Ice nucleation activity of bacteria isolated from snow compared with organic and inorganic substrates
Roya Mortazavi A , Christopher T. Hayes A and Parisa A. Ariya A BA Department of Chemistry and Department of Atmospheric and Oceanic Sciences, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 2K6, Canada.
B Corresponding author. Email: parisa.ariya@mcgill.ca
Environmental Chemistry 5(6) 373-381 https://doi.org/10.1071/EN08055
Submitted: 18 August 2008 Accepted: 19 November 2008 Published: 18 December 2008
Environmental context. Biological ice nucleators have been found to freeze water at very warm temperatures. The potential of bio-aerosols to greatly influence cloud chemistry and microphysics is becoming increasingly apparent, yet detailed knowledge of their actual role in atmospheric processes is lacking. The formation of ice in the atmosphere has significant local, regional and global influence, ranging from precipitation to cloud nucleation and thus climate. Ice nucleation tests on bacteria isolated from snow and laboratory-grown bacteria, in comparison with those of known organic and inorganic aerosols, shed light on this issue.
Abstract. Ice nucleation experiments on bacteria isolated from snow as well as grown in the laboratory, in comparison with those of known organic and inorganic aerosols, examined the importance of bio-aerosols on cloud processes. Snow samples were collected from urban and suburban sites in the greater Montreal region in Canada (45°28′N, 73°45′W). Among many snow bacterial isolates, eight types of bacterial species, none belonging to known effective ice nucleators such as Pseudomonas or Erwinia genera, were identified to show an intermediate range of ice nucleation activity (–12.9 ± 1.3°C to –17.5 ± 2.8°C). Comparable results were also obtained for molten snow samples and inorganic suspensions (kaolin and montmorillonite) of buffered water solutions. The presence of organic molecules (oxalic, malonic and succinic acids) had minimal effect (<2°C) on ice nucleation. Considering experimental limitations, and drawing from observation in snow samples of a variety of bacterial populations with variable ice-nucleation ability, a shift in airborne-species population may significantly alter glaciation processes in clouds.
Additional keywords: bio-aerosols, cloud chemistry.
Acknowledgements
We appreciate the financial support from the Natural Science and Engineering Research Council of Canada (NSERC), Canadian Foundation for Innovation (CFI), and McGill Dawson Chair to P. A. Ariya. We thank Patrick Lulin for growing laboratory cultures of Pseudomonas syringae and Dr Gwyn A. Beattie of Iowa State University for donating viable samples of P. syringae.
[1]
[2]
[3]
A. J. Heymsfield ,
R. M. Sabin ,
Cirrus crystal nucleation by homogeneous freezing of solution droplets.
J. Atmos. Sci. 1989
, 46, 2252.
| Crossref | GoogleScholarGoogle Scholar |
[4]
H. R. Pruppacher ,
A new look at homogeneous ice nucleation in supercooled water drops.
J. Atmos. Sci. 1995
, 52, 1924.
| Crossref | GoogleScholarGoogle Scholar |
[5]
[6]
B. Sattler ,
H. Puxbaum ,
R. Psenner ,
Bacterial growth in supercooled cloud droplets.
Geophys. Res. Lett. 2001
, 28, 239.
| Crossref | GoogleScholarGoogle Scholar |
[7]
E. J. Carpenter ,
S. Lin ,
D. G. Capone ,
Bacterial activity in South Pole snow.
Appl. Environ. Microbiol. 2000
, 66, 4514.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[8]
R. H. Pierre Amato ,
O. Magand ,
M. Sancelme ,
A.-M. Delort ,
C. Barbante ,
C. Boutron ,
C. Ferrari ,
Bacterial characterization of the snow cover at Spitzberg, Svalbard.
FEMS Microbiol. Ecol. 2007
, 59, 255.
| PubMed |
[9]
J. Sun ,
P. A. Ariya ,
Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review.
Atmos. Environ. 2006
, 40, 795.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[10]
C. L. Hew ,
D. S. C. Yang ,
Protein interaction with ice.
Eur. J. Biochem. 1992
, 203, 33.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[11]
H. Obata ,
Y. Saeki ,
J. Tanishita ,
T. Tokuyama ,
H. Hori ,
Y. Higashi ,
Identification of an ice-nucleating bacterium KUIN-1 as Pseudomonas fluorescens and its ice nucleation properties.
Agric. Biol. Chem. 1987
, 51, 1761.
|
CAS |
[12]
H. Obata ,
T. Nakai ,
J. Tanishita ,
T. Tokuyama ,
Identification of an ice-nucleation bacterium and its ice nucleation properties.
