Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Methylmercury exposure and health effects in humans

Anna L. Choi A C and Philippe Grandjean A B
+ Author Affiliations
- Author Affiliations

A Department of Environmental Health, Harvard School of Public Health, Boston, MA 02215, USA.

B Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark.

C Corresponding author. Email: achoi@hsph.harvard.edu

Environmental Chemistry 5(2) 112-120 https://doi.org/10.1071/EN08014
Submitted: 12 February 2008  Accepted: 20 March 2008   Published: 17 April 2008

Environmental Context. Dietary intake of fish and other seafood products is the dominant source of human exposure to methylmercury, a toxicant that can have serious adverse effects on the developing nervous system and may promote heart diseases. The existing evidence of human toxicity should inspire prudent choices in maintaining fish intakes to secure an ample supply of essential nutrients, while at the same time choosing species that are low in mercury concentrations. The combination of essential nutrients and avoidance of this toxic contaminant will benefit brain development and human health in general. In addition, current contamination levels suggest that intensified efforts are needed to reduce and eliminate mercury release to the environment.

Abstract. Methylmercury (MeHg) is a worldwide contaminant found in seafood and freshwater fish, which constitute the dominant source of human exposure to this substance. The developing human brain is particularly susceptible to injury caused by MeHg, which easily passes the placental barrier. Epidemiological studies in fishing populations have found subtle though lasting adverse effects on brain functions of children who were exposed prenatally to MeHg from seafood diets. This contaminant also seems capable of promoting the development of heart disease. Fish and seafood also contain important nutrients, such as omega-3 fatty acids that may provide beneficial effects, thereby possibly counteracting or obscuring the adverse effects of MeHg. This article reviews the existing evidence on MeHg developmental neurotoxicity and the emerging evidence that MeHg may promote the development of heart diseases. MeHg risks may have been underestimated in the past, in part because of the confounding effects of nutrients from seafood and fish. Improved control of mercury release to the environment is indicated. In addition, regulatory agencies should provide better guidance to consumers in maintaining a balanced diet that includes seafood as low as possible in mercury.

Additional keywords: diet, environmental exposure, fish, methylmercury compounds, neuropsychological tests, seafood.


Acknowledgements

This work was supported by the USA National Institute of Environmental Health Sciences (ES09797 and ES13692). The contents of this paper are solely the responsibility of the authors and do not represent the official views of the NIEHS, NIH.


References


[1]   NRC (National Research Council), Toxicological Effects of Methylmercury 2000 (National Academy Press: Washington, DC).

[2]   IPCS (International Programme on Chemical Safety), Environmental Health Criteria 86: Mercury – Environmental Aspects 1989 (World Health Organization: Geneva).

[3]   D. Mergler , H. A. Anderson , L. H. M. Chan , K. R. Mahaffey , M. Murray , M. Sakamoto , A. H. Stern , Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 2007 , 36,  3.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  [Verified 2 March 2007].

[24]   Anon, The Madison Declaration on Mercury Pollution. Ambio 2007 , 36,  62.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  [Verified 17 April 2007].

[28]   M. Horvat , N. Nolde , V. Fajon , V. Jereb , M. Logar , S. Lojen , R. Jacimovic , I. Falnoga , Q. Liya , J. Faqaneli , D. Drobne , Total mercury, methylmercury, and selenium in mercury polluted areas in the province Guizhou, China. Sci. Total Environ. 2003 , 304,  231.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[29]   G. Ysart , P. Miller , M. Croasdale , H. Crews , P. Robb , M. Baxter , C. de L’Argy , N. Harrison , 1997 UK Total Diet Study – dietary exposures to aluminium, arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, tin, and zinc. Food Addit. Contam. 2000 , 17,  775.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[30]   A. Lindberg , K. A. Bjornberg , M. Berglund , Exposure to methylmercury in non-fish-eating people in Sweden. Environ. Res. 2004 , 96,  28.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[31]   P. Grandjean , P. Weihe , P. J. Jorgensen , T. Clarkson , E. Cernchiair , T. Videro , Impact of maternal seafood diet on fetal exposure to mercury, selenium and lead. Arch. Environ. Health 1992 , 47,  185.
        | PubMed |  open url image1

