Methylmercury exposure and health effects in humans
Anna L. Choi A C and Philippe Grandjean A BA Department of Environmental Health, Harvard School of Public Health, Boston, MA 02215, USA.
B Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark.
C Corresponding author. Email: achoi@hsph.harvard.edu
Environmental Chemistry 5(2) 112-120 https://doi.org/10.1071/EN08014
Submitted: 12 February 2008 Accepted: 20 March 2008 Published: 17 April 2008
Environmental Context. Dietary intake of fish and other seafood products is the dominant source of human exposure to methylmercury, a toxicant that can have serious adverse effects on the developing nervous system and may promote heart diseases. The existing evidence of human toxicity should inspire prudent choices in maintaining fish intakes to secure an ample supply of essential nutrients, while at the same time choosing species that are low in mercury concentrations. The combination of essential nutrients and avoidance of this toxic contaminant will benefit brain development and human health in general. In addition, current contamination levels suggest that intensified efforts are needed to reduce and eliminate mercury release to the environment.
Abstract. Methylmercury (MeHg) is a worldwide contaminant found in seafood and freshwater fish, which constitute the dominant source of human exposure to this substance. The developing human brain is particularly susceptible to injury caused by MeHg, which easily passes the placental barrier. Epidemiological studies in fishing populations have found subtle though lasting adverse effects on brain functions of children who were exposed prenatally to MeHg from seafood diets. This contaminant also seems capable of promoting the development of heart disease. Fish and seafood also contain important nutrients, such as omega-3 fatty acids that may provide beneficial effects, thereby possibly counteracting or obscuring the adverse effects of MeHg. This article reviews the existing evidence on MeHg developmental neurotoxicity and the emerging evidence that MeHg may promote the development of heart diseases. MeHg risks may have been underestimated in the past, in part because of the confounding effects of nutrients from seafood and fish. Improved control of mercury release to the environment is indicated. In addition, regulatory agencies should provide better guidance to consumers in maintaining a balanced diet that includes seafood as low as possible in mercury.
Additional keywords: diet, environmental exposure, fish, methylmercury compounds, neuropsychological tests, seafood.
Acknowledgements
This work was supported by the USA National Institute of Environmental Health Sciences (ES09797 and ES13692). The contents of this paper are solely the responsibility of the authors and do not represent the official views of the NIEHS, NIH.
[1]
[2]
[3]
D. Mergler ,
H. A. Anderson ,
L. H. M. Chan ,
K. R. Mahaffey ,
M. Murray ,
M. Sakamoto ,
A. H. Stern ,
Methylmercury exposure and health effects in humans: a worldwide concern.
Ambio 2007
, 36, 3.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[Verified 2 March 2007].
[24]
Anon, The Madison Declaration on Mercury Pollution.
Ambio 2007
, 36, 62.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[Verified 17 April 2007].
[28]
M. Horvat ,
N. Nolde ,
V. Fajon ,
V. Jereb ,
M. Logar ,
S. Lojen ,
R. Jacimovic ,
I. Falnoga ,
Q. Liya ,
J. Faqaneli ,
D. Drobne ,
Total mercury, methylmercury, and selenium in mercury polluted areas in the province Guizhou, China.
Sci. Total Environ. 2003
, 304, 231.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[29]
G. Ysart ,
P. Miller ,
M. Croasdale ,
H. Crews ,
P. Robb ,
M. Baxter ,
C. de L’Argy ,
N. Harrison ,
1997 UK Total Diet Study – dietary exposures to aluminium, arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, tin, and zinc.
Food Addit. Contam. 2000
, 17, 775.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[30]
A. Lindberg ,
K. A. Bjornberg ,
M. Berglund ,
Exposure to methylmercury in non-fish-eating people in Sweden.
Environ. Res. 2004
, 96, 28.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[31]
P. Grandjean ,
P. Weihe ,
P. J. Jorgensen ,
T. Clarkson ,
E. Cernchiair ,
T. Videro ,
Impact of maternal seafood diet on fetal exposure to mercury, selenium and lead.
