Contact metamorphism, halocarbons, and environmental crises of the past
Henrik Svensen A E , Norbert Schmidbauer B , Marco Roscher A , Frode Stordal C and Sverre Planke A DA Physics of Geological Processes (PGP), University of Oslo, PO Box 1048 Blindern, NO-0316 Oslo, Norway.
B Norwegian Institute for Air Research, PO Box 100, NO-2027 Kjeller, Norway.
C Department of Geosciences, University of Oslo, PO Box 1047 Blindern, NO-0316 Oslo, Norway.
D Volcanic Basin Petroleum Research (VBPR), Oslo Research Park, NO-0349 Oslo, Norway.
E Corresponding author. Email: hensven@fys.uio.no
Environmental Chemistry 6(6) 466-471 https://doi.org/10.1071/EN09118
Submitted: 17 September 2009 Accepted: 17 November 2009 Published: 18 December 2009
Environmental context. What caused the biggest known mass extinction on Earth ~252 million years ago? A possible killer mechanism was the release of specific gases into the atmosphere, which eventually led to destruction of the ozone layer. This is now supported by new laboratory experiments in which ozone-destructing gases were generated when heating rocks from East Siberia (Russia) – reconstructing what happened naturally in Siberia during explosive gas eruptions 252 million years ago.
Abstract. What triggered the largest know mass extinction at the Permian–Triassic boundary 252 million years ago, when 95% of the species in the oceans disappeared? New geological data suggest that eruptions of carbon (CH4, CO2) and halocarbon (CH3Cl and CH3Br) gases from the vast sedimentary basins of east Siberia could have triggered a period with global warming (5°–10°C) and terrestrial mass extinction. The gases were generated during contact metamorphism of sedimentary rocks around 1200°C hot igneous intrusions. One of the suggested end-Permian extinction mechanisms is the extreme ultraviolet radiation (UV-B) caused by a prolonged destruction of stratospheric ozone induced by the emitted halocarbons. This hypothesis is supported by a new set of experiments, where natural rock salt samples from Siberia were heated to 275°C. Among the gases generated during heating are methyl chloride (CH3Cl) and methyl bromide (CH3Br). These findings open up new possibilities for investigating ancient environmental crises.
Acknowledgements
This study was supported by a Centre of Excellence grant to Physics of Geological Processes, by a Young Outstanding Researcher grant and a PetroMaks grant to H. Svensen, all from the Norwegian Research Council. We thank the editors of Environmental Chemistry for inviting us to submit this paper, Alexander G. Polozov, Linda Elkins-Tanton and Nick Arndt for discussions about the Siberian Traps and the end-Permian crisis, Claus Nielsen for discussions about halocarbons, and three anonymous referees for suggestions about how to improve the manuscript.
[1]
P. B. Wignall ,
Large igneous provinces and mass extinctions.
Earth Sci. Rev. 2001
, 53, 1.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[2]
V. E. Courtillot ,
P. R. Renne ,
On the ages of flood basalt events.
C. R. Geosci. 2003
, 335, 113.
| Crossref | GoogleScholarGoogle Scholar |
[3]
H. Svensen ,
S. Planke ,
A. Malthe-Sorenssen ,
B. Jamtveit ,
R. Myklebust ,
T. Rasmussen Eidem ,
S. S. Rey ,
Release of methane from a volcanic basin as a mechanism for initial Eocene global warming.
Nature 2004
, 429, 542.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[4]
H. Svensen ,
S. Planke ,
A. G. Polozov ,
N. Schmidbauer ,
F. Corfu ,
Y. Y. Podladchikov ,
B. Jamtveit ,
Siberian gas venting and the end-Permian environmental crisis.
Earth Planet. Sci. Lett. 2009
, 277, 490.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[5]
H. Svensen ,
S. Planke ,
L. Chevallier ,
A. Malthe-Sørenssen ,
F. Corfu ,
B. Jamtveit ,
Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming.
Earth Planet. Sci. Lett. 2007
, 256, 554.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[6]
J. C. Zachos ,
U. Rohl ,
S. A. Schellenberg ,
A. Sluijs ,
D. A. Hodell ,
D. C. Kelly ,
E. Thomas ,
M. Nicolo ,
et al. Rapid acidification of the ocean during the Paleocene–Eocene thermal maximum.
Science 2005
, 308, 1611.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[7]
J. P. Kennett ,
L. D. Stott ,
Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene.
