Aggregation of titanium dioxide nanoparticles: role of calcium and phosphate
Rute F. Domingos A B C , Caroline Peyrot A and Kevin J. Wilkinson AA Département de Chimie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC, H3C 3J7, Canada.
B Present address: Centro de Química Estrutural, Grupo VI, Instituto Superior Técnico, Av. Rovisco Pais #1, PT-1040-001 Lisbon, Portugal.
C Corresponding author. Email: rute.domingos@ist.utl.pt
Environmental Chemistry 7(1) 61-66 https://doi.org/10.1071/EN09110
Submitted: 28 August 2009 Accepted: 22 December 2009 Published: 22 February 2010
Environmental context. The increasing use of nanomaterials in consumer products has led to increased concerns about their potential environmental and health impacts. TiO2 is a widely used nanoparticle found in sunscreens and electronic products. In order to understand and predict the mobility of TiO2 in the natural environment, it is essential to determine its state of aggregation under environmentally relevant conditions of pH, ionic strength, ion and natural organic matter content. Aggregation is likely to lead to both reduced mobility and bioavailability in soils and natural waters.
Abstract. The physicochemical characterisation of nanomaterials is crucial to predict their environmental and health impacts. Ion adsorption is known to influence the surface properties of nano-metal oxides in natural systems. The role of calcium and phosphate adsorption on aggregation was examined in the presence and absence of natural organic matter. Fluorescence correlation spectroscopy (FCS) was performed in order to determine the diffusion coefficients of TiO2 nanoparticles having a nominal size between 3 to 5 nm. Based upon FCS and electrophoretic mobility measurements, the presence of calcium resulted in a destabilisation and aggregation of the TiO2 nanoparticles, even in presence of Suwannee River fulvic acid (SRFA). Conditions which favoured phosphate adsorption also resulted in a destabilisation of the TiO2 sample but for low SRFA concentrations only.
Additional keywords: cation valence, fulvic acid.
Acknowledgements
Funding for this work was provided by the Fundação para a Ciência e Tecnologia, Portugal (Postdoctoral fellowship to RFD, SFRH/BPD/37731/2007), the Natural Sciences and Engineering Research Council of Canada and the Fonds québécois de la recherche sur la nature et les technologies (FQRNT).
Some information on the theory behind FCS is available in the accessory publication.
[1]
C. Kormann ,
D. W. Bahnemann ,
M. R. Hoffmann ,
Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions.
Environ. Sci. Technol. 1991
, 25, 494.
| Crossref | GoogleScholarGoogle Scholar |
[2]
T. Ohno ,
T. Mitsui ,
M. Matsumura ,
TiO2-photocatalyzed oxidation of adamantane in solutions containing oxygen or hydrogen peroxide.
J. Photochem. Photobiol. Chem. 2003
, 160, 3.
| Crossref | GoogleScholarGoogle Scholar |
[3]
X. Chen ,
S. S. Mao ,
Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications.
Chem. Rev. 2007
, 107, 2891.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[4]
T. C. Long ,
N. Saleh ,
R. D. Tilton ,
G. V. Lowry ,
B. Veronesi ,
Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity.
Environ. Sci. Technol. 2006
, 40, 4346.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[5]
S. B. Lovern ,
R. Klaper ,
Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles.
Environ. Toxicol. Chem. 2006
, 25, 1132.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[6]
K. Hund-Rinke ,
M. Simon ,
Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids.
Environ. Sci. Pollut. Res. Int. 2006
, 13, 225.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[7]
S. B. Lovern ,
J. R. Strickler ,
R. Klaper ,
Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx).
Environ. Sci. Technol. 2007
, 41, 4465.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[8]
W. F. Vevers ,
A. N. Jha ,
Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro.
Ecotoxicology 2008
, 17, 410.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[9]
R. F. Domingos ,
N. Tufenkji ,
K. J. Wilkinson ,
Aggregation of titanium dioxide nanoparticles: role of a fulvic acid.
Environ. Sci. Technol. 2009
, 43, 1282.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[10]
R. A. French ,
A. R. Jacobson ,
B. Kim ,
S. L. Isley ,
R. L. Penn ,
P. C. Baveye ,
Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles.
Environ. Sci. Technol. 2009
, 43, 1354.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[11]
M. R. Wiesner ,
G. V. Lowry ,
P. Alvarez ,
D. Dionysiou ,
P. Biswas ,
Assessing the risks of manufactured nanomaterials.
Environ. Sci. Technol. 2006
, 40, 4336.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[12]
E. Tipping ,
D. C. Higgins ,
The effect of adsorbed humic substances on the colloid stability of heamatite particles.
Colloids Surf. 1982
, 5, 85.
| Crossref | GoogleScholarGoogle Scholar |
[13]
[14]
B. Xie ,
Z. Xu ,
W. Guo ,
Q. Li ,
Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles.
Environ. Sci. Technol. 2008
, 42, 2853.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[15]
K. L. Chen ,
M. Elimelech ,
Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications.