Arch. Environ. Health 1992
, 47, 185.
| PubMed |
[32]
E. Cernichiari ,
R. Brewer ,
G. J. Myers ,
D. O. Marsh ,
L. W. Lapham ,
C. Cox ,
C. F. Shamlaye ,
M. Berlin ,
P. W. Davidson ,
T. W. Clarkson ,
Monitoring methylmercury during pregnancy: maternal hair predicts fetal brain exposure.
Neurotoxicology 1995
, 16, 711.
| PubMed |
[33]
E. C. de Oliveira Santos ,
I. M. Jesus ,
E. S. Brabo ,
E. C. Loureiro ,
A. F. Mascarenhas ,
J. Weirich ,
V. M. Camara ,
D. Clearly ,
Mercury exposures in riverside Amazon communities in Para, Brazil.
Environ. Res. 2000
, 84, 100.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[34]
A. A. Boischio ,
D. S. Henshel ,
Linear regression models of methyl mercury exposure during prenatal and early postnatal life among riverside people along the Upper Madeira river, Amazon.
Environ. Res. 2000
, 83, 150.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[35]
J. Dolbec ,
D. Mergler ,
F. Larribe ,
M. Roulet ,
J. Lebel ,
M. Lucotte ,
Sequential analysis of hair mercury levels in relation to fish diet of an Amazonian population, Brazil.
Sci. Total Environ. 2001
, 271, 87.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[36]
J. Dorea ,
A. C. Barbosa ,
I. Ferrari ,
J. R. de Souza ,
Mercury in hair and in fish consumed by Riparian women of the Rio Negro, Amazon, Brazil.
Int. J. Environ. Health Res. 2003
, 13, 239.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[37]
S. Cordier ,
C. Grasmick ,
M. Paquier Passelaigue ,
L. Mandereau ,
J. P. Weber ,
M. Jouan ,
Mercury exposure in French Guiana: levels and determinants.
Arch. Environ. Health 1998
, 53, 299.
| PubMed |
[38]
A. H. Stern ,
M. Gochfeld ,
C. Weisel ,
J. Burger ,
Mercury and methylmercury expsoure in the New Jersey pregnant population.
Arch. Environ. Health 2001
, 56, 4.
| PubMed |
[39]
A. Pesch ,
M. Wilhelm ,
U. Rostek ,
N. Schmitz ,
M. Weishoff-Houben ,
U. Ranft ,
H. Idel ,
Mercury concentrations in urine, scalp hair, and saliva in Germany.
J. Expo. Anal. Environ. Epidemiol. 2002
, 12, 252.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[40]
K. A. Bjornberg ,
M. Vahter ,
K. Petersson-Grawe ,
A. Glynn ,
S. Cnattingius ,
P. P. Darnerud ,
S. Atuma ,
M. Aune ,
W. Becker ,
M. Berglund ,
Methyl mercury and inorganic mercury in Swedish pregnant women and in cord blood: influence of fish consumption.
Environ. Health Perspect. 2003
, 111, 637.
| PubMed |
[41]
L. Knobeloch ,
H. A. Anderson ,
P. Imm ,
D. Peters ,
A. Smith ,
Fish consumption, advisory awareness, and hair mercury levels among women of childbearing age.
Environ. Res. 2005
, 97, 220.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[42]
M. A. McDowell ,
C. F. Dillon ,
J. Osterloh ,
P. M. Bloder ,
E. Pellizzari ,
R. Fernando ,
R. M. De Oca ,
S. E. Schober ,
T. Sinks ,
R. L. Jones ,
K. R. Mahaffey ,
Hair mercury levels in US children and women of childbearing age: reference range data from NHANES 1999–2000.
Environ. Health Perspect. 2004
, 112, 1165.
| PubMed |
[43]
S. E. Schober ,
T. H. Sinks ,
R. L. Jones ,
P. M. Bolger ,
M. McDowell ,
J. Osterloh ,
E. S. Garrett ,
R. A. Canady ,
C. F. Dillon ,
Y. Sun ,
C. B. Joseph ,
K. A. Mahaffey ,
Blood mercury levels in US children and women of childbearing age 1999–2000.
