Dissolution kinetics of meta-torbernite under circum-neutral to alkaline conditions
Dawn M. Wellman A C , Bruce K. McNamara A , Diana H. Bacon A , Elsa A. Cordova A , Ruby M. Ermi A and Laken M. Top A BA Pacific Northwest National Laboratory, PO Box 999, K3-62, Richland, WA 99352, USA.
B University of Idaho, Department of Chemistry, Renfew Hall, PO Box 442343, Moscow, ID 83844, USA.
C Corresponding author. Email: dawn.wellman@pnl.gov
Environmental Chemistry 6(6) 551-560 https://doi.org/10.1071/EN09046
Submitted: 21 April 2009 Accepted: 29 October 2009 Published: 18 December 2009
Environmental context. Uranium-phosphate minerals have been identified as a long-term controlling phase that limit the mobility of uranium to groundwater in many contaminated subsurface environments. Complex, coupled processes confound the ability to isolate the rates attributed to individual processes. Results of this investigation provide the necessary information to refine current prediction on the release and long-term fate of uranium in subsurface environments.
Abstract. The purpose of this investigation was to conduct a series of single-pass flow-through (SPFT) tests to (1) quantify the effect of temperature (23–90°C) and pH (6–10) on meta-torbernite dissolution; (2) compare the dissolution of meta-torbernite to other autunite-group minerals; and (3) evaluate the effect of aqueous phosphate on the dissolution kinetics of meta-torbernite. Results presented here illustrate meta-torbernite dissolution rates increase by ~100× over the pH interval of 6 to 10, irrespective of temperature. The power law coefficient for meta-torbernite, η = 0.59 ± 0.07, is greater than that quantified for Ca-meta-autunite, η = 0.42 ± 0.12. This suggests the stability of meta-torbernite is greater than that of meta-autunite, which is reflected in the predicted stability constants. The rate equation for the dissolution of meta-torbernite as a function of aqueous phosphate concentration is log rdissol (mol m–2 s–1) = –4.7 × 10–13 + 4.1 × 10–10[PO43–].
Acknowledgements
Funding for this project was provided by the USA Department of Energy (DOE), Office of Environmental Management, EM-20 Environmental Cleanup and Acceleration (Mark Gilbertson); and by Fluor Hanford, Inc. (Jane Borghese). This work was conducted at Pacific Northwest National Laboratory, operated by Battelle for the USA Department of Energy under Contract DE-AC06–76RL01830. The authors gratefully acknowledge and thank the following individuals for their support in various aspects of this investigation: Keith Geiszler and Mike Lindberg for their planning and support of analytical work; Eric Clayton for conducting ICP-MS analyses; Igor Kutnyakov for conducting select X-ray diffraction and carbon analyses; Emily Richards for organising and assisting with single-pass flow-through testing; and Chase Bovaird for his support and assistance with various aspects of this investigation.
[1]
E. C. Buck ,
N. R. Brown ,
N. L. Dietz ,
Contaminant uranium phases and leaching at the Fernald site in Ohio.
Environ. Sci. Technol. 1996
, 30, 81.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[2]
D. E. Morris ,
P. G. Allen ,
J. M. Berg ,
C. J. Chisholm-Brause ,
S. D. Conradson ,
R. J. Donohoe ,
N. J. Hess ,
J. A. Musgrave ,
C. D. Tait ,
Speciation of uranium in Fernald soils by molecular spectroscopic methods: characterization of untreated soils.
Environ. Sci. Technol. 1996
, 30, 2322.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[3]
V. C. Tidwell ,
D. E. Morris ,
J. C. Cunnane ,
S. Y. Lee ,
Characterizing soils contaminated with heavy metals: a uranium contamination case study.
Rem. J. 1996
, 6, 81.
| Crossref | GoogleScholarGoogle Scholar |
[4]
[5]
[6]
Y. Roh ,
S. R. Lee ,
S.-K. Choi ,
M. P. Elless ,
S. Y. Lee ,
Physicochemical and mineralogical characterization of uranium-contaminated soils.
Soil and Sediment Contamination 2000
, 9, 463.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[7]
J. G. Catalano ,
J. P. McKinley ,
J. M. Zachara ,
S. C. Heald ,
S. C. Smith ,
G. E. Brown ,
Changes in uranium speciation through a depth sequence of contaminated Hanford sediments.
Environ. Sci. Technol. 2006
, 40, 2517.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[8]
Y. Arai ,
M. A. Marcus ,
N. Tamura ,
J. A. Davis ,
J. M. Zachara ,
Spectroscopic evidence for uranium bearing precipitates in vadose zone sediments at the Hanford 300-area site.
