Effect of ash from forest fires on phosphorus availability, transport, chemical forms, and content in volcanic soils
Mauricio Escudey A C E , Pamela de la Fuente A , Mónica Antilén B C and Mauricio Molina DA Universidad de Santiago de Chile, Facultad de Química and Biología, Av. B. O’Higgins 3363, Santiago 7254758, Chile.
B Pontificia Universidad Católica de Chile, Facultad de Química, Vicuña Mackenna 4860, Santiago 6904411, Chile.
C CEDENNA, Av. B. O’Higgins 3363, Santiago 7254758, Chile.
D Universidad Técnica Federico Santa María, Departamento de Industrias, Av. Santa María 6400, Vitacura, Santiago 7660251, Chile.
E Corresponding author. Email: mauricio.escudey@usach.cl
Environmental Chemistry 7(1) 103-110 https://doi.org/10.1071/EN09067
Submitted: 27 May 2009 Accepted: 17 December 2009 Published: 22 February 2010
Environmental context. Intensive fertilisation and the availability of phosphorus species (less than 10%) in cultivable soils of volcanic origin are causing the accumulation of P in these soils. Phosphorus is a macronutrient that severely limits good agricultural development, so knowledge of the distribution and the different forms of P present in soils is fundamental for sustainable agricultural practice. This novel study reports the existence of increased available P in all the soils that received a load of plant ash from different tree species.
Abstract. The effect associated with the distribution of ash from plantations of native, pine, and eucalyptus forests over five soils of volcanic origin was studied by means of column leaching experiments. The results show a clear increase of pH (up to 4.4 units) and of the soil’s electric conductivity (up to 21 times), whereas total extractable P content increased 3 to 10 times with respect to the control. These effects follow a sequence depending on the origin of the ash (native forest, pine, eucalyptus), concentrated in the 0.0–10.0-cm section from the top of the columns. The observed alkalinity caused an increase of available P (from 21 to 72 times with respect to the control), in addition to decreasing residual P and increasing the extraction efficiency of the method used, discarding a transformation of inorganic P into organic P. Finally, the results show that the addition of ash is a valid and complementary alternative to phosphate fertilisation.
Additional keywords: ashes, available P, environmental effect, phosphorus chemical fractionation.
Acknowledgements
This study was supported by FONDECYT 1070116, Project Límite 2007 VRAID-PUC, and Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia.
[1]
[2]
[3]
F. Borie ,
R. Rubio ,
Total and organic phosphorus in Chilean volcanic soils.
Gayana Bot. 2003
, 60, 69.
| Crossref | GoogleScholarGoogle Scholar |
[Verified May 2008]
[12]
Y. B. Lee ,
H. S. Ha ,
B. K. Park ,
Y. S. Cho ,
P. J. Kim ,
Effect of a fly ash and gypsum mixtures on rice cultivation.
Soil Sci. Plant Nutr. 2002
, 48, 171.
|
CAS |
[13]
Y. B. Lee ,
H. S. Ha ,
K. D. Lee ,
K. D. Park ,
Y. S. Cho ,
P. J. Kim ,
Evaluation of use of fly ash-gypsum mixtures for rice production at different nitrogen rates.
Soil Sci. Plant Nutr. 2003
, 49, 69.
[14]
H. Lee ,
H. S. Ha ,
C. H. Lee ,
Y. B. Lee ,
P. J. Kim ,
Effect of fly ash on increasing rice productivity in paddy soils.
Bioresour. Technol. 2006
, 97, 1490.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[15]
M. Escudey ,
G. Galindo ,
K. Avendaño ,
D. Borchardt ,
A. Chang ,
M. Briceño ,
Distribution of phosphorus forms in Chilean soils and sewage sludge by chemical fractionation and 31P-NMR.
J. Chil. Chem. Soc. 2004
, 49, 219.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[16]
M. Antilén ,
N. Araya ,
M. Briceño ,
M. Escudey ,
Changes in chemical fractions of heavy metals in Chilean soils amended with sewage sludge affected by a thermal impact.
Aust. J. Soil Res. 2006
, 44, 619.
| Crossref | GoogleScholarGoogle Scholar |
[17]
M. Molina ,
R. Fuentes ,
R. Calderón ,
M. Escudey ,
K. Avendaño ,
M. Gutierrez ,
A. Chang ,
Impact of forest fire ash on surface charge characteristics of Andisols.
Soil Sci. 2007
, 172, 820.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[18]
G. Sposito ,
L. J. Lund ,
A. Chang ,
Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, and Pb in solid phases.
Soil Sci. Soc. Am. J. 1982
, 46, 260.
|
CAS |
[19]
A. Delgado ,
A. Madrid ,
S. Kassem ,
L. Andrew ,
M. del Campillo ,
Phosphorus fertilizer recovery from calcareous soils amended with humic and fulvic acids.
Plant Soil 2002
, 245, 277.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[20]
G. Galindo ,
J. E. Foerster ,
P. Díaz ,
M. Escudey ,
Determinación del punto isoeléctrico en suelos derivados de materiales volcánicos y sus fracciones.
Bol. Soc. Chil. Quím. 1992
, 37, 315.
|
CAS |
[21]
[22]
J. H. Steward ,
J. M. Oades ,
The determination of organic phosphorus in soils.
J. Soil Sci. 1972
, 23, 38.
| Crossref | GoogleScholarGoogle Scholar |
[23]
F. Borie ,
H. Zunino ,
Organic matter-phosphorus association as a sink in P-fixation processes in allophanic soils of Chile.
Soil Biol. Biochem. 1983
, 15, 599.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
W. A. Dick ,
M. A. Tabatabai ,
Determination of orthophosphate in aqueous solutions containing labile organic and inorganic phosphorus compounds.
J. Environ. Qual. 1977
, 6, 82.
|
CAS |
[25]
M. Briceño ,
M. Escudey ,
G. Galindo ,
D. Borchardt ,
A. Chang ,
Comparison of extraction procedures used in determination of phosphorus species by 31P-NMR in Chilean volcanic soils.
Commun. Soil Sci. Plant Anal. 2006
, 37, 1553.
| Crossref | GoogleScholarGoogle Scholar |
[26]
J. Murphy ,
J. P. Riley ,
A modified singled solution method for the determination of phosphate in natural waters.
Anal. Chim. Acta 1962
, 27, 31.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[27]