Nature 1991
, 353, 225.
| Crossref | GoogleScholarGoogle Scholar |
[8]
U. Röhl ,
T. Westerhold ,
T. J. Bralower ,
J. C. Zachos ,
On the duration of the Paleocene–Eocene thermal maximum (PETM).
Geochem. Geophys. Geosyst. 2007
, 8, Q12002.
| Crossref | GoogleScholarGoogle Scholar |
[9]
D. C. Kelly ,
T. J. Bralower ,
J. C. Zachos ,
I. P. Silva ,
E. Thomas ,
Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum.
Geology 1996
, 24, 423.
| Crossref | GoogleScholarGoogle Scholar |
[10]
G. R. Dickens ,
M. M. Castillo ,
J. C. G. Walker ,
A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation on oceanic methane hydrate.
Geology 1997
, 25, 259.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[11]
R. E. Zeebe ,
J. C. Zachos ,
G. R. Dickens ,
Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene thermal maximum warming.
Nat. Geosci. 2009
, 2, 576.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[12]
[13]
[14]
J. L. Payne ,
D. J. Lehrmann ,
J. Wei ,
M. J. Orchard ,
D. P. Schrag ,
A. H. Knoll ,
Large perturbations of the carbon cycle during recovery from the end-Permian extinction.
Science 2004
, 305, 506.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[15]
J. L. Payne ,
L. R. Kump ,
Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations.
Earth Planet. Sci. Lett. 2007
, 256, 264.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[16]
L. R. Kump ,
A. Pavlov ,
M. A. Arthur ,
Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia.
Geology 2005
, 33, 397.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[17]
K. M. Meyer ,
L. R. Kump ,
Biogeochemical controls on photic-zone euxinia during the end-Permain mass extinction.
Geology 2008
, 36, 747.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[18]
K. Grice ,
C. Q. Cao ,
G. D. Love ,
M. E. Bottcher ,
R. J. Twitchett ,
E. Grosjean ,
R. E. Summons ,
S. C. Turgeon ,
et al. Photic zone euxinia during the Permian–Triassic superanoxic event.
Science 2005
, 307, 706.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[19]
M. K. Reichow ,
A. D. Saunders ,
R. V. White ,
M. S. Pringle ,
A. I. Al’Mukhamedov ,
A. I. Medvedev ,
N. P. Kirda ,
Ar-40/Ar-39 dates from the West Siberian Basin: Siberian flood basalt province doubled.
Science 2002
, 296, 1846.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[20]
S. C. Xie ,
R. D. Pancost ,
J. H. Huang ,
P. B. Wignall ,
J. X. Yu ,
X. Y. Tang ,
L. Chen ,
X. Y. Huang ,
et al. Changes in the global carbon cycle occurred as two episodes during the Permian–Triassic crisis.
Geology 2007
, 35, 1083.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
A. Grard ,
L. M. Francois ,
C. Dessert ,
B. Dupre ,
Y. Godderis ,
Basaltic volcanism and mass extinction at the Permo–Triassic boundary: environmental impact and modeling of the global carbon cycle.
Earth Planet. Sci. Lett. 2005
, 234, 207.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
R. A. Berner ,
Examination of hypotheses for the Permo–Triassic boundary extinction by carbon cycle modeling.
Proc. Natl. Acad. Sci. USA 2002
, 99, 4172.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[23]
D. J. Beerling ,
M. Harfoot ,
B. Lomax ,
J. A. Pyle ,
The stability of the stratospheric ozone layer during the end-Permain eruption of the Siberian Traps.
Philos. T. Roy. Soc. A 2007
, 365, 1843.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
G. Retallack ,
A. H. Jahren ,
Methane Release from Igneous Intrusion of Coal during Late Permian Extinction Events.
J. Geol. 2008
, 116, 1.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[25]
H. Visscher ,
C. V. Looy ,
M. E. Collinson ,
H. Brinkhuis ,
J. Cittert ,
W. M. Kurschner ,
M. A. Sephton ,
Environmental mutagenesis during the end-Permian ecological crisis.
Proc. Natl. Acad. Sci. USA 2004
, 101, 12952.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
L. Weissflog ,
N. Elansky ,
K. Kotte ,
F. Keppler ,
A. Pfennigsdorff ,
C. Lange ,
E. Putz ,
L. Lisitsyna ,
Late permian changes in conditions of the atmosphere and environments caused by halogenated gases.
Dokl. Earth Sci. 2009
, 425, 291.
| Crossref | GoogleScholarGoogle Scholar |
[27]
C. B. Foster ,
S. A. Afonin ,
Abnormal pollen grains: an outcome of deteriorating atmospheric conditions around the Permian–Triassic boundary.