JAMA 2003
, 289, 1667.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[44]
A. Yasutake ,
M. Matsumoto ,
M. Yamaguchi ,
N. Hachiya ,
Current hair mercury levels in Japanese for estimation of methylmercury exposure.
J. Health Sci. 2004
, 50, 120.
| Crossref | GoogleScholarGoogle Scholar |
[45]
[46]
C. M. Y. Choy ,
C. W. K. Lam ,
L. T. F. Cheung ,
C. M. Briton-Jones ,
L. P. Cheung ,
C. J. Haines ,
Infertility, blood mercury concentrations and dietary seafood consumption: a case-control study.
British J. Obstet. Gyn. 2002
, 109, 1121.
[47]
P. Ip ,
V. Wong ,
M. Ho ,
J. Lee ,
W. Wong ,
Environmental mercury exposure in children: South China’s experience.
Pediatr. Int. 2004
, 46, 715.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[48]
[49]
[50]
[51]
R. Yamamoto ,
T. Suzuki ,
Effects of artificial hair-waving on hair mercury values.
Int. Arch. Occup. Environ. Health 1978
, 42, 1.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[52]
A. Yasutake ,
M. Matsumoto ,
M. Yamaguchi ,
N. Hachiya ,
Current hair mercury levels in the Japanese: survey in five districts.
Tohoku J. Exp. Med. 2003
, 199, 161.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[53]
P. Grandjean ,
E. Budtz-Jørgensen ,
P. J. Jørgensen ,
P. Weihe ,
Total imprecision of exposure biomarkers: implications for calculating exposure limits.
Am. J. Ind. Med. 2007
, 50, 712.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[54]
P. Grandjean ,
E. Budtz-Jørgensen ,
P. J. Jørgensen ,
P. Weihe ,
Umbilical cord mercury concentration as biomarker of prenatal exposure to methylmercury.
Environ. Health Perspect. 2005
, 113, 905.
| PubMed |
[55]
E. Guallar ,
M. I. Sanz-Gallardo ,
P. van’t Veer ,
P. Bode ,
A. Aro ,
J. Gomez-Aracena ,
J. D. Kark ,
R. A. Riemersma ,
J. M. Martin-Moreno ,
F. J. Kok ,
Mercury, fish oils, and the risk of myocardial infarction.
New Engl. J. Med. 2002
, 347, 1747.
| Crossref | GoogleScholarGoogle Scholar |
[56]
T. Ohno ,
M. Sakamoto ,
T. Kurosawa ,
M. Dakeishi ,
T. Iwata ,
K. Murata ,
Total mercury levels in hair, toenail and urine among women free from occupational exposure and their relations to tubular renal functions.
Environ. Res. 2007
, 103, 191.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[57]
M. Berglund ,
B. Lind ,
K. A. Bjornberg ,
B. Palm ,
O. Einarsson ,
M. Vahter ,
Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment.
Environ. Health 2005
, 4, 20.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[58]
P. Grandjean ,
E. Budtz-Jørgensen ,
R. F. White ,
P. J. Jørgensen ,
P. Weihe ,
F. Debes ,
N. Keiding ,
Methylmercury exposure biomarkers as indicators of neurotoxicity in children aged 7 years.
Am. J. Epidemiol. 1999
, 14, 301.
[59]
S. Cordier ,
M. Garel ,
L. Mandereau ,
H. Morcel ,
P. Doineau ,
S. Gosme-Seguret ,
D. Josse ,
R. White ,
C. Amiel-Tison ,
Neurodevelopmental investigations among methylmercury-exposed children in French Guiana.
Environ. Res. 2002
, 89, 1.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[60]
D. O. Marsh ,
M. D. Turner ,
J. C. Smith ,
V. M. H. Perez ,
P. Allen ,
N. Richdale ,
Fetal methylmercury study in a Peruvian fish-eating population.
Neurotoxicology 1995
, 16, 717.
| PubMed |
[61]
P. W. Davidson ,
J. Kost ,
G. J. Myers ,
C. Cox ,
T. W. Clarkson ,
Methylmercury and neurodevelopment: reanalysis of the Seychelles child development study outcomes at 66 months of age.