Environ. Sci. Technol. 2007
, 41, 4633.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[9]
J. P. McKinley ,
J. M. Zachara ,
J. Wan ,
D. E. McCready ,
S. M. Heald ,
Geochemical controls on contaminant uranium in vadose Hanford formation sediments at the 200 area and 300 area, Hanford Site, Washington.
Vadose Zone Journal 2007
, 6, 1004.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[10]
[11]
G. Bernhard ,
G. Geipel ,
T. Riech ,
V. Brendler ,
S. Amayri ,
H. Nitsche ,
Uranyl(VI) carbonate complex formation: Validation of the Ca2UO2(CO3)3 (aq) species.
Radiochimica Acta 2001
, 89, 511.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[12]
S. N. Kalmykov ,
G. R. Choppin ,
Mixed Ca2+/UO22+/CO32– complex formation at different ionic strengths.
Radiochimica Acta 2000
, 88, 603.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[13]
D. L. Clark ,
D. E. Hobart ,
M. P. Neu ,
Actinide carbonate complexes and their importance in actinide environmental chemistry.
Chem. Rev. 1995
, 95, 25.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[14]
[15]
D. Read ,
T. A. Lawless ,
R. J. Sims ,
K. R. Butter ,
Uranium migration through intact sandstone cores.
J. Contam. Hydrol. 1993
, 13, 277.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[16]
S. C. Brooks ,
J. K. Fredrickson ,
S. L. Carroll ,
D. W. Kennedy ,
J. M. Zachara ,
J. M. Plymale ,
A. E. Kelly ,
K. M. Kemner ,
S. Fendorf ,
Inhihition of bacterial U(VI) reduction by calcium.
Environ. Sci. Technol. 2003
, 37, 1850.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[17]
J. G. Catalano ,
S. C. Heald ,
J. M. Zachara ,
G. E. Brown ,
Spectroscopic and diffraction study of uranium speciation in contaminated vadose zone sediments from the Hanford site, Washington state.
Environ. Sci. Technol. 2004
, 38, 2822.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[18]
Z. Wang ,
J. M. Zachara ,
P. L. Gassman ,
C. Liu ,
O. Qafoku ,
W. Yantasee ,
J. G. Catalano ,
Fluorescence spectroscopy of U(VI)-silicates and U(VI)-contaminated Hanford sediment.
Geochim. Cosmochim. Acta 2005
, 69, 1391.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[19]
J. E. Stubbs ,
L. A. Veblen ,
D. C. Elbert ,
J. M. Zachara ,
J. A. Davis ,
D. R. Veblen ,
Newly recognized hosts for uranium in the Hanford Site vadose zone.
Geochim. Cosmochim. Acta 2008
, 73, 1563.
| Crossref | GoogleScholarGoogle Scholar |
[20]
D. M. Singer ,
J. M. Zachara ,
G. E. Brown ,
Uranium speciation as a function of depth in contaminated Hanford sediments – a micro-XRF, micro-XRD, and micro- and bulk-XAFS study.
Environ. Sci. Technol. 2009
, 43, 630.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[21]
N. Qafoku ,
J. M. Zachara ,
C. Liu ,
P. L. Gassman ,
O. S. Qafoku ,
S. C. Smith ,
Kinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment.
Environ. Sci. Technol. 2005
, 39, 3157.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[22]
[23]
C. Liu ,
J. M. Zachara ,
O. Qafoku ,
J. P. McKinley ,
S. C. Heald ,
Z. Wang ,
Dissolution of uranyl microprecipitates in subsurface sediments at Hanford site, USA.
Geochim. Cosmochim. Acta 2004
, 68, 4519.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
C. Liu ,
J. M. Zachara ,
W. Yantasee ,
P. D. Majors ,
J. P. McKinley ,
Microscopic reactive diffusion of uranium in the contaminated sediments at Hanford, United States.
Water Resour. Res. 2006
, 42, W12420.
| Crossref | GoogleScholarGoogle Scholar |
[25]
E. S. Ilton ,
N. P. Qafoku ,
C. Liu ,
D. A. Moore ,
J. M. Zachara ,
Advective removal of intraparticle uranium from contaminated vadose zone sediments, Hanford, U.S.
Environ. Sci. Technol. 2008
, 42, 1565.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[26]
D. M. Wellman ,
K. M. Gunderson ,
J. I. Icenhower ,
S. W. Forrester ,
Dissolution kinetics of synthetic and natural meta-autunite minerals, X3–nn+[(UO2)(PO4)]2·xH2O, under acidic conditions.