J. Ferment. Bioeng. 1989
, 67, 143.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[13]
H. Obata ,
K. Takinami ,
J. Tanishita ,
Y. Hasegawa ,
S. Kawate ,
T. Tokuyama ,
T. Ueno ,
Identification of a new ice-nucleation bacterium and its ice nucleation properties.
Agric. Biol. Chem. 1990
, 54, 725.
|
CAS |
[14]
G. J. Warren ,
Bacterial ice nucleation: molecular biology and applications.
Biotechnol. Genet. Eng. Rev. 1987
, 5, 107.
|
CAS |
[15]
A. G. Govindarajan ,
S. E. Lindow ,
Phospholipid requirement for expression of ice nuclei in Pseudomonas syringae and in vitro.
J. Biol. Chem. 1988
, 263, 9333.
|
CAS |
PubMed |
[16]
L. M. Kozloff ,
M. A. Turner ,
F. Arellano ,
Formation of bacterial membrane ice-nucleating lipoglycoprotein complexes.
J. Bacteriol. 1991
, 173, 6528.
|
CAS |
PubMed |
[17]
L. M. Kozloff ,
M. A. Turner ,
F. Arellano ,
M. Lute ,
Phosphatidylinositol, a phospholipid of ice-nucleation bacteria.
J. Bacteriol. 1991
, 173, 2053.
|
CAS |
PubMed |
[18]
P. Wolber ,
G. Warren ,
Bacterial ice nucleation proteins.
Trends Biochem. Sci. 1989
, 14, 179.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[19]
Y. Kumaki ,
K. Kawano ,
K. Hikichi ,
T. Matsumoto ,
N. Matsushima ,
A circular loop of the 16-residue repeating unit in ice nucleation protein.
Biochem. Biophys. Res. Commun. 2008
, 371, 5.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[20]
R. L. Green ,
L. V. Corotto ,
G. J. Warren ,
Deletion of mutagenesis of the ice-nucleation gene from Pseudomonas syringae S203.
Mol. Gen. Genet. 1988
, 215, 165.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[21]
L. R. Maki ,
E. L. Galyan ,
M. Chang-chien ,
D. R. Caldwell ,
Ice nucleation induced by Pseudomonas syringae.
Appl. Microbiol. 1974
, 28, 456.
|
CAS |
PubMed |
[22]
B. Wowk ,
G. M. Fahy ,
Inhibition of bacterial ice nucleation by polyglycerol polymers.
Cryobiology 2002
, 44, 14.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[23]
W. Szyrmer ,
I. Zawadzki ,
Biogenic and anthropogenic sources of ice-forming nuclei: a review.
Bull. Am. Meteorol. Soc. 1997
, 78, 209.
| Crossref | GoogleScholarGoogle Scholar |
[24]
S. S. Hirano ,
L. S. Baker ,
C. D. Upper ,
Ice nucleation temperature of individual leaves in relation to population sizes of ice nucleation-active bacteria and frost injury.
Plant Physiol. 1985
, 77, 259.
| Crossref |
PubMed |
[25]
A. Blondeaux ,
J.-F. Hamel ,
P. Widehem ,
N. Cochet ,
Influence of water activity on the ice-nucleating activity of Pseudomonas syringae.
J. Ind. Microbiol. Biotechnol. 1999
, 23, 514.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
S. A. Yankofsky ,
Z. Levin ,
T. Bertold ,
N. Sandlerman ,
Some basic characteristics of bacterial freezing nuclei.
J. Appl. Meteorol. 1981
, 20, 1013.
| Crossref | GoogleScholarGoogle Scholar |
[27]
S. Matthias-Maser ,
R. Jaenicke ,
Examination of atmospheric bioaerosol particles with radii >0.2 μm.
J. Aerosol Sci. 1994
, 25, 1605.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[28]
O. Mohler ,
P. J. DeMott ,
G. Vali ,
Z. Levin ,
Microbiology and atmospheric processes: the role of biological particles in cloud physics.
Biogeosciences 2007
, 4, 1059.
[29]
P. A. Ariya ,
M. Amyot ,
New directions: the role of bioaerosols in atmospheric chemistry and physics.
Atmos. Environ. 2004
, 38, 1231.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[30]
P. A. Ariya ,
O. Nepotchatykh ,
O. Ignatova ,
M. Amyot ,
Microbial degradation of organic compounds.
Geophys. Res. Lett. 2002
, 29, 2077.
| Crossref | GoogleScholarGoogle Scholar |
[31]
B. J. Mason ,
Ice-nucleating properties of clay minerals and stony meteorites.
