Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

The major source and impact of phenyltin contamination on freshwater aquaculture clam Corbicula fluminea and wild golden apple snail Pomacea canaliculata

Ching-Chang Lee A B , Yu-Fei Jhuang A , Li-Lian Liu C , Chia-Yi Hsieh B , Colin S. Chen D and Chien-Jung Tien D E
+ Author Affiliations
- Author Affiliations

A Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, 138 Sheng Li Road, Tainan 704, Taiwan ROC.

B Research Center of Environmental Trace Toxic substances, National Cheng Kung University, 138 Sheng Li Road, Tainan 704, Taiwan ROC.

C Institute of Marine Biology, National Sun Yat-san University, Kaohsiung 804, Taiwan ROC.

D Institute of Biotechnology, National Kaohsiung Normal University, 62, Shen-Chung Road, Yanchao, Kaohsiung 824, Taiwan ROC.

E Corresponding author. Email address: cjtien@nknucc.nknu.edu.tw

Environmental Chemistry 6(4) 341-349 https://doi.org/10.1071/EN09017
Submitted: 9 May 2009  Accepted: 12 June 2009   Published: 25 August 2009

Environmental context. Phenyltin contamination is worldwide, and can be detrimental for aquatic ecosystems. Such contamination is largely due to the wide use of triphenyltin-based antifouling paints in the marine environment, but also to its use as fungicides and molluscicides in agriculture. This study provided the data to allow assessment of the accumulation potential of phenyltin compounds in molluscs, and established the correlation of phenyltin concentrations between biota and environmental matrices.

Abstract. This study determined the concentrations of triphenyltin (TPT) and its degradation products, diphenyltin (DPT) and monophenyltin (MPT), in the aquaculture clam Corbicula fluminea and the wild golden apple snail Pomacea canaliculata. Sediments from irrigation ditches and clam aquaculture ponds, and soils from paddy fields were also analysed for these compounds in order to elucidate the sources and impact of phenyltin contamination. Considerably high levels of TPT were found in clams (<5.7–68.7 ng g–1 WW, wet weight), snails (ND (not determined)–1558.0 ng g–1 WW), and soils (ND–336.8 ng g–1 DW, dry weight), but not in sediments. The accumulation of phenyltin compounds in clams and snails was attributed to the spraying of triphenyltin-based pesticides in paddy fields. The higher levels of phenyltins accumulated in snails did not result in higher imposex levels, but caused a longer penis sheath length. The biota-sediment accumulation factor (BSAF) indicated that clams (2.3–6.9) had a higher bioaccumulative ability of TPT from sediments than snails (1.0–1.4). Relatively low levels of the hazard quotients of TPT (i.e. <1) suggested consumption of the aquaculture clam might not have a potential human health risk.

Additional keywords: BSAF, hazard quotient, Imposex TPT.


Acknowledgements

The authors thank the farmers of the clam aquaculture ponds and our colleagues at the Environmental Toxics Analysis Laboratory, Research Center of Environmental Trace Toxic substances of National Cheng Kung University, for sampling and analytical help.


References


[1]   H. Harino , M. Fukushima , Y. Yamamoto , S. Kawai , N. Miyazaki , Contamination of butyltin and phenyltin compounds in the marine environment of Otsuchi Bay, Japan. Environ. Pollut. 1998 , 101,  209.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[2]   A. Sudaryanto , S. Takahashi , H. Iwata , S. Tanabe , M. Muchtar , H. Razak , Organotin residues and the role of anthropogenic tin sources in the coastal marine environment of Indonesia. Mar. Pollut. Bull. 2005 , 50,  226.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[3]   C.-C. Lee , C.-Y. Hsieh , C.-J. Tien , Factors influencing organotin distribution in different marine environmental compartments, and their potential health risk. Chemosphere 2006 , 65,  547.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[4]   B. Antizar-Ladislao , Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environ. Int. 2008 , 34,  292.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[5]   L. Regoli , H. M. Chan , Y. de Lafontaine , I. Mikaelian , Organotins in zebra mussels (Dreissena polymorpha) and sediments of the Quebec City harbour area of the St. Lawrence River. Aquat. Toxicol. 2001 , 53,  115.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[6]   S. Díez , S. Lacorte , P. Viana , D. Barceló , J. M. Bayona , Survey of organotin compounds in rivers and coastal environments in Portugal 1999–2000. Environ. Pollut. 2005 , 136,  525.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[7]   FAO, Pesticide residues in food – 1991 report, Plant Production and Protection Paper 111 1991, pp. 57–62 (Food and Agriculture Organization of the United Nations: Rome).