Geochem. Geophys. Geosyst. 2007
, 8, Q11001.
| Crossref | GoogleScholarGoogle Scholar |
[27]
D. M. Wellman ,
J. P. Icenhower ,
A. P. Gamerdinger ,
S. W. Forrester ,
Effects of pH, temperature, and aqueous organic material on the dissolution kinetics of meta-autunite minerals, (Na, Ca)2–1[(UO2)(PO4)]2·3H2O.
Am. Mineral. 2006
, 91, 143.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[28]
[29]
S. Brunauer ,
P. H. Emmett ,
E. Teller ,
Adsorption of gases in multimolecular layers.
J. Am. Chem. Soc. 1938
, 60, 309.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[30]
[31]
[32]
P. B. McGrail ,
W. L. Ebert ,
A. J. Bakel ,
D. K. Peeler ,
Measurement of kinetic rate law parameters on a Na-Ca-Al borosilicate glass for low-activity waste.
J. Nucl. Mater. 1997
, 249, 175.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[33]
[34]
D. Ross ,
H. T. Evans ,
Studies of the torbernite minerals (II): The crystal structure of meta-torbernite.
Am. Mineral. 1964
, 49, 1603.
|
CAS |
[35]
A. G. Sowder ,
S. B. Clark ,
R. A. Fjeld ,
Dehydration of synthetic autunite hydrates.
Radiochimica Acta 2000
, 88, 533.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[36]
J. Beintema ,
On the composition and crystallography of autunite and the meta-autunites.
Recl. Trav. Chim. Pay. B 1938
, 57, 155.
|
CAS |
[37]
[38]
R. Vochten ,
M. Deliens ,
Transformation of curite into metaautunite paragenesis and electrokinetic properties.
Phys. Chem. Miner. 1980
, 6, 129.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[39]
[40]
P. C. Burns ,
M. L. Miller ,
R. C. Ewing ,
U6+ minerals and inorganic phases: a comparison and hierarchy of crystal structures.
Can. Mineral. 1996
, 34, 845.
|
CAS |
[41]
M. Ross ,
H. T. Evans ,
Studies of the torbernite mineral (I): the crystal structure of abernathyite and the structurally related compounds NH4(UO2AsO4) 3H2O and K(H3O)(UO2AsO4)2 6H2O.
Am. Mineral. 1964
, 49, 1578.
|
CAS |
[42]
[43]
[44]
[45]
E. I. Sergeyeva ,
A. A. Nikitin ,
I. L. Khodakovkiy ,
G. B. Naumov ,
Experimental investigation of equilibria in the system UO3-CO2H2O in 25–200°C temperature interval.
Geochem. Int. 1972
, 9, 900.
[46]
D. Langmuir ,
Uranium solution-mineral equilbria at low temperatures with applications to sedimentary ore deposits.
Geochim. Cosmochim. Acta 1978
, 42, 547.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[47]
A. K. Alwan ,
P. A. Williams ,
The aqueous chemistry of uranium minerals. Part 2. Minerals of the liebigite group.
Mineral. Mag. 1980
, 43, 665.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[48]
P. A. G. O’Hare ,
J. Boerio ,
H. R. Hoekstra ,
Thermochemistry of uranium compounds: VII. Solution caolrimetry of alpha and beta-Na2UO4, standard enthalpy of formation of beta-Na2UO4 and the enthalpy of the alpha to beta transition at 298.15 K.
J. Chem. Thermodyn. 1976
, 8, 845.
|
CAS |
| Crossref |
[49]
P. A. G. O’Hare ,
B. M. Lewis ,
S. N. Nguyen ,
Thermochemistry of uranium compounds XVII. Standard molar enthalpy of formation at 298.15 K of dehydrated schoepite UO3·0.9H2O. Thermodynamics of (schoepite + dehydrated scheopite + water).
J. Chem. Thermodyn. 20, 1287.
| Crossref | GoogleScholarGoogle Scholar |
[50]
R. Vochten ,
Transformation of cherikovite and sodium autunite into lehnerite.
Am. Mineral. 1990
, 75, 221.
|
CAS |
[51]
S. N. Nguyen ,
R. J. Silva ,
H. C. Weed ,
J. Andrews ,
E. John ,
Standard Gibbs free energies of formation at the temperature 303.15 K of four uranyl silicates: soddyite, uranophane, sodium boltwoodite, and sodium weeksite.
J. Chem. Thermodyn. 1992
, 24, 359.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[52]
[53]
F. Chen ,
R. C. Ewing ,
S. B. Clark ,
The Gibbs free energies and enthalpies of formation of U6+ phases: an empirical method of prediction.
Am. Mineral. 1999
, 84, 650.
|
CAS |