Modelling the impact of possible snowpack emissions of O(3P) and NO2 on photochemistry in the South Pole boundary layer
P. D. Hamer A B D , D. E. Shallcross A , A. Yabushita C and M. Kawasaki CA School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom.
B Present address: Jet Propulsion Laboratory – NASA, 4800 Oak Grove Drive, MS 183-601, Pasadena, CA 91109, USA.
C Department of Molecular Engineering, Kyoto University, Kyoto, 615-8510, Japan.
D Corresponding author. Email: paul.d.hamer@jpl.nasa.gov
Environmental Chemistry 5(4) 268-273 https://doi.org/10.1071/EN08022
Submitted: 6 March 2008 Accepted: 27 June 2008 Published: 19 August 2008
Environmental context. The study of surface photochemical ozone production on the Antarctic continent has direct relevance to climate change and general air quality and is scientifically noteworthy given the otherwise pristine nature of this environmental region. The identification of possible direct ozone emissions from snow surfaces and their contribution to the already active photochemical pollution present there represents a unique physical phenomenon. This process could have wider global significance for other snow-covered regions and therefore for global climate change.
Abstract. O(3P) emissions due to photolysis of nitrate were recently identified from ice surfaces doped with nitric acid. O(3P) atoms react directly with molecular oxygen to yield ozone. Therefore, these results may have direct bearing on photochemical activity monitored at the South Pole, a site already noted for elevated summertime surface ozone concentrations. NO2 is also produced via the photolysis of nitrate and the firn air contains elevated levels of NO2, which will lead to direct emission of NO2. A photochemical box model was used to probe what effect O(3P) and NO2 emissions have on ozone concentrations within the South Pole boundary layer. The results suggest that these emissions could account for a portion of the observed ozone production at the South Pole and may explain the observed upward fluxes of ozone identified there.
Additional keywords: nitrate and ice chemistry, oxygen atoms, ozone, reaction dynamics.
Acknowledgements
P. D. Hamer would like to thank National Environment Research Council (NERC) and BAS for funding, and Will Harris, Betty Hamer and Laura Watson for special assistance. Special thanks to Greg Huey for allowing access to the ISCAT 2000 dataset and to Doug Davis for extremely helpful discussion. D. E. Shallcross and M. Kawasaki thank the Daiwa Anglo-Japanese Foundation for a Daiwa-Adrian award that supported the current work. A. Yabushita and M. Kawasaki thank the Ministry of Education of Japan for financial support.
[1]
D. D. Davis ,
J. B. Nowak ,
G. Chen ,
M. Buhr ,
R. Arimoto ,
A. Hogan ,
F. Eisele ,
L. Mauldin ,
D. Tanner ,
R. Shetter ,
B. Lefer ,
P. McMurry ,
Unexpected high levels of NO observed at South Pole.
Geophys. Res. Lett. 2001
, 28, 3625.
| Crossref | GoogleScholarGoogle Scholar |
[2]
D. Davis ,
G. Chen ,
M. Buhr ,
J. Crawford ,
D. Lenschow ,
B. Lefer ,
R. Shetter ,
F. Eisele ,
L. Maudlin ,
A. Hogan ,
South Pole NOx chemistry: an assessment of factors controlling variability and absolute levels.
Atmos. Environ. 2004
, 38, 5375.
| Crossref | GoogleScholarGoogle Scholar |
[3]
J. H. Crawford ,
D. D. Davis ,
G. Chen ,
M. Buhr ,
S. Oltmans ,
R. Weller ,
L. Maudlin ,
F. Eisele ,
R. Shetter ,
B. Lefer ,
R. Arimoto ,
A. Hogan ,
Evidence for the photochemical production of ozone at the South Pole surface.
Geophys. Res. Lett. 2001
, 28, 3641.
| Crossref | GoogleScholarGoogle Scholar |
[4]
A. E. Jones ,
R. Weller ,
E. W. Wolff ,
H. W. Jacobi ,
Speciation and rate of photochemical NO and NO2 production in Antarctic snow.
Geophys. Res. Lett. 2000
, 27, 345.
| Crossref | GoogleScholarGoogle Scholar |
[5]
A. E. Jones ,
R. Weller ,
P. S. Anderson ,
H. W. Jacobi ,
E. W. Wolff ,
O. Schrems ,
H. Miller ,
Measurements of NOx emissions from the Antarctic snowpack.