[8]   K. Kannan , R. F. Lee , Triphenyltin and its degradation products in foliage and soils from sprayed pecan orchards and in fish from adjacent ponds. Environ. Toxicol. Chem. 1996 , 15,  1492.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[9]   C. Alzieu , Environmental impact of TBT: the French experience. Sci. Total Environ. 2000 , 258,  99.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[10]   R. F. Lee , Metabolism of tributyltin by marine animals and possible linkages to effects. Mar. Environ. Res. 1991 , 32,  29.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[11]   T. Horiguchi , H. Shiraishi , M. Shimizu , M. Morita , Effects of triphenyltin chloride and five other organotin compounds on the development of imposex in the rock shell, Thais clavigera. Environ. Pollut. 1997 , 95,  85.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[12]   T.-C. Hung , W.-K. Hsu , P.-J. Mang , A. Chuang , Organotins and imposex in the rock shell, Thais clavigera, from oyster mariculture areas in Taiwan. Environ. Pollut. 2001 , 112,  145.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[13]   F. Garaventa , E. Centanni , F. Pellizzato , M. Faimali , A. Terlizzi , B. Pavoni , Imposex and accumulation of organotin compounds in populations of Hexaplex trunculus (Gastropoda, Muricidae) from the Lagoon of Venice (Italy) and Istrian Coast (Croatia). Mar. Pollut. Bull. 2007 , 54,  615.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[14]   K. Fent , J. Hunn , Phenyltins in water, sediment, and biota of freshwater marinas. Environ. Sci. Technol. 1991 , 25,  956.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[15]   J. L. Gómez-Ariza , I. Giráldez , E. Morales , Temporal fluctuations of tributyltin in the bivalve Venerupis decussata at five stations in southwest Spain. Environ. Pollut. 2000 , 108,  279.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[16]   S. Chandrinou , A. S. Stasinakis , N. S. Thomaidis , A. Nikolaou , J. W. Wegener , Distribution of organotin compounds in the bivalves of the Aegean Sea, Greece. Environ. Int. 2007 , 33,  226.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[17]   C.-C. Lee , T. Wang , C.-Y. Hsieh , C.-J. Tien , Organotin contamination in fishes with different living patterns and its implactions for human health risk in Taiwan. Environ. Pollut. 2005 , 137,  198.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[18]   Taiwan Agricultural Chemicals and Toxic Substances Research Institute (TACTRI), Council of Agriculture (COA), Investigation on pesticides in sediments from irrigation drains, Research plan 2003 (Council of Agriculture: Taipei).

[19]   Lee C.-C., The survey on the environmental distributions of toxic chemicals, Project report EPA-94-J103-02-102 2005 (Environmental Protection Agency of Taiwan: Taipei).

[20]   O. Mochida , Spread of fresh water snails Pilidae mollusca from Argentina to Asia. Micronesica 1991 , 3,  52.
         open url image1

[21]   S. S. Teo , Evaluation of different duck varieties for the control of the golden apple snail (Pomacea canaliculata) in transplanted and direct seeded rice. Crop Protect. 2001 , 20,  599.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[22]   Jambari H. A., Suryanto E., Fish as biological control agent of golden apple snails: prospects and challenges. In Proceedings of the Symposium on Biological Control in the Tropics, MARDI Training Centre, Serdang, Malaysia, 18–19 March 1999 (CABI publishing: Wallingford, UK).

[23]   Barrion A. T., Jackson R. R., Schoenly K. G., Biology and laboratory predation of Dindymus pulcher Stal (Hemiptera: Pyrrhocoridae) on golden apple snail in the Philippines. In Third National Malacological Convention, Quezon City, Philippines 1997 (Malacological Society of the Philippines, National Institute of Geological Sciences, University of the Philippines Diliman: Quezon City, Philippines).

[24]   Cheng E. Y., Prospects of golden apple snail control in Taiwan. In APEC Symposium on the Management of the Golden Apple Snail, Pingtung, Taiwan, 6–11 September 2004 (National Pingtung University of Science and Technology: Pingtung, Taiwan).

[25]   W.-H. Liu , Y.-W. Chiu , D.-J. Huang , M.-Y. Liu , C.-C. Lee , L.-L. Liu , Imposex in the golden apple snail Pomacea canaliculata in Taiwan. Sci. Total Environ. 2006 , 371,  138.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[26]   J. L. Gómez-Ariza , E. Morales , D. Sánchez-Rodas , I. Giráldez , Stability of chemical species in environmental matrices. TrAC – Trends Anal. Chem. 2000 , 19,  200.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   C. G. Arnold , M. Berg , S. R. Müller , U. Dommann , R. P. Schwarzenbanch , Determination of organotin compounds in water, sediments, and sewage sludge using perdeuterated internal standards, accelerated solvent extraction, and large-volume-injection GC/MS. Anal. Chem. 1998 , 70,  3094.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[28]   C. Pellegrino , P. Massanisso , R. Morabito , Comparison of twelve selected extraction methods for the determination of butyl- and phenyltin compounds in mussel samples. TrAC – Trends Anal. Chem. 2000 , 19,  97.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[29]   US EPA, Definition and Procedure for the Determination of the Method Detection Limit-Revision 1.11(40. CFR Appendix B to Part 136) 2004 (US Environmental Protection Agency: Washington, DC).