JAMA 2001
, 285, 1291.
| Crossref | GoogleScholarGoogle Scholar |
[62]
G. J. Myers ,
P. W. Davidson ,
C. Cox ,
C. F. Shamlaye ,
D. Palumbo ,
E. Cernichiari ,
J. Sloane-Reeves ,
G. E. Wilding ,
J. Kost ,
L. S. Huang ,
T. W. Clarkson ,
Prenatal methylmercury exposure from ocean fish consumption in the Seychelles child development study.
Lancet 2003
, 361, 1686.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[63]
K. Murata ,
P. Weihe ,
S. Araki ,
E. Budtz-Jørgensen ,
P. Grandjean ,
Evoked potentials in Faroese children prenatally exposed to methylmercury.
Neurotoxicol. Teratol. 1999
, 21, 471.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[64]
P. Willatts ,
J. S. Forsyth ,
The role of long-chain polyunsaturated fatty acids in infant cognitive development.
Prostaglandins Leukot. Essent. Fatty Acids 2000
, 63, 95.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[65]
E. E. Birch ,
D. G. Birch ,
D. R. Hoffman ,
R. Uauy ,
Dietary essential fatty acid supply and visual acuity development.
Invest. Ophthalmol. Vis. Sci. 1992
, 33, 3242.
| PubMed |
[66]
A. Lucas ,
R. Morley ,
T. J. Cole ,
G. Lister ,
C. Leeson-Payne ,
Breast milk and subsequent intelligence quotient in children born preterm.
Lancet 1992
, 339, 261.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[67]
R. Hamada ,
Y. Yoshida ,
A. Kuwano ,
I. Mishima ,
A. Igata ,
Auditory brainstem responses in fetal organic mercury poisoning.
Shinkei-Naika 1982
, 16, 282.
[in Japanese]
[68]
K. Murata ,
P. Weihe ,
S. Araki ,
E. Budtz-Jørgensen ,
P. Grandjean ,
Evoked potentials in Faroese children prenatally exposed to methylmercury.
Neurotoxicol. Teratol. 1999
, 21, 471.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[69]
K. Murata ,
P. Weihe ,
A. Renzoni ,
F. Debes ,
R. Vasconcelos ,
F. Zino ,
S. Araki ,
P. J. Jørgensen ,
R. F. White ,
P. Grandjean ,
Delayed evoked potentials in children exposed to methylmercury from seafood.
Neurotoxicol. Teratol. 1999
, 21, 343.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[70]
K. Murata ,
P. Weihe ,
E. Budtz-Jørgensen ,
P. J. Jørgensen ,
P. Grandjean ,
Delayed brainstem auditory evoked potential latencies in 14-year-old children exposed to methylmercury.
J. Pediatr. 2004
, 144, 177.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[71]
T. Rissanen ,
S. Voutilainen ,
K. Nyyssonen ,
T. A. Lakka ,
J. T. Salonen ,
Fish oil-derived fatty acids, docosahexaeonoic acid and docosapentaenoic acid, and the risk of acute coronary events: the Kuopio Ischaemic heart disease risk factor study.
Circulation 2000
, 102, 2677.
| PubMed |
[72]
S. M. Innis ,
Essential fatty acids in growth and development.
Prog. Lipid Res. 1991
, 30, 39.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[73]
D. Kromhout ,
F. B. Bosschieter ,
C. de Lezenne Coulander ,
The inverse relation between fish consumption and 20-year mortality from coronary heart disease.
New Engl. J. Med. 1985
, 312, 1205.
[74]
[75]
A. L. Choi ,
E. Budtz-Jorgensen ,
P. J. Jorgensen ,
U. Steuerwald ,
F. Debes ,
P. Weihe ,
P. Grandjean ,
Selenium as a potential protective factor against mercury developmental neurotoxicity.
Environ. Res. 2007
,
Available online 12 September 2007.
| Crossref | GoogleScholarGoogle Scholar |
[76]
E. Pollitt ,
Iron deficiency and cognitive function.
Annu. Rev. Nutr. 1993
, 13, 521.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[77]
B. Lozoff ,
G. M. Brittenham ,
A. W. Wolf ,
D. K. McClish ,
P. M. Kuhnert ,
E. Jimenez ,
R. Jimenez ,
L. A. Mora ,
I. Gomes ,
D. Krauskoph ,
Iron deficiency anemia and iron therapy effects on infant developmental test performance.
Pediatrics 1987
, 79, 981.
| PubMed |
[78]
M. Akman ,
D. Cebeci ,
V. Okur ,
H. Angin ,
O. Abali ,
A. C. Akman ,
The effects of iron deficiency on infants’ developmental test performance.
Acta Paediatr. 2004
, 93, 1391.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[79]
[80]
V. Kalra ,
J. Grover ,
G. K. Ahuja ,
S. Rathi ,
D. S. Khurana ,
E. Vitamin ,
Deficiency and associated neurological deficits in children with protein-energy malnutrition.
J. Trop. Pediatr. 1998
, 44, 291.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[81]
R. J. Sokol ,
Vitamin E and neurologic function in man.
Free Radic. Biol. Med. 1989
, 6, 189.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[82]
P. Grandjean ,
P. Weihe ,
V. W. Burse ,
L. L. Needham ,
E. Storr-Hansen ,
B. Heinzow ,
F. Debes ,
K. Murata ,
H. Simonsen ,
P. Ellefsen ,
E. Budtz-Jørgensen ,
N. Keiding ,
R. F. White ,
Neurobehavioral deficits associated with PCB in 7-year-old children prenatally exposed to seafood neurotoxicants.
Neurotoxicol. Teratol. 2001
, 23, 305.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[83]
E. Budtz-Jørgensen ,
N. Keiding ,
P. Grandjean ,
R. F. White ,
P. Weihe ,
Methylmercury neurotoxicity independent of PCB exposure.
Environ. Health Perspect. 1999
, 107, A236.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[84]
E. Budtz-Jørgensen ,
N. Keiding ,
P. Grandjean ,
P. Weihe ,
Estimation of health effects of prenatal methylmercury exposure using structural equation models.
Environ. Health 2002
, 1, 2.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[85]
P. Grandjean ,
R. White ,
A. Nielsen ,
D. Cleary ,
E. de Oliveira Santos ,
Methylmercury neurotoxicity in Amazonian children downstream from gold mining.
Environ. Health Perspect. 1999
, 107, 587.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[86]
J. L. Daniels ,
M. P. Longnecker ,
A. S. Rowland ,
J. Golding ,
ALSPAC Study Team, Fish intake during pregnancy and early cognitive development of offspring.
Epidemiology 2004
, 15, 394.
| Crossref | GoogleScholarGoogle Scholar |
[87]
W. Jedrychowski ,
J. Jankowski ,
E. Flak ,
A. Skarupa ,
E. Mroz ,
E. Sochacka-Tatara ,
I. Lisowska-Miszczyk ,
A. Szpanowska-Wohn ,
V. Rauh ,
Z. Skolicki ,
I. Kaim ,
F. Perera ,
Effects of prenatal exposure to mercury on cognitive and psychomotor function in one-year-old infants: epidemiologic cohort study in Poland.
Ann. Epidemiol. 2006
, 16, 439.
| Crossref | GoogleScholarGoogle Scholar |
[88]
E. Oken ,
R. O. Wright ,
K. P. Kleinman ,
D. Bellinger ,
C. J. Amarasiriwardena ,
H. Hu ,
J. W. Rich-Edwards ,
M. W. Gillman ,
Maternal fish consumption, hair mercury, and infant cognition in a US cohort.
Environ. Health Perspect. 2005
, 113, 1376.
[89]
E. Budtz-Jørgensen ,
P. Grandjean ,
P. Weihe ,
Separation of risks and benefits of seafood intake.
Environ. Health Perspect. 2007
, 115, 323.
[90]
G. J. Myers ,
P. W. Davidson ,
J. J. Strain ,
Nutrient and methylmercury exposure from consuming fish.
J. Nutr. 2007
, 137, 2805.
[91]
P. Grandjean ,
P. J. Landrigan ,
Developmental neurotoxicity of industrial chemicals.
Lancet 2006
, 368, 2167.
| Crossref | GoogleScholarGoogle Scholar |