Geophys. Res. Lett. 2001
, 28, 1499.
| Crossref | GoogleScholarGoogle Scholar |
[6]
E. S. N. Cotter ,
A. E. Jones ,
E. W. Wolff ,
S. J. B. Bauguitte ,
What controls photochemical NO and NO2 production from snow? Laboratory investigation assessing the wavelength and temperature dependence.
J. Geophys. Res. 2003
, 108, 4147.
| Crossref | GoogleScholarGoogle Scholar |
[7]
B. L. Lefer ,
S. R. Hall ,
L. Cinquini ,
R. E. Shetter ,
Photolysis frequency measurements at the South Pole during ISCAT-98.
Geophys. Res. Lett. 2001
, 28, 3637.
| Crossref | GoogleScholarGoogle Scholar |
[8]
A. E. Jones ,
E. W. Wolff ,
An analysis of the oxidation potential of the South Pole boundary layer and the influence of stratospheric ozone depletion.
J. Geophys. Res. 2003
, 108, 4565.
| Crossref | GoogleScholarGoogle Scholar |
[9]
M. A. Hutterli ,
J. R. McConnell ,
G. Chen ,
R. C. Bales ,
D. D. Davis ,
D. H. Lenschow ,
Formaldehyde and hydrogen peroxide in air, snow and interstitial air at South Pole.
Atmos. Environ. 2004
, 38, 5439.
| Crossref | GoogleScholarGoogle Scholar |
[10]
G. Chen ,
D. Davis ,
J. Crawford ,
L. M. Hutterli ,
L. G. Huey ,
D. Slusher ,
L. Maudlin ,
F. Eisele ,
D. Tanner ,
J. Dibb ,
A reassessment of HOx South Pole chemistry based on observations recorded during ISCAT 2000.
Atmos. Environ. 2004
, 38, 5451.
| Crossref | GoogleScholarGoogle Scholar |
[11]
K. Riedel ,
R. Weller ,
O. Schrems ,
G. Konig-Langlo ,
Variability of tropospheric hydroperoxides at a coastal surface site in Antarctica.
Atmos. Environ. 2000
, 34, 5225.
| Crossref | GoogleScholarGoogle Scholar |
[12]
M. M. Frey ,
R. W. Stewart ,
J. R. McConnell ,
R. C. Bales ,
Atmospheric hydroperoxides in West Antarctica: links to stratospheric ozone and atmospheric oxidation capacity.
Atmos. Environ. 2005
, 110, D23301.
[13]
P. D. Hamer ,
D. E. Shallcross ,
M. M. Frey ,
Modelling the impact of oxygenated VOC and meteorology upon the boundary layer photochemistry at the South Pole.
Atmos. Sci. Lett. 2007
, 8, 14.
| Crossref | GoogleScholarGoogle Scholar |
[14]
A. Yabushita ,
N. Kawanaka ,
M. Kawasaki ,
P. D. Hamer ,
D. E. Shallcross ,
Release of oxygen atoms and nitric oxide molecules from the ultraviolet photodissociation of nitrate adsorbed on water ice films at 100 K.
J. Phys. Chem. A 2007
, 111, 8629.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[15]
W. Neff ,
D. Helmig ,
A. Grachev ,
D. D. Davis ,
A study of boundary layer behaviour associated with high NO concentrations at the South Pole using a minisodar, tethered balloon, and sonic anemometer.
Atmos. Environ. 2008
, 42, 2762.
| Crossref | GoogleScholarGoogle Scholar |
[16]
B. J. Johnson ,
D. Helmig ,
S. J. Oltmans ,
Evaluation of ozone measurements from a tethered balloon-sampling platform at South Pole Station in December 2003.
Atmos. Environ. 2008
, 42, 2780.
| Crossref | GoogleScholarGoogle Scholar |
[17]
D. Helmig ,
B. J. Johnson ,
M. Warshawsky ,
T. Morse ,
W. D. Neff ,
F. Eisele ,
D. D. Davis ,
Nitric oxide in the boundary-layer at South Pole during the Antarctic Tropospheric Chemistry Investigation (ANTCI).