[32]   E. Cernichiari , R. Brewer , G. J. Myers , D. O. Marsh , L. W. Lapham , C. Cox , C. F. Shamlaye , M. Berlin , P. W. Davidson , T. W. Clarkson , Monitoring methylmercury during pregnancy: maternal hair predicts fetal brain exposure. Neurotoxicology 1995 , 16,  711.
        | PubMed |  open url image1

[33]   E. C. de Oliveira Santos , I. M. Jesus , E. S. Brabo , E. C. Loureiro , A. F. Mascarenhas , J. Weirich , V. M. Camara , D. Clearly , Mercury exposures in riverside Amazon communities in Para, Brazil. Environ. Res. 2000 , 84,  100.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[34]   A. A. Boischio , D. S. Henshel , Linear regression models of methyl mercury exposure during prenatal and early postnatal life among riverside people along the Upper Madeira river, Amazon. Environ. Res. 2000 , 83,  150.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[35]   J. Dolbec , D. Mergler , F. Larribe , M. Roulet , J. Lebel , M. Lucotte , Sequential analysis of hair mercury levels in relation to fish diet of an Amazonian population, Brazil. Sci. Total Environ. 2001 , 271,  87.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[36]   J. Dorea , A. C. Barbosa , I. Ferrari , J. R. de Souza , Mercury in hair and in fish consumed by Riparian women of the Rio Negro, Amazon, Brazil. Int. J. Environ. Health Res. 2003 , 13,  239.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[37]   S. Cordier , C. Grasmick , M. Paquier Passelaigue , L. Mandereau , J. P. Weber , M. Jouan , Mercury exposure in French Guiana: levels and determinants. Arch. Environ. Health 1998 , 53,  299.
        | PubMed |  open url image1

[38]   A. H. Stern , M. Gochfeld , C. Weisel , J. Burger , Mercury and methylmercury expsoure in the New Jersey pregnant population. Arch. Environ. Health 2001 , 56,  4.
        | PubMed |  open url image1

[39]   A. Pesch , M. Wilhelm , U. Rostek , N. Schmitz , M. Weishoff-Houben , U. Ranft , H. Idel , Mercury concentrations in urine, scalp hair, and saliva in Germany. J. Expo. Anal. Environ. Epidemiol. 2002 , 12,  252.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[40]   K. A. Bjornberg , M. Vahter , K. Petersson-Grawe , A. Glynn , S. Cnattingius , P. P. Darnerud , S. Atuma , M. Aune , W. Becker , M. Berglund , Methyl mercury and inorganic mercury in Swedish pregnant women and in cord blood: influence of fish consumption. Environ. Health Perspect. 2003 , 111,  637.
        | PubMed |  open url image1

[41]   L. Knobeloch , H. A. Anderson , P. Imm , D. Peters , A. Smith , Fish consumption, advisory awareness, and hair mercury levels among women of childbearing age. Environ. Res. 2005 , 97,  220.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[42]   M. A. McDowell , C. F. Dillon , J. Osterloh , P. M. Bloder , E. Pellizzari , R. Fernando , R. M. De Oca , S. E. Schober , T. Sinks , R. L. Jones , K. R. Mahaffey , Hair mercury levels in US children and women of childbearing age: reference range data from NHANES 1999–2000. Environ. Health Perspect. 2004 , 112,  1165.
        | PubMed |  open url image1

[43]   S. E. Schober , T. H. Sinks , R. L. Jones , P. M. Bolger , M. McDowell , J. Osterloh , E. S. Garrett , R. A. Canady , C. F. Dillon , Y. Sun , C. B. Joseph , K. A. Mahaffey , Blood mercury levels in US children and women of childbearing age 1999–2000. JAMA 2003 , 289,  1667.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[44]   A. Yasutake , M. Matsumoto , M. Yamaguchi , N. Hachiya , Current hair mercury levels in Japanese for estimation of methylmercury exposure. J. Health Sci. 2004 , 50,  120.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[45]   Institute of Medicine (IOM), Seafood Choices Balancing Benefits and Risks 2007 (National Academies Press: Washington, DC).

