Total Environ. 2004 , 327,  185.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[4]   I. Dévai , R. D. Delaune , Evidence for phosphine production and emission from Louisiana and Florida marsh soils. Org. Geochem. 1995 , 23,  277.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   X. J. Niu , J. J. Geng , X. R. Wang , C. H. Wang , X. H. Gu , M. Edwards , D. Glindemann , Temporal and spatial distributions of phosphine in Taihu Lake, China. Sci. Total Environ. 2004 , 323,  169.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[6]   D. Glindemann , M. Edwards , P. Kuschk , Phosphine gas in the upper troposphere. Atmos. Environ. 2003 , 37,  2429.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[7]   R. B. Zhu , D. Glindemann , D. M. Kong , L. G. Sun , J. J. Geng , X. R. Wang , Phosphine in the marine atmosphere along a hemispheric course from China to Antarctica. Atmos. Environ. 2007 , 41,  1567.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[8]   D. Glindemann , M. Edwards , J. Liu , P. Kuschk , Phosphine in soils, sludges, biogases and atmospheric implications – a review. Ecol. Eng. 2005 , 24,  457.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   F. Eismann , D. Glindemann , A. Bergmann , P. Kuschk , Soil as source and sink of phosphine. Chemosphere 1997 , 35,  523.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[10]   J. Roels , W. Verstraete , Biological formation of volatile phosphorus compounds. Bioresour. Technol. 2001 , 79,  243.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[11]   D. Glindemann , M. Edwards , P. Morgenstern , Phosphine from rocks: mechanically driven phosphate reduction? Environ. Sci. Technol. 2005 , 39,  8295.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[12]   D. Glindemann , F. Eismann , A. Bergmann , P. Kuschk , U. Stottmeister , Phosphine by bio-corrosion of phosphide-rich iron. Environ. Sci. Pollut. Res. 1998 , 5,  71.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[13]   S. C. Morton , D. Glindemann , M. A. Edwards , Phosphates, phosphites, and phosphides in environmental samples. Environ. Sci. Technol. 2003 , 37,  1169.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[14]   S. H. Han , Y. H. Zhuang , J. A. Liu , D. Glindemann , Phosphorus cycling through phosphine in paddy fields. Sci. Total Environ. 2000 , 258,  195.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[15]   Forster P., Ramaswary V., Artaxo P., Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller) 2007, p. 137 (Cambridge University Press: Cambridge, UK).

[16]   L. Yang , Y. Wang , K. Kobayashi , J. Zhu , J. Huang , H. Yang , Y. Wang , G. Dong , et al. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Glob. Change Biol. 2008 , 14,  1844.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   K. Inubushi , W. Cheng , S. Aonuma , M. M. Hoque , K. Kobayashi , S. Miura , H. Y. Kim , M. Okada , Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Glob. Change Biol. 2003 , 9,  1458.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   L. Yang , Y. Wang , J. Huang , J. Zhu , H. Yang , G. Liu , H. Liu , G. Dong , J. Hu , Seasonal changes in the effects of free-air CO2 enrichment (FACE) on phosphorus uptake and utilization of rice at three levels of nitrogen fertilization. Field Crops Res. 2007 , 102,  141.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   M. Okada , M. Lieffering , H. Nakamura , M. Yoshimoto , H. Y. Kim , K. Kobayashi , Free-air CO2 enrichment (FACE) using pure CO2 injection: system description. New Phytol. 2001 , 150,  251.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   J. J. Geng , X. J. Niu , X. C. Jin , X. R. Wang , X. H. Gu , E. Marc , D. Glindemann , Simultaneous monitoring of phosphine and of phosphorus fractionations in Taihu Lake sediments and phosphine emission from lake sediments. Biogeochemistry 2005 , 76,  283.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[21]   Y. N. Hong , J. J. Geng , S. Qiao , L. L. Ding , X. Y. Gu , X. R. Wang , D. Glindemann , H. Q. Ren , Distribution of phosphine in the offshore south-west Yellow Sea, East Asia. Mar. Chem. 2010 , 118,  67.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[22]   J. J. Geng , X. C. Jin , Q. Wang , X. J. Niu , X. R. Wang , M. Edwards , D. Glindemann , Matrix-bound phosphine formation and depletion in eutrophic lake sediment fermentation – simulation of different environmental factors. Anaerobe 2005 , 11,  273.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[23]   J. F. Shimp , J. C. Tracy , L. C. Davis , E. Lee , W. Huang , L. E. Erickson , J. L. Schnoor , Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials. Environ. Sci. Technol. 1993 , 23,  41.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[24]   R. B. Zhu , D. M. Kong , L. A. Sun , J. J. Geng , X. R. Wang , The first determination of atmospheric phosphine in Antarctica. Chin. Sci. Bull. 2007 , 52,  131.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[25]   R. B. Zhu , D. M. Kong , L. G. Sun , J. J. Geng , X. R. Wang , D. Glindemann , Tropospheric phosphine and its sources in coastal Antarctica. Environ. Sci. Technol. 2006 , 40,  7656.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[26]   R. B. Zhu , Y. S. Liu , J. J. Sun , L. G. Sun , J. J. Geng , Stimulation of gaseous phosphine production from Antarctic seabird guanos and ornithogenic soils. J. Environ. Sci. (China) 2009 , 21,  150.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[27]   L. H. Ziska , A. McClung , Differential response of cultivated and weedy (red) rice to recent and projected increases in atmospheric carbon dioxide. Agron. J. 2008 , 100,  1259.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[28]   T. A. Anderson , E. L. Kruger , J. R. Coats , Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide-tolerant plant. Chemosphere 1994 , 28,  1551.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[29]   L. Cheng , J. Zhu , G. Chen , X. Zheng , N.-H. Oh , T. W. Rufty , D. deB. Richter , S. Hu , Atmospheric CO2 enrichment facilitates cation release from soil. Ecol. Lett. 2010 , 13,  284.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[30]   J. Roels , G. Huyghe , W. Verstraete , Microbially mediated phosphine emission. Sci. Total Environ. 2005 , 338,  253.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[31]   H. F. Cao , J. A. Liu , Y. H. Zhuang , D. Glindemann , Emission sources of atmospheric phosphine and simulation of phosphine formation. Sci. China Ser. B 2000 , 43,  162.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[32]   S. H. Han , Y. H. Zhuang , H. X. Zhang , Z. J. Wang , J. Z. Yang , Phosphine and methane generation by the addition of organic compounds containing carbon–phosphorus bonds into incubated soil. Chemosphere 2002 , 49,  651.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[33]   Z. H. Feng , X. X. Song , Z. M. Yu , Distribution characteristics of matrix-bound phosphine along the coast of China and possible environmental controls. Chemosphere 2008 , 73,  519.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[34]   R. B. Zhu , L. G. Sun , D. M. Kong , J. J. Geng , N. Wang , Q. Wang , X. R. Wang , Matrix-bound phosphine in Antarctic biosphere. Chemosphere 2006 , 64,  1429.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1