Atmos. Environ. 2008
, 42, 2817.
| Crossref | GoogleScholarGoogle Scholar |
[18]
D. Helmig ,
B. Johnson ,
S. J. Oltmans ,
W. Neff ,
F. Eisele ,
D. D. Davis ,
Elevated ozone in the boundary layer at South Pole.
Atmos. Environ. 2007
, 42, 2788.
| Crossref | GoogleScholarGoogle Scholar |
[19]
D. Helmig ,
L. Ganzeveld ,
T. Butler ,
S. J. Oltmans ,
The role of ozone atmosphere–snow gas exchange on polar, boundary-layer tropospheric ozone – a review and sensitivity analysis.
Atmos. Chem. Phys. 2008
, 7, 15.
[20]
K. Zeller ,
T. Hehn ,
Measurements of upward turbulent ozone fluxes above a subalpine spruce-fir forest.
Geophys. Res. Lett. 1996
, 23, 841.
| Crossref | GoogleScholarGoogle Scholar |
[21]
[22]
K. Zeller ,
Wintertime ozone fluxes and profiles above a subalpine spruce-fir forest.
J. Appl. Meteorol. 2000
, 39, 92.
| Crossref | GoogleScholarGoogle Scholar |
[23]
I. E. Galbally ,
I. Allison ,
Ozone fluxes over snow surfaces.
Geophys. Res. Lett. 1972
, 77, 3946.
[24]
M. L. Wesely ,
D. R. Cook ,
R. M. Williams ,
Field measurement of small ozone fluxes to snow, wet bare soil, and lake water.
Boundary-Layer Meteorol. 1981
, 20, 459.
| Crossref | GoogleScholarGoogle Scholar |
[25]
D. W. Stocker ,
K. F. Zeller ,
D. H. Stedman ,
O3 and NO2 fluxes over snow measured by eddy correlation.
Atmos. Environ. 1995
, 29, 1299.
| Crossref | GoogleScholarGoogle Scholar |
[26]
[27]
I. E. Galbally ,
C. R. Roy ,
Destruction of ozone at the Earth’s surface.
Q. J. R. Meteorol. Soc. 1980
, 106, 599.
| Crossref | GoogleScholarGoogle Scholar |
[28]
G. D. Carver ,
P. D. Brown ,
O. Wild ,
The ASAD atmospheric chemistry integration package and chemical reaction database.
Comput. Phys. Commun. 1997
, 105, 197.
| Crossref | GoogleScholarGoogle Scholar |
[29]
M. E. Jenkin ,
S. M. Saunders ,
M. J. Pilling ,
The tropospheric degradation of volatile organic compounds: a protocol for mechanism development.
Atmos. Environ. 1997
, 31, 81.
| Crossref | GoogleScholarGoogle Scholar |
[30]
R. L. Mauldin ,
F. L. Eisele ,
D. J. Tanner ,
E. Koscuich ,
B. Shetter ,
S. R. Lefer ,
S. R. Hall ,
J. B. Nowak ,
M. Buhr ,
G. Chen ,
P. Wang ,
D. D. Davis ,
Measurements of OH, H2SO4, and MSA at the South Pole during ISCAT.
Geophys. Res. Lett. 2001
, 28, 3629.
| Crossref | GoogleScholarGoogle Scholar |
[31]
G. Chen ,
D. Davis ,
J. Crawford ,
J. B. Nowak ,
F. Eisele ,
R. L. Maudlin ,
D. Tanner ,
M. Buhr ,
R. Shetter ,
B. Lefer ,
R. Arimoto ,
A. Hogan ,
D. Blake ,
An investigation of South Pole HOx chemistry: comparison of model results with ISCAT observations.
Geophys. Res. Lett. 2001
, 28, 3633.
| Crossref | GoogleScholarGoogle Scholar |
[32]
S. P. Oncley ,
M. Buhr ,
D. H. Lenschow ,
D. D. Davis ,
Observations of summertime NO fluxes and boundary-layer height at the South Pole during ISCAT 2000 using scalar similarity.
Atmos. Environ. 2004
, 38, 5389.
| Crossref | GoogleScholarGoogle Scholar |
[33]
J. L. France ,
M. D. King ,
J. Lee-Taylor ,
Hydroxyl (OH) radical production rates in snowpacks from photolysis of hydrogen peroxide (H2O2) and nitrate (NO3–).
Atmos. Environ. 2007
, 41, 5502.
| Crossref | GoogleScholarGoogle Scholar |