A look at the CLAW hypothesis from an atmospheric chemistry point of view
Roland von GlasowSchool of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK. Email: R.Von-Glasow@uea.ac.uk
Environmental Chemistry 4(6) 379-381 https://doi.org/10.1071/EN07064
Submitted: 7 September 2007 Accepted: 25 October 2007 Published: 6 December 2007
Environmental context. Feedbacks in the climate system as suggested by, for example, the CLAW hypothesis have often been accepted as fact whereas many open questions remain. In this manuscript some of these uncertainties and their implications are discussed and additional processes that might drastically change the importance of this suggested feedback loop are highlighted.
Acknowledgements
I would like to thank Ken Carslaw and Peter Liss for helpful comments.
[1]
G. P. Ayers ,
J. M. Cainey ,
The CLAW hypothesis: a review of the major developments.
Environ. Chem. 2007
, 4, 366.
| Crossref | GoogleScholarGoogle Scholar |
[2]
R. J. Charlson ,
J. E. Lovelock ,
M. O. Andreae ,
S. G. Warren ,
Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.
Nature 1987
, 326, 655.
| Crossref | GoogleScholarGoogle Scholar |
[3]
A. Kukui ,
D. Borissenko ,
G. Laverdet ,
G. L. Bras ,
Gas phase reactions of OH radicals with dimethyl sulfoxide and methane sulfonic acid using turbulent flow reactor and chemical ionization mass spectrometry.
J. Phys. Chem. A 2003
, 107, 5732.
| Crossref | GoogleScholarGoogle Scholar |
[4]
S. M. Kreidenweis ,
J. H. Seinfeld ,
Nucleation of sulfuric acid-water solution particles: Implications for the atmospheric chemistry of organosulfur species.
Atmos. Environ. 1988
, 22, 283.
| Crossref | GoogleScholarGoogle Scholar |
[5]
R. von Glasow ,
P. J. Crutzen ,
Model study of multiphase DMS oxidation with a focus on halogens.
Atmos. Chem. Phys. 2004
, 4, 589.
[6]
D. D. Lucas ,
R. G. Prinn ,
Mechanistic studies of dimethylsulfide oxidation products using an observationally constrained model.
J. Geophys. Res. 2002
, 107, 4201.
| Crossref | GoogleScholarGoogle Scholar |
[7]
D. D. Lucas ,
R. G. Prinn ,
Parametric sensitivity and uncertainty analysis of dimethylsulfide oxidation in the remote marine boundary layer.
Atmos. Chem. Phys. 2005
, 5, 1505.
[8]
I. Barnes ,
J. Hjorth ,
N. Mihalopoulos ,
Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere.
Chem. Rev. 2006
, 106, 940.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[9]
S. Koga ,
H. Tanaka ,
Numerical study of the oxidation process of dimethylsulfide in the marine atmosphere.
J. Atmos. Chem. 1993
, 17, 201.
| Crossref | GoogleScholarGoogle Scholar |
[10]
S. Koga ,
H. Tanaka ,
Simulation of seasonal variations of sulfur compounds in the remote marine atmosphere.
J. Atmos. Chem. 1996
, 23, 163.
| Crossref | GoogleScholarGoogle Scholar |
[11]
O. Boucher ,
C. Moulin ,
S. Belviso ,
O. Aumont ,
L. Bopp ,
E. Cosme ,
R. von Kuhlmann ,
M. G. Lawrence ,
et al. Sensitivity study of dimethylsulphide (DMS) atmospheric concentrations and sulphate aerosol indirect radiative forcing to the DMS source representation and oxidation.
Atmos. Chem. Phys. 2003
, 3, 49.
[12]
I. Barnes ,
V. Bastian ,
K. H. Becker ,
R. D. Overath ,
Kinetic studies of the reactions of IO, BrO and ClO with DMS.
Int. J. Chem. Kinet. 1991
, 23, 579.
| Crossref | GoogleScholarGoogle Scholar |
[13]
R. Toumi ,
BrO as a sink for dimethylsulphide in the marine atmosphere.
Geophys. Res. Lett. 1994
, 21, 117.
| Crossref | GoogleScholarGoogle Scholar |
[14]
R. von Glasow ,
R. von Kuhlmann ,
M. G. Lawrence ,
U. Platt ,
P. J. Crutzen ,
Impact of reactive bromine chemistry in the troposphere.
Atmos. Chem. Phys. 2004
, 4, 2481.
[15]
H. Sievering ,
J. Boatman ,
E. Gorman ,
Y. Kim ,
L. Anderson ,
G. Ennis ,
M. Luria ,
S. Pandis ,
Removal of sulphur from the marine boundary layer by ozone oxidation in sea-salt aerosols.
Nature 1992
, 360, 571.
| Crossref | GoogleScholarGoogle Scholar |
[16]
R. Vogt ,
P. J. Crutzen ,
R. Sander ,
A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer.
Nature 1996
, 383, 327.
| Crossref | GoogleScholarGoogle Scholar |
[17]
H. Sievering ,
J. Cainey ,
M. Harvey ,
J. McGregor ,
S. Nichol ,
P. Quinn ,
Aerosol non-sea-salt sulfate in the remote marine boundary layer under clear-sky and normal cloudiness conditions: Ocean-derived biogenic alkalinity enhances sea-salt sulfate production by ozone oxidation.
J. Geophys. Res. 2004
, 109, D19317.
| Crossref | GoogleScholarGoogle Scholar |
[18]
G. P. Ayers ,
R. W. Gillett ,
DMS and its oxidation products in the remote marine atmosphere; implications for climate and atmospheric chemistry.
J. Sea Res. 2000
, 43, 275.
| Crossref | GoogleScholarGoogle Scholar |
[19]
B. A. Albrecht ,
Aerosols, cloud microphysics, and fractional cloudiness.
Science 1989
, 245, 1227.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[20]
C. D. O’Dowd ,
M. C. Facchini ,
F. Cavalli ,
D. Ceburnis ,
M. Mircea ,
S. Decesari ,
S. Fuzzi ,
Y. J. Yoon ,
et al. Biogenically driven organic contribution to marine aerosol.
Nature 2004
, 431, 676.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[21]
N. Meskhidze ,
A. Nenes ,
Phytoplankton and cloudiness in the southern ocean.
Science 2006
, 314, 1419.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[22]
S. A. Klein ,
D. L. Hartmann ,
The seasonal cycle of low stratiform clouds.
J. Clim. 1993
, 6, 1587.
| Crossref | GoogleScholarGoogle Scholar |