Environ. Sci. Technol. 2008
, 42, 7607.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[16]
Q. Li ,
B. Xie ,
Y. S. Hwang ,
Y. Xu ,
Kinectics of C60 fullerene dispersion in water enhanced by natural organic matter and sunlight.
Environ. Sci. Technol. 2009
, 43, 3574.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[17]
H. Hyung ,
J. D. Fortner ,
J. B. Hughes ,
J. H. Kim ,
Natural organic matter stabilizes carbon nanotubes in the aqueous phase.
Environ. Sci. Technol. 2007
, 41, 179.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[18]
X. Wang ,
J. Lu ,
B. Xing ,
Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter.
Environ. Sci. Technol. 2008
, 42, 3207.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[19]
H. Hyung ,
J.-H. Kim ,
Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters.
Environ. Sci. Technol. 2008
, 42, 4416.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[20]
X. Wang ,
S. Tao ,
B. Xing ,
Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes.
Environ. Sci. Technol. 2009
, 43, 6214.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[21]
R. Kretzschmar ,
H. Sticher ,
Transport of humic-coated iron oxide colloids in a sandy soil: influence of Ca2+ and trace metals.
Environ. Sci. Technol. 1997
, 31, 3497.
| Crossref | GoogleScholarGoogle Scholar |
[22]
A. B. M. Giasuddin ,
S. R. Kanel ,
H. Choi ,
Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal.
Environ. Sci. Technol. 2007
, 41, 2022.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[23]
M. Baalousha ,
A. Manciulea ,
S. Cumberland ,
K. Kendall ,
J. R. Lead ,
Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter.
Environ. Toxicol. Chem. 2008
, 27, 1875.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[24]
S.-H. Kang ,
W. Choi ,
Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle.
Environ. Sci. Technol. 2009
, 43, 878.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[25]
R. L. Johnson ,
G. O. B. Johnson ,
J. T. Nurmi ,
P. G. Tratnyek ,
Natural organic matter enhanced mobility of nano zerovalent iron.
Environ. Sci. Technol. 2009
, 43, 5455.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[26]
E. L. Elson ,
D. Magde ,
Fluorescence correlation spectroscopy. I. Conceptual basis and theory.
Biopolymers 1974
, 13, 1.
| Crossref | GoogleScholarGoogle Scholar |
[27]
R. F. Domingos ,
M. A. Baalousha ,
Y. Ju-Nam ,
M. M. Reid ,
N. Tufenkji ,
J. R. Lead ,
G. G. Leppard ,
K. J. Wilkinson ,
Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes.
Environ. Sci. Technol. 2009
, 43, 7277.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[28]
J. Fatisson ,
R. F. Domingos ,
K. J. Wilkinson ,
N. Tufenkji ,
Deposition of TiO2 nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring.
Langmuir 2009
, 25, 6062.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[29]
J. R. Lead ,
K. J. Wilkinson ,
W. Balnois ,
B. J. Cutak ,
C. K. Larive ,
S. Assemi ,
R. Beckett ,
Diffusion coefficients and polydispersities of the suwannee river fulvic acid: comparison of fluorescence correlation spectroscopy, pulsed-field gradient nuclear magnetic resonance, and flow field-flow fractionation.
Environ. Sci. Technol. 2000
, 34, 3508.
| Crossref | GoogleScholarGoogle Scholar |
[30]
K. L. Chen ,
S. E. Mylon ,
M. Elimelech ,
Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes.
Environ. Sci. Technol. 2006
, 40, 1516.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[31]
K. L. Chen ,
M. Elimelech ,
Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions.
J. Colloid Interface Sci. 2007
, 309, 126.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[32]
J. R. Lead ,
K. J. Wilkinson ,
K. Starchev ,
S. Canonica ,
J. Buffle ,
Determination of diffusion coefficients of humic substances by fluorescence correlation spectroscopy: role of solution conditions.
Environ. Sci. Technol. 2000
, 34, 1365.
| Crossref | GoogleScholarGoogle Scholar |
[33]
L. Weng ,
W. H. van Riemsdijk ,
T. Hiemstra ,
Humic nanoparticles at the oxide-water interface: interactions with phosphate ion adsorption.
Environ. Sci. Technol. 2008
, 42, 8747.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[34]
K. Starchev ,
J. Zhang ,
J. Buffle ,
Applications of fluorescence correlation spectroscopy – particle size effect.
J. Colloid Interface Sci. 1998
, 203, 189.
| Crossref | GoogleScholarGoogle Scholar |
[35]
P.-O. Gendron ,
F. Avaltroni ,
K. J. Wilkinson ,
Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient-nuclear magnetic resonance and fluorescence correlation spectroscopy.
J. Fluoresc. 2008
, 18, 1093.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[36]
[37]
J. Widengren ,
U. Mets ,
R. Rigler ,
Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study.
J. Phys. Chem. 1995
, 99, 13368.
| Crossref | GoogleScholarGoogle Scholar |
Accessory publication