[46]   C. M. Y. Choy , C. W. K. Lam , L. T. F. Cheung , C. M. Briton-Jones , L. P. Cheung , C. J. Haines , Infertility, blood mercury concentrations and dietary seafood consumption: a case-control study. British J. Obstet. Gyn. 2002 , 109,  1121.
         open url image1

[47]   P. Ip , V. Wong , M. Ho , J. Lee , W. Wong , Environmental mercury exposure in children: South China’s experience. Pediatr. Int. 2004 , 46,  715.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[48]   Grandjean P., Cordier S., Kjellström T., Weihe P., Budtz-Jørgensen E., Health Effects and Risk Assessments, in Dynamics of Mercury Pollution on Regional and Global Scales: Atmospheric Processes and Human Exposures Around the World (Eds N. Pirrone, K. R. Mahaffey) 2005, pp. 499–523 (Springer: Norwell, MA).

[49]   IPCS (International Programme on Chemical Safety), Environmental Health Criteria 101: Methylmercury 1990 (World Health Organization: Geneva).

[50]   Grandjean P., Jørgensen P. J., Weihe P., Validity of mercury exposure biomarkers, in Biomarkers of Environmentally Associated Disease (Eds S. H. Wilson, W. A. Suk) 2002, pp. 235–247 (CRC Press/Lewis Publishers: Boca Raton, FL).

[51]   R. Yamamoto , T. Suzuki , Effects of artificial hair-waving on hair mercury values. Int. Arch. Occup. Environ. Health 1978 , 42,  1.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[52]   A. Yasutake , M. Matsumoto , M. Yamaguchi , N. Hachiya , Current hair mercury levels in the Japanese: survey in five districts. Tohoku J. Exp. Med. 2003 , 199,  161.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[53]   P. Grandjean , E. Budtz-Jørgensen , P. J. Jørgensen , P. Weihe , Total imprecision of exposure biomarkers: implications for calculating exposure limits. Am. J. Ind. Med. 2007 , 50,  712.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[54]   P. Grandjean , E. Budtz-Jørgensen , P. J. Jørgensen , P. Weihe , Umbilical cord mercury concentration as biomarker of prenatal exposure to methylmercury. Environ. Health Perspect. 2005 , 113,  905.
        | PubMed |  open url image1

[55]   E. Guallar , M. I. Sanz-Gallardo , P. van’t Veer , P. Bode , A. Aro , J. Gomez-Aracena , J. D. Kark , R. A. Riemersma , J. M. Martin-Moreno , F. J. Kok , Mercury, fish oils, and the risk of myocardial infarction. New Engl. J. Med. 2002 , 347,  1747.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[56]   T. Ohno , M. Sakamoto , T. Kurosawa , M. Dakeishi , T. Iwata , K. Murata , Total mercury levels in hair, toenail and urine among women free from occupational exposure and their relations to tubular renal functions. Environ. Res. 2007 , 103,  191.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[57]   M. Berglund , B. Lind , K. A. Bjornberg , B. Palm , O. Einarsson , M. Vahter , Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment. Environ. Health 2005 , 4,  20.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[58]   P. Grandjean , E. Budtz-Jørgensen , R. F. White , P. J. Jørgensen , P. Weihe , F. Debes , N. Keiding , Methylmercury exposure biomarkers as indicators of neurotoxicity in children aged 7 years. Am. J. Epidemiol. 1999 , 14,  301.
         open url image1

[59]   S. Cordier , M. Garel , L. Mandereau , H. Morcel , P. Doineau , S. Gosme-Seguret , D. Josse , R. White , C. Amiel-Tison , Neurodevelopmental investigations among methylmercury-exposed children in French Guiana. Environ. Res. 2002 , 89,  1.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[60]   D. O. Marsh , M. D. Turner , J. C. Smith , V. M. H. Perez , P. Allen , N. Richdale , Fetal methylmercury study in a Peruvian fish-eating population. Neurotoxicology 1995 , 16,  717.
        | PubMed |  open url image1

