Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Chasing quicksilver northward: mercury chemistry in the Arctic troposphere

Ian M. Hedgecock A B , Nicola Pirrone A and Francesca Sprovieri A
+ Author Affiliations
- Author Affiliations

A CNR – Institute for Atmospheric Pollution, Division of Rende, c/o UNICAL (Polifunzionale), Rende, 87036, Italy.

B Corresponding author. Email: i.hedgecock@cs.iia.cnr.it

Environmental Chemistry 5(2) 131-134 https://doi.org/10.1071/EN08001
Submitted: 2 January 2008  Accepted: 14 March 2008   Published: 17 April 2008

Environmental Context. ‘Mercurial storms rage over the Arctic’ wrote Fred Pearce in New Scientist in June of 1997: he was referring to the recent discovery by Bill Schroeder and his colleagues (Nature, Vol. 394, 1998) of periods soon after Arctic dawn when the concentration of mercury in the atmosphere literally plummets to levels so low that they can be undetectable, even by the most sensitive of modern instruments. A decade and many measurement campaigns later, we think we understand how these so-called depletion events occur, if not all the mechanisms that go towards providing the conditions for them to happen. Nor do we really know what happens to the mercury removed from the atmosphere; the fear is that it is deposited and enters the Arctic ecosystem, where it is potentially extremely harmful. The present study questions whether that fear is grounded.

Abstract. The tropospheric boundary layer chemistry of Hg has been simulated using a two-phase photochemical box model to see if our current (experimental and theoretical) understanding of Hg(g)0 reaction rates can account for the depletion events seen during Arctic spring, when the so-called ‘bromine explosion’ in the model is constrained by the measured ozone depletion rate. The simulations reveal that the observed rate of Hg(g)0 depletion can be accounted for; however, the measured concentrations of gas-phase oxidised Hg and HgP (Hg associated with particulate matter) cannot. Simulating the emission of Hg(g)0 from the snow pack to mimic the observed concentration recovery after a depletion event suggests the net Hg deposition from a depletion event is all but irrelevant.

Additional keywords: depletion events, halogen compounds, polar chemistry.


References


[1]   W. H. Schroeder , K. G. Anlauf , L. A. Barrie , J. Y. Lu , A. Steffen , D. R. Schneeberger , T. Berg , Arctic springtime depletion of mercury. Nature 1998 , 394,  331.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[2]   A. Steffen , T. Douglas , M. Amyot , P. Ariya , K. Aspmo , T. Berg , J. Bottenheim , S. Brooks , F. Cobbett , A. Dastoor , A. Dommergue , R. Ebinghaus , C. Ferrari , K. Gardfeldt , M. E. Goodsite , D. Lean , A. Poulain , C. Scherz , H. Skov , J. Sommar , C. Temme , A synthesis of atmospheric mercury depletion event chemistry linking atmosphere, snow and water. Atmos. Chem. Phys. Discuss. 2007 , 7,  10837.
         open url image1

[3]   W. R. Simpson , R. von Glasow , K. Riedel , P. Anderson , P. Ariya , J. Bottenheim , J. Burrows , L. J. Carpenter , U. Frieß , M. E. Goodsite , D. Heard , M. Hutterli , H.-W. Jacobi , L. Kaleschke , B. Neff , J. Plane , U. Platt , A. Richter , H. Roscoe , R. Sander , P. Shepson , J. Sodeau , A. Steffen , T. Wagner , E. Wolff , Halogens and their role in polar boundary-layer ozone depletion. Atmos. Chem. Phys. 2007 , 7,  4375.
         open url image1

[4]   UNEP, Global Mercury Assessment, in United Nations Environment Programme Chemicals 2002 (UNEP Chemicals: Geneva, Switzerland).

[5]   M. E. Goodsite , J. M. C. Plane , H. Skov , A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere. Environ. Sci. Technol. 2004 , 38,  1772.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[6]   P. A. Gauchard , K. Aspmo , C. Temme , A. Steffen , C. P. Ferrari , T. Berg , J. Strom , L. Kaleschke , A. Dommergue , E. Bahlmann , O. Magand , F. Planchon , R. Ebinghaus , C. Banic , S. Nagorski , P. Baussand , C. F. Boutron , Study of the origin of atmospheric mercury depletion events recorded in Ny-Alesund, Svalbard, spring 2003. Atmos. Environ. 2005 , 39,  7620.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   S. E. Lindberg , S. Brooks , C.-J. Lin , K. J. Scott , M. S. Landis , R. K. Stevens , M. Goodsite , A. Richter , Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise. Environ. Sci. Technol. 2002 , 36,  1245.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[8]   A. Steffen , W. H. Schroeder , G. Edwards , C. Banic , Mercury throughout polar sunrise 2002. J. Phys. IV 2003 , 107,  1267.
         open url image1

[9]   F. Raofie , P. A. Ariya , Product study of the gas-phase BrO-initiated oxidation of Hg0: evidence for stable Hg1+ compounds. Environ. Sci. Technol. 2004 , 38,  4319.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[10]   L. Zhang , J. R. Brook , R. Vet , A revised parameterization for gaseous dry deposition in air-quality models. Atmos. Chem. Phys. 2003 , 3,  2067.
         open url image1

[11]   C. P. Ferrari , P. A. Gauchard , A. Dommergue , O. Magand , S. Nagorski , C. F. Boutron , C. Temme , E. Bahlmann , R. Ebinghaus , A. Steffen , C. Banic , K. Aspmo , T. Berg , F. Planchon , C. Barbante , Snow to air exchange of mercury in an Arctic seasonal snow pack in Ny-Alesund, Svalbard. Atmos. Environ. 2005 , 39,  7633.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   M. S. Landis , R. K. Stevens , F. Schaedlich , E. M. Prestbo , Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air. Environ. Sci. Technol. 2002 , 36,  3000.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[13]   I. M. Hedgecock , G. A. Trunfio , N. Pirrone , F. Sprovieri , Mercury chemistry in the MBL: Mediterranean case and sensitivity studies using the AMCOTS (atmospheric mercury chemistry over the sea) model. Atmos. Environ. 2005 , 39,  7217.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   R. Sander , R. Vogt , G. W. Harris , P. J. Crutzen , Modelling the chemistry of ozone, halogen compounds, and hydrocarbons in the Arctic troposphere during spring. Tellus 1997 , 49B,  522.
         open url image1

[15]   I. M. Hedgecock , N. Pirrone , Chasing quicksilver: modeling the atmospheric lifetime of Hg(g)0 in the marine boundary layer at various latitudes. Environ. Sci. Technol. 2004 , 38,  69.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[16]   F. Sprovieri , N. Pirrone , M. Landis , R. K. Stevens , Atmospheric mercury behaviour at different altitudes at Ny-Alesund during spring 2003. Atmos. Environ. 2005 , 39,  7646.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1