Q. J. R. Meteorol. Soc. 1960
, 86, 552.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[32]
G. Funke ,
E. Falsen ,
C. Barreau ,
Primary identification of Microbacterium spp. encountered in clinical specimens as CDC coryneform group A-4 and A-5 bacteria.
J. Clin. Microbiol. 1995
, 33, 188.
|
CAS |
PubMed |
[33]
P. A. Rusin ,
J. B. Rose ,
C. N. Haas ,
C. P. Gerba ,
Risk assessment of opportunistic bacterial pathogens in drinking water.
Rev. Environ. Contam. Toxicol. 1997
, 152, 57.
|
CAS |
PubMed |
[34]
G. Warren ,
P. Wolber ,
Molecular aspects of microbial ice nucleation.
Mol. Microbiol. 1991
, 5, 239.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[35]
J. L. Zhao ,
C. S. Orser ,
Conserved repetition in the ice nucleation gene inaX from Xanthomonas campestris pv. Translucens.
Mol. Gen. Genet. 1990
, 223, 163.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[36]
M. Kanakidou ,
J. H. Seinfeld ,
S. N. Pandis ,
I. Barnes ,
F. J. Dentener ,
M. C. Facchini ,
R. Van Dingenen ,
B. Ervens ,
et al. Organic aerosol and global climate modelling: a review.
Atmos. Chem. Phys. 2005
, 5, 1053.
|
CAS |
[37]
Q. Zhang ,
J. L. Jimenez ,
M. R. Canagaratna ,
J. D. Allan ,
H. Coe ,
I. Ulbrich ,
M. R. Alfarra ,
A. Takami ,
et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes.
Geophys. Res. Lett. 2007
, 34, L13801.
| Crossref | GoogleScholarGoogle Scholar |
[38]
H. R. Pruppacher ,
M. Neiburger ,
The effect of water-soluble substances on the supercooling of water drops.
J. Atmos. Sci. 1963
, 20, 376.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[39]
G. Vali ,
Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids.
J. Atmos. Sci. 1971
, 28, 402.
| Crossref | GoogleScholarGoogle Scholar |
[40]
[41]
L. M. Kozloff ,
A. M. Schofield ,
M. Lute ,
Ice nucleation activity of Pseudomonas syringae and Erwinia herbicola.
J. Bacteriol. 1983
, 153, 222.
|
CAS |
PubMed |
[42]
M. Dubrovský ,
V. Petera ,
B. Sikyta ,
H. Hegerova ,
Measurement of the ice nucleation activity of Pseudomonas syringae CCM 4073.
Biotechnol. Tech. 1989
, 3, 173.
| Crossref | GoogleScholarGoogle Scholar |
[43]
L. R. Maki ,
K. J. Willoughby ,
Bacteria as biogenic sources of freezing nuclei.
J. Appl. Meteorol. 1978
, 17, 1049.
| Crossref | GoogleScholarGoogle Scholar |
[44]
A. Salam ,
U. Lohmann ,
B. Crenna ,
G. Lesins ,
P. Klages ,
D. Rogers ,
R. Irani ,
A. MacGillivray ,
M. Coffin ,
Ice nucleation studies of mineral dust particles with a new continuous flow diffusion chamber.
Aerosol Sci. Technol. 2006
, 40, 134.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[45]
R. C. Schaller ,
N. Fukuta ,
Ice nucleation by aerosol particles: experimental studies using a wedge-shaped ice thermal diffusion chamber.
J. Atmos. Sci. 1979
, 36, 1788.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[46]
D. C. Rogers ,
Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies.
Atmos. Res. 1988
, 22, 149.
| Crossref | GoogleScholarGoogle Scholar |
[47]
S. E. Wood ,
M. B. Baker ,
B. D. Swanson ,
Instrument for studies of homogeneous and heterogeneous ice nucleation in free-falling supercooled water droplets.
Rev. Sci. Instrum. 2002
, 73, 3988.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[48]
M. Ettner ,
S. K. Mitra ,
S. Borrman ,
Heterogeneous freezing of single sulfuric acid solution droplets: laboratory experiments utilizing an acoustic levitator.
Atmos. Chem. Phys. 2004
, 4, 1925.
|
CAS |
[49]
J. K. Edzwald ,
C. R. O’Mell ,
Clay distributions in recent estuarine sediments.
Clays Clay Miner. 1975
, 23, 39.
| Crossref | GoogleScholarGoogle Scholar |
CAS |