[61]   P. W. Davidson , J. Kost , G. J. Myers , C. Cox , T. W. Clarkson , Methylmercury and neurodevelopment: reanalysis of the Seychelles child development study outcomes at 66 months of age. JAMA 2001 , 285,  1291.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[62]   G. J. Myers , P. W. Davidson , C. Cox , C. F. Shamlaye , D. Palumbo , E. Cernichiari , J. Sloane-Reeves , G. E. Wilding , J. Kost , L. S. Huang , T. W. Clarkson , Prenatal methylmercury exposure from ocean fish consumption in the Seychelles child development study. Lancet 2003 , 361,  1686.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[63]   K. Murata , P. Weihe , S. Araki , E. Budtz-Jørgensen , P. Grandjean , Evoked potentials in Faroese children prenatally exposed to methylmercury. Neurotoxicol. Teratol. 1999 , 21,  471.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[64]   P. Willatts , J. S. Forsyth , The role of long-chain polyunsaturated fatty acids in infant cognitive development. Prostaglandins Leukot. Essent. Fatty Acids 2000 , 63,  95.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[65]   E. E. Birch , D. G. Birch , D. R. Hoffman , R. Uauy , Dietary essential fatty acid supply and visual acuity development. Invest. Ophthalmol. Vis. Sci. 1992 , 33,  3242.
        | PubMed |  open url image1

[66]   A. Lucas , R. Morley , T. J. Cole , G. Lister , C. Leeson-Payne , Breast milk and subsequent intelligence quotient in children born preterm. Lancet 1992 , 339,  261.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[67]   R. Hamada , Y. Yoshida , A. Kuwano , I. Mishima , A. Igata , Auditory brainstem responses in fetal organic mercury poisoning. Shinkei-Naika 1982 , 16,  282. [in Japanese]
         open url image1

[68]   K. Murata , P. Weihe , S. Araki , E. Budtz-Jørgensen , P. Grandjean , Evoked potentials in Faroese children prenatally exposed to methylmercury. Neurotoxicol. Teratol. 1999 , 21,  471.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[69]   K. Murata , P. Weihe , A. Renzoni , F. Debes , R. Vasconcelos , F. Zino , S. Araki , P. J. Jørgensen , R. F. White , P. Grandjean , Delayed evoked potentials in children exposed to methylmercury from seafood. Neurotoxicol. Teratol. 1999 , 21,  343.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[70]   K. Murata , P. Weihe , E. Budtz-Jørgensen , P. J. Jørgensen , P. Grandjean , Delayed brainstem auditory evoked potential latencies in 14-year-old children exposed to methylmercury. J. Pediatr. 2004 , 144,  177.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[71]   T. Rissanen , S. Voutilainen , K. Nyyssonen , T. A. Lakka , J. T. Salonen , Fish oil-derived fatty acids, docosahexaeonoic acid and docosapentaenoic acid, and the risk of acute coronary events: the Kuopio Ischaemic heart disease risk factor study. Circulation 2000 , 102,  2677.
        | PubMed |  open url image1

[72]   S. M. Innis , Essential fatty acids in growth and development. Prog. Lipid Res. 1991 , 30,  39.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[73]   D. Kromhout , F. B. Bosschieter , C. de Lezenne Coulander , The inverse relation between fish consumption and 20-year mortality from coronary heart disease. New Engl. J. Med. 1985 , 312,  1205.
         open url image1

[74]   Dolecek T. A., Grandits G., Dietary Polyunsaturated Fatty Acids and Mortality in the Multiple Risk Factor Intervention Trial (MRFIT), in Health effects of omega-3 polyunsaturated fatty acids in seafoods. World Rev. Nutr. Diet (Eds A. P. Simopoulos, R. R. Kifer, R. E. Martin, S. D. Barlow) 1991, pp. 205–216 (S Karger: Basel, Switzerland).

[75]   A. L. Choi , E. Budtz-Jorgensen , P. J. Jorgensen , U. Steuerwald , F. Debes , P. Weihe , P. Grandjean , Selenium as a potential protective factor against mercury developmental neurotoxicity. Environ. Res. 2007 , Available online 12 September 2007.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[76]   E. Pollitt , Iron deficiency and cognitive function. Annu. Rev. Nutr. 1993 , 13,  521.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[77]   B. Lozoff , G. M. Brittenham , A. W. Wolf , D. K. McClish , P. M. Kuhnert , E. Jimenez , R. Jimenez , L. A. Mora , I. Gomes , D. Krauskoph , Iron deficiency anemia and iron therapy effects on infant developmental test performance. Pediatrics 1987 , 79,  981.
        | PubMed |  open url image1

[78]   M. Akman , D. Cebeci , V. Okur , H. Angin , O. Abali , A. C. Akman , The effects of iron deficiency on infants’ developmental test performance. Acta Paediatr. 2004 , 93,  1391.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[79]   Morreale de Escobar G., Ruiz de Oña C., Obregón M. J., Escobar del Rey F., Models of Fetal Iodine Deficiency, in Iodine and the Brain (Eds G. R. Delong, J. Robbins, P. G. Condliffe) 1989, pp. 187–201 (Plenum: New York).

[80]   V. Kalra , J. Grover , G. K. Ahuja , S. Rathi , D. S. Khurana , E. Vitamin , Deficiency and associated neurological deficits in children with protein-energy malnutrition. J. Trop. Pediatr. 1998 , 44,  291.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[81]   R. J. Sokol , Vitamin E and neurologic function in man. Free Radic. Biol. Med. 1989 , 6,  189.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[82]   P. Grandjean , P. Weihe , V. W. Burse , L. L. Needham , E. Storr-Hansen , B. Heinzow , F. Debes , K. Murata , H. Simonsen , P. Ellefsen , E. Budtz-Jørgensen , N. Keiding , R. F. White , Neurobehavioral deficits associated with PCB in 7-year-old children prenatally exposed to seafood neurotoxicants. Neurotoxicol. Teratol. 2001 , 23,  305.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[83]   E. Budtz-Jørgensen , N. Keiding , P. Grandjean , R. F. White , P. Weihe , Methylmercury neurotoxicity independent of PCB exposure. Environ. Health Perspect. 1999 , 107,  A236.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[84]   E. Budtz-Jørgensen , N. Keiding , P. Grandjean , P. Weihe , Estimation of health effects of prenatal methylmercury exposure using structural equation models. Environ. Health 2002 , 1,  2.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[85]   P. Grandjean , R. White , A. Nielsen , D. Cleary , E. de Oliveira Santos , Methylmercury neurotoxicity in Amazonian children downstream from gold mining. Environ. Health Perspect. 1999 , 107,  587.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[86]   J. L. Daniels , M. P. Longnecker , A. S. Rowland , J. Golding , ALSPAC Study Team, Fish intake during pregnancy and early cognitive development of offspring. Epidemiology 2004 , 15,  394.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[87]   W. Jedrychowski , J. Jankowski , E. Flak , A. Skarupa , E. Mroz , E. Sochacka-Tatara , I. Lisowska-Miszczyk , A. Szpanowska-Wohn , V. Rauh , Z. Skolicki , I. Kaim , F. Perera , Effects of prenatal exposure to mercury on cognitive and psychomotor function in one-year-old infants: epidemiologic cohort study in Poland. Ann. Epidemiol. 2006 , 16,  439.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[88]   E. Oken , R. O. Wright , K. P. Kleinman , D. Bellinger , C. J. Amarasiriwardena , H. Hu , J. W. Rich-Edwards , M. W. Gillman , Maternal fish consumption, hair mercury, and infant cognition in a US cohort. Environ. Health Perspect. 2005 , 113,  1376.
         open url image1

[89]   E. Budtz-Jørgensen , P. Grandjean , P. Weihe , Separation of risks and benefits of seafood intake. Environ. Health Perspect. 2007 , 115,  323.
         open url image1

[90]   G. J. Myers , P. W. Davidson , J. J. Strain , Nutrient and methylmercury exposure from consuming fish. J. Nutr. 2007 , 137,  2805.
         open url image1

[91]   P. Grandjean , P. J. Landrigan , Developmental neurotoxicity of industrial chemicals. Lancet 2006 , 368,  2167.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1