J. Geol. Soc. London 2005
, 162, 653.
| Crossref | GoogleScholarGoogle Scholar |
[28]
A. H. Knoll ,
R. K. Bambach ,
J. L. Payne ,
S. Pruss ,
W. W. Fischer ,
Paleophysiology and end-Permian mass extinction.
Earth Planet. Sci. Lett. 2007
, 256, 295.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[29]
P. B. Wignall ,
R. J. Twitchett ,
Oceanic anoxia and the end Permian mass extinction.
Science 1996
, 272, 1155.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[30]
S. A. Bowring ,
D. H. Erwin ,
Y. G. Jin ,
M. W. Martin ,
K. Davidek ,
W. Wang ,
U/Pb zircon geochronology and tempo of the end-Permian mass extinction.
Science 1998
, 280, 1039.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[31]
R. Mundil ,
K. R. Ludwig ,
P. R. Metcalfe ,
Renne ,
Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons.
Science 2004
, 305, 1760.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[32]
S. L. Kamo ,
J. Crowley ,
S. A. Bowring ,
The Permian-Triassic boundary event and eruption of the Siberian flood basalts: an inter-laboratory U-Pb dating study.
Geochim. Cosmochim. Acta 2006
, 70, A303.
| Crossref | GoogleScholarGoogle Scholar |
[33]
[34]
V. Fedorenko ,
G. K. Czamanske ,
Results of new field and geochemical studies of the volcanic and intrusive rocks of the Maymecha-Kotuy area, Siberian Flood-Basalt Province, Russia.
Int. Geol. Rev. 1997
, 39, 479.
| Crossref | GoogleScholarGoogle Scholar |
[35]
[36]
O. Y. Petrychenko ,
T. M. Peryt ,
E. I. Chechel ,
Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporites.
Chem. Geol. 2005
, 219, 149.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[37]
[38]
G. S. Von der Flaass ,
V. A. Naumov ,
Cup-shaped structures of iron ore deposits in the South of the Siberian Platform (Russia).
Geol. Ore Depos. 1995
, 37, 340.
[39]
G. S. Von der Flaass ,
Structural and genetic model of an ore field of the Angaro-Ilim type (Siberian Platform).
Geol. Ore Depos. 1997
, 39, 461.
[40]
F. Keppler ,
R. Eiden ,
V. Niedan ,
J. Pracht ,
H. F. Scholer ,
Halocarbons produced by natural oxidation processes during degradation of organic matter.
Nature 2000
, 403, 298.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[41]
J. A. Conesa ,
A. Marcilla ,
J. A. Caballero ,
Evolution of gases from the pyrolysis of modified almond shells: effect of impregnation with CoCl2
J. Anal. Appl. Pyrolysis 1997
, 43, 59.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[42]
M. Frische ,
K. Garofalo ,
T. H. Hansteen ,
R. Borchers ,
Fluxes and origin of halogenated organic trace gases from Momotombo volcano (Nicaragua).
Geochem. Geophys. Geosyst. 2006
, 7, Q05020.
| Crossref | GoogleScholarGoogle Scholar |
[43]
M. Frische ,
K. Garofalo ,
T. H. Hansteen ,
R. Borchers ,
J. Harnisch ,
The origin of stable halogenated compounds in volcanic gases.
Environ. Sci. Poll. Res. 2006
, 13, 406.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[44]
J. M. Lobert ,
W. C. Keene ,
J. A. Logan ,
R. Yevich ,
Global chlorine emissions from biomass burning: Reactive Chlorine Emissions Inventory.
J. Geophys. Res. – Atmos. 1999
, 104, 8373.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[45]
H. F. Scholer ,
F. Keppler ,
Abiotic formation of organohalogens in the terrestrial environment.
Chimia (Aarau) 2003
, 57, 33.
[46]
M. B. Harfoot ,
J. A. Pyle ,
D. J. Beerling ,
End-Permian ozone shield unaffected by oceanic hydrogen sulfide and methane release.
Nat. Geosci 2008
, 1, 247.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[47]
A. C. Scott ,
The pre-Quaternary history of fire.
Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000
, 164, 281.
| Crossref | GoogleScholarGoogle Scholar |
[48]
J. Rozema ,
P. Blokker ,
M. A. M. Fuertes ,
R. Broekman ,
UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: evaluation of a proxy for solar UV radiation.
Photochem. Photobiol. Sci. 2009
, 8, 1233.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |