The influence of megacities on global atmospheric chemistry: a modelling study
Timothy M. Butler A B and Mark G. Lawrence AA Max Planck Institute for Chemistry, J.-J.-Becher Weg 27, D-55128 Mainz, Germany.
B Corresponding author. Email: tim.butler@mpic.de
Environmental Chemistry 6(3) 219-225 https://doi.org/10.1071/EN08110
Submitted: 18 December 2008 Accepted: 7 April 2009 Published: 18 June 2009
Environmental context. Over half of the population of the world now live in urban areas, and the number of so-called ‘megacities’, with populations of ~10 million or more, is growing at a tremendous rate. We show how these patterns of urbanisation have the potential to influence the atmospheric chemical environment on a global scale, particularly through the effects of emissions from megacities on the reactive nitrogen cycle. With the growing worldwide interest in the study of the effects of megacities at all spatial scales, such as current European Union projects MEGAPOLI and CityZen, our study represents the first of many future studies that examine the effects of megacities on atmospheric chemistry on the global scale.
Abstract. We present the first study of the effects of megacities on global atmospheric chemistry using a global three-dimensional chemical transport model. The effects on air quality, radiative forcing and atmospheric oxidation capacity are disproportionately smaller than the proportion of anthropogenic emissions due to megacities. Disproportionately large effects of megacities are modelled for reactive nitrogen compounds, in particular PAN (peroxy acetyl nitrate), which has increased in abundance globally by 9% due to megacities under year 2000 conditions, with 23% of the Earth experiencing an increase of 10% or more. These influences decrease under two very different future emission scenarios. Under a low-emission future scenario, the influence of megacities is generally reduced, and under a high-emission future scenario, although the local influence of megacities is increased, the geographical extent of the influence becomes smaller. In our model, the individual grid cells that contain megacities respond to the megacity emissions differently depending on their latitude. Tropical megacity grid cells generally show increased ozone year-round, while northern extratropical megacities generally show reduced ozone year-round. Better parameterisation of the sub-grid effects of megacities is an important issue for future work.
Additional keywords: emissions, global atmospheric chemistry, megacities.
Acknowledgements
This work was supported in part by BMBF AFO2000 project ‘SAPHIRE’, the Max Planck Gesellschaft, and the EU FP7 project ‘MEGAPOLI’. The authors thank Jos Lelieveld for useful discussions during the preparation of this manuscript.
[1]
C. Cuvelier ,
P. Thunis ,
R. Vautard ,
M. Amann ,
B. Bessagnet ,
M. Bedogni ,
R. Berkowicz ,
J. Brandt ,
et al. CityDelta: a model intercomparison study to explore the impact of emission reductions in European cities in 2010.
Atmos. Environ. 2007
, 41, 189.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[2]
[3]
[4]
J. Lelieveld ,
F. J. Dentener ,
W. Peters ,
M. C. Krol ,
On the role of hydroxyl radicals in the self-cleansing capacity of the troposphere.
Atmos. Chem. Phys. 2004
, 4, 2337.
|
CAS |
[5]
D. T. Shindell ,
H. Levy ,
M. D. Schwarzkopf ,
L. W. Horowitz ,
J.-F. Lamarque ,
G. Faluvegi ,
Multimodel projections of climate change from short-lived emissions due to human activities.
J. Geophys. Res. 2008
, 113,
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[6]
W. D. Bowman ,
C. C. Cleveland ,
L. Halada ,
J. Hresko ,
J. S. Baron ,
Negative impact of nitrogen deposition on soil buffering capacity.
Nature Geosci. 2008
, 1, 767.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[7]
R. A. Duce ,
J. LaRoche ,
K. Altieri ,
K. R. Arrigo ,
A. R. Baker ,
D. G. Capone ,
S. Cornell ,
F. Dentener ,
et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean.
Science 2008
, 320, 893.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[8]
M. Mayer ,
C. Wang ,
M. Webster ,
R. G. Prinn ,
Linking local air pollution to global chemistry and climate.
J. Geophys. Res. 2000
, 105, 22869.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[9]
M. G. Lawrence ,
T. M. Butler ,
J. Steinkamp ,
B. R. Gurjar ,
J. Lelieveld ,
Regional pollution potentials of megacities and other major population centres.
Atmos. Chem. Phys. 2007
, 7, 3969.
|
CAS |
[10]
P. J. Rasch ,
Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modelling of short lived and soluble species.
J. Geophys. Res. 1997
, 102, 28127.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[11]
M. G. Lawrence ,
P. J. Crutzen ,
P. J. Rasch ,
B. E. Eaton ,
N. M. Mahowald ,
A model for studies of tropospheric photochemistry: description, global distributions and evaluation.
J. Geophys. Res. 1999
, 104, 26245.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[12]
M. G. Lawrence ,
P. J. Rasch ,
R. von Kuhlmann ,
J. Williams ,
H. Fischer ,
M. de Reus ,
J. Lelieveld ,
P. J. Crutzen ,
et al. Global chemical weather forecasts for field campaign planning: predictions and observations of large-scale features during MINOS, CONTRACE, and INDOEX.
Atmos. Chem. Phys. 2003
, 3, 267.
|
CAS |
[13]
R. von Kuhlmann ,
M. G. Lawrence ,
P. J. Crutzen ,
A model for studies of tropospheric ozone and nonmethane hydrocarbons: model evaluation of ozone-related species.
J. Geophys. Res. 2003
, 108,
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[14]
F. Dentener ,
D. Stevenson ,
K. Ellingsen ,
T. van Noije ,
M. Schultz ,
M. Amann ,
C. Atherton ,
N. Bell ,
et al. The global atmospheric environment for the next generation.
Environ. Sci. Technol. 2006
, 40,
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[15]
D. T. Shindell ,
G. Faluvegi ,
D. S. Stevenson ,
M. C. Krol ,
L. K. Emmons ,
J. F. Lamarque ,
G. Pétron ,
F. J. Dentener ,
et al. Multi-model simulations of carbon monoxide: Comparison with observations and projected near-future changes.
J. Geophys. Res. 2006
, 111,
| Crossref | GoogleScholarGoogle Scholar |
[16]
T. P. C. van Noije ,
H. J. Eskes ,
F. J. Dentener ,
D. S. Stevenson ,
K. Ellingsen ,
M. G. Schultz ,
O. Wild ,
M. Amann ,
et al. Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000.
Atmos. Chem. Phys. 2006
, 6, 2943.
|
CAS |
[17]
D. S. Stevenson ,
F. J. Dentener ,
M. G. Schultz ,
K. Ellingsen ,
T. P. C. van Noije ,
O. Wild ,
G. Zeng ,
M. Amann ,
et al. Multi-model ensemble simulations of present-day and near-future tropospheric ozone.
J. Geophys. Res. 2006
, 111,
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[18]
F. Dentener ,
D. Stevenson ,
J. Cofala ,
R. Mechler ,
M. Amann ,
P. Bergamaschi ,
F. Raes ,
R. Derwent ,
The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990–2030.
Atmos. Chem. Phys. 2005
, 5, 1731.
|
CAS |
[19]
E. Kalnay ,
M. Kanamitsu ,
R. Kistler ,
W. Collins ,
D. Deaven ,
L. Gandin ,
M. Iredell ,
S. Saha ,
et al. The NCEP/NCAR 40-year reanalysis project.
Bull. Am. Meteorol. Soc. 1996
, 77, 437.
| Crossref | GoogleScholarGoogle Scholar |
[20]
T. M. Butler ,
M. G. Lawrence ,
B. R. Gurjar ,
J. van Aardenne ,
M. Schultz ,
J. Lelieveld ,
The representation of emissions from megacities in global emission inventories.
Atmos. Environ. 2008
, 42, 703.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
T. Berntsen ,
J. Fuglestvedt ,
M. Joshi ,
K. Shine ,
N. Stuber ,
M. Ponater ,
R. Sausen ,
D. Hauglustaine ,
et al. Response of climate to regional emissions of ozone precursors: sensitivities and warming potentials.
Tellus B 2005
, 57, 283.
| Crossref | GoogleScholarGoogle Scholar |
[22]
S. K. Guttikunda ,
Y. Tang ,
G. R. Carmichael ,
G. Kurata ,
L. Pan ,
D. G. Streets ,
J. H. Woo ,
N. Thongboonchoo ,
A. Fried ,
Impacts of Asian megacity emissions on regional air quality during spring 2001.
J. Geophys. Res. 2005
, 110,
| Crossref | GoogleScholarGoogle Scholar |
CAS |