Manufactured nanoparticles in the environment
Jamie R. LeadSchool of Geography, Earth and Environmental Sciences (GEES), University of Birmingham, B15 2TT, UK. Email: j.r.lead@bham.ac.uk
Jamie Lead is Professor of Environmental Nanoscience and Director of the UK Facility for Environmental Nanoscience Analysis and Characterisation (FENAC), at the University of Birmingham, UK. His research interests encompass both natural and manufactured nanoparticles. In the former area, he is interested in quantifying how particle structure affects their environmental function in pollutant behaviour. In the latter area, he is interested in nanoparticle synthesis and physico-chemical characterisation, environmental chemistry and transport and their ecotoxicology. |
Environmental Chemistry 7(1) 1-2 https://doi.org/10.1071/EN09139
Submitted: 1 November 2009 Accepted: 18 December 2009 Published: 22 February 2010
Environmental context. Nanotechnology is a very important industry which may be socially transformative, but produces nanomaterials (NMs) which have a potential but poorly characterised risk to the environment. This Research Front describes new research investigating NM environmental chemistry, particularly in relation to ecotoxicology. This Research Front shows some of the most exciting research undertaken currently and fits within a dynamic research program, which is global in scope and which attempts to unravel these complex areas.
[1]
S. J. Klaine ,
P. J. J. Alvarez ,
G. E. Batley ,
T. F. Fernandes ,
R. D. Handy ,
D. Lyon ,
S. Mahendra ,
M. J. McLaughlin ,
J. R. Lead ,
Nanomaterials in the environment: fate, behaviour, bioavailability and effects.
Environ. Toxicol. Chem. 2008
, 27, 1825.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[2]
J. R. Lead ,
K. J. Wilkinson ,
Natural aquatic colloids: current knowledge and future trends.
Environ. Chem. 2006
, 3, 159.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[3]
[4]
B. Nowack ,
T. D. Buchelli ,
Occurrence, behavior and effects of nanoparticles in the environment.
Environ. Pollut. 2007
, 150, 5.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[5]
M. Auffan ,
J. Rose ,
J.-Y. Bottero ,
G. V. Lowry ,
J.-P. Jolivet ,
M. R. Wiesner ,
Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective.
Nat. Nanotechnol. 2009
, 4, 634.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[6]
W. X. Zhang ,
Nanoscale iron particles for environmental remediation; an overview.
J. Nanopart. Res. 2003
, 5, 323.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[7]
Y. Song ,
X. Li ,
X. Du ,
Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma.
Eur. Respir. J. 2009
, 34, 559.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[8]
D. M. Aruguete ,
M. F. Hochella ,
Bacteria–nanoparticle interactions and their environmental implications.
Environ. Chem. 2010
, 7, 3.
| Crossref | GoogleScholarGoogle Scholar |
[9]
K. L. Chen ,
B. A. Smith ,
W. P. Ball ,
D. H. Fairbrother ,
Assessing the colloidal properties of engineered nanoparticles in water: case studies from fullerene C60 nanoparticles and carbon nanotubes.
Environ. Chem. 2010
, 7, 10.
| Crossref | GoogleScholarGoogle Scholar |
[10]
D. M. Aruguete ,
J. S. Guest ,
W. W. Yu ,
N. G. Love ,
M. F. Hochella ,
Interaction of CdSe/CdS core-shell quantum dots and Pseudomonas aeruginosa.
Environ. Chem. 2010
, 7, 28.
| Crossref | GoogleScholarGoogle Scholar |
[11]
T. M. Scown ,
R. M. Goodhead ,
B. D. Johnston ,
J. Moger ,
M. Baalousha ,
J. R. Lead ,
R. van Aerle ,
T. Iguchi ,
C. R. Tyler ,
Assessment of cultured fish hepatocytes for studying cellular uptake and (eco)toxicity of nanoparticles.
Environ. Chem. 2010
, 7, 36.
| Crossref | GoogleScholarGoogle Scholar |
[12]
N. J. Rogers ,
N. M. Franklin ,
S. C. Apte ,
G. E. Batley ,
B. M. Angel ,
J. R. Lead ,
M. Baalousha ,
Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater.
Environ. Chem. 2010
, 7, 50.
| Crossref | GoogleScholarGoogle Scholar |
[13]
R. F. Domingos ,
C. Peyrot ,
K. J. Wilkinson ,
Aggregation of titanium dioxide nanoparticles: role of calcium and phosphate.
Environ. Chem. 2010
, 7, 61.
| Crossref | GoogleScholarGoogle Scholar |
[14]
J. A. Gallego-Urrea ,
J. Tuoriniemi ,
T. Palander ,
M. Hassellöv ,
Measurements of nanoparticle number concentrations and size distributions in contrasting aquatic environments using Nanoparticle Tracking Analysis.
Environ. Chem. 2010
, 7, 67.
| Crossref | GoogleScholarGoogle Scholar |
[15]
K. L. Plathe ,
F. von der Kammer ,
M. Hassellöv ,
J. Moore ,
M. Murayama ,
T. Hofmann ,
M. F. Hochella ,
Using FlFFF and aTEM to determine trace metal–nanoparticle associations in riverbed sediment.
Environ. Chem. 2010
, 7, 82.
| Crossref | GoogleScholarGoogle Scholar |