[30]   US EPA, Risk assessment: Guidance for superfund Volume I, Human Health Evaluation Manual (Part A), Interim final, EPA/540/1–89/002 1989 (Office of Emergency and Remedial Response, US Environmental Protection Agency: Washington, DC).

[31]   Sekizawa J., Triphenyltin Compounds. Concise international chemical assessment document: 13 1999 (World Health Organization:Geneva).

[32]   WHO, Pesticide residues in food – 1991, Evaluations 1991 Part II – Toxicology 1992, pp. 173–208 (World Health Organization: Geneva).

[33]   Ch. Bancon-Montigny , G. Lespes , M. Potin-Gautier , Organotin survey in the Adour–Garonne Basin. Water Res. 2004 , 38,  933.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[34]   T. C. Hung , T. Y. Lee , T. F. Liao , Determination of butyltins and phenyltins in oysters and fishes from Taiwan coastal waters. Environ. Pollut. 1998 , 102,  197.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[35]   J. A. Stäb , M. Frenay , I. L. Freriks , U. A. T. Brinkman , W. P. Cofino , Survey of nine organotin compounds in the Netherlands using the zebra mussel (Dreissena Polymorpha) as biomonitor. Environ. Toxicol. Chem. 1995 , 14,  2023.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   H. Inoue , O. Takimura , K. Kawaguchi , T. Nitoda , H. Fuse , K. Murakami , Y. Yamaoka , Tin–carbon cleavage of organotin compounds by pyoverdine from Pseudomonas chlororaphis. Appl. Environ. Microbiol. 2003 , 69,  878.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[37]   Cima F., Craig P. J., Harrington C., Organotin compounds in the environment. In Organometallic compounds in the environment (Ed. P. J. Craig) 2003, pp. 101–149 (Wiley: Chichester).

[38]   S. Tanabe , M. S. Prudente , S. Kan-atireklap , A. Subramanian , Mussel watch: marine pollution monitoring of butyltins and organochlorines in coastal waters of Thailand, Philippines and India. Ocean Coast. Manag. 2000 , 43,  819.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[39]   T. Horiguchi , H. Shiraishi , M. Shimizu , M. Morita , Imposex and organotin compounds in Thais clavigera and T. bronni in Japan. J. Mar. Biol. Assoc. UK 1994 , 74,  651.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[40]   J. M. Roper , J. W. Simmers , D. S. Cherry , Bioaccumulation of butyltins in Dreissena polymorpha at a confined placement facility in Buffalo, New York. Environ. Pollut. 2001 , 111,  447.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[41]   H. M. Hwang , J. R. Oh , S.-H. Kahng , K. W. Lee , Tributyltin compounds in mussels, oysters and sediments of Chinhae Bay, Korea. Mar. Environ. Res. 1999 , 47,  61.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[42]   W. J. Shim , S. H. Kahng , S. H. Hong , N. S. Kim , S. K. Kim , J. H. Shim , Imposex in the rock shell, Thais clavigera, as evidence of organotin contamination in the marine environment of Korea. Mar. Environ. Res. 2000 , 49,  435.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[43]   M. Ramón , M. J. Amor , Increasing imposex in populations of Bolinus brandaris (Gastropoda: Muricidae) in the northwestern Mediterranean. Mar. Environ. Res. 2001 , 52,  463.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[44]   J. A. Stäb , T. P. Traas , G. Stroomberg , L. Kesteren , P. Leonards , B. Hattum , U. A. Brinkman , W. P. Confino , Determination of organotin compounds in the food web of a shallow freshwater lake in the Netherlands. Arch. Environ. Contam. Toxicol. 1996 , 31,  319.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[45]   L. L. Liu , S. J. Chen , W. Y. Peng , J. J. Hung , Organotin concentrations in three intertidal neogastropods from the coastal waters of Taiwan. Environ. Pollut. 1997 , 98,  113.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[46]   F. Pellizzato , E. Centanni , M. G. Marin , V. Moschino , B. Pavoni , Concentrations of organotin compounds and imposex in the gastropod Hexaplex trunculus from the Lagoon of Venice. Sci. Total Environ. 2004 , 332,  89.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[47]   C. C. Ten Hallers-Tjabbes , J.-W. Wegener , B. (A. G. M.) V. Hattum , J. F. Kemp , E. T. Hallers , T. J. Reitsema , J. P. Boon , Imposex and organotin concentrations in Buccinum undatum and Neptunea antiqua from the North Sea: relationship to shipping density and hydrographical conditions. Mar. Environ. Res. 2003 , 55,  203.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[48]   L.-C. Chien , T.-C. Hung , K.-Y. Choang , C.-Y. Yeh , P.-J. Meng , M.-J. Shieh , B.-C. Han , Daily intake of TBT, Cu, Zn, Cu and As for fishermen in Taiwan. Sci. Total Environ. 2002 